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PREFACE TO THE FIRST EDITION

rjlHE fact that certain bodies, after being rubbed, appear
-*- to attract other bodies, was known to the ancients. In
modern times, a great variety of other phenomena have been
observed, and have been found to be related to these pheno-
mena of attraction. They have been classed under the name
of Electric phenomena, amber, rjkeicTpov, having been the sub-

stance in which they were first described.

Other bodies, particularly the loadstone, and pieces of iron

and steel which have been subjected to certain processes, have
also been long known to exhibit phenomena of action at

a distance. These phenomena, with others related to them,
were found to differ from the electric phenomena, and have
been classed under the name of Magnetic phenomena, the

loadstone, ptdy^jjy, being found in the Thessalian Magnesia.

These two classes of phenomena have since been found to be

related to each other, and the relations between the various

phenomena of both classes, so far as they are known, constitute

the science of Electromagnetism.

In the following Treatise I propose to describe the most
important of these phenomena, to shew how they may be
subjected to measurement, and to trace the mathematical
connexions of the quantities measured. Having thus obtained
the data for a mathematical theory of electromagnetism, and
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having shewn how this theory may be applied to the calcula-

tion of phenomena, I shall endeavour to place in as clear a

light as I can the relations between the mathematical form of

this theory and that of the fundamental science of Dynamics,

in order that we may be in some degree prepared to determine

the kind of dynamical phenomena among which we are to

look for illustrations or explanations of the electromagnetic

phenomena.

In describing the phenomena, I shall select those which

most clearly illustrate the fundamental ideas of the theory,

omitting others, or reserving them till the reader is more

advanced.

The most important aspect of any phenomenon from a

mathematical point of view is that of a measurable quantity.

I shall therefore consider electrical phenomena chiefly with

a view to their measurement, describing the methods of

measurement, and defining the standards on which they

depend.

In the application of mathematics to the calculation of elec-

trical quantities, I shall endeavour in the first place to deduce

the most general conclusions from the data at our disposal,

and in the next place to apply the results to the simplest

cases that can be chosen. I shall avoid, as much as I can,

those questions which, though they have elicited the skill of

mathematicians, have not enlarged our knowledge of science.

The internal relations of the different branches of the

science which we have to study are more numerous and com-

plex than those of any other science hitherto developed. Its

external relations, on the one hand to dynamics, and on the

other to heat, light, chemical action, and the constitution of

bodies, seem to indicate the special importance of electrical

science as an aid to the interpretation of nature.

It appears to me, therefore, that the study of electromagnet-

ism in all its extent has now become of the first importance

as a means of promoting the progress of science.

The mathematical laws of the different classes of phenomena
have been to a great extent satisfactorily made out.
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The connexions between the different classes of phenomena

have also been investigated, and the probability of the rigorous

exactness of the experimental laws have been greatly strength-

ened by a more extended knowledge of their relations to each

other.

Finally, some progress has been made in the reduction of

electromagnetism to a dynamical science, by shewing that no

electromagnetic phenomenon is contradictory to the suppo-

sition that it depends on purely dynamical action.

What has been hitherto done, however, has by no means

exhausted the field of electrical research. It has rather opened

up that field, by pointing out subjects of enquiry, and furnish-

ing us with means of investigation.

It is hardly necessary to enlarge upon the beneficial results

of magnetic research on navigation, and the importance of a

knowledge of the true direction of the compass, and of the

effect of the iron in a ship. But the labours of those who
have endeavoured to render navigation more secure by means

of magnetic observations have at the same time greatly ad-

vanced the progress of pure science.

Gauss, as a member of the German Magnetic Union, brought

his powerful intellect to bear on the theory of magnetism, and

on the methods of observing it, and he not only added greatly

to our knowledge of the theory of attractions, but reconstructed

the whole of magnetic science as regards the instruments used,

the methods of observation, and the calculation of the results,

so that his memoirs on Terrestrial Magnetism may be taken as

models of physical research by all those who are engaged in

the measurement of any of the forces in nature.

The important applications of electromagnetism to tele-

graphy have also reacted on pure science by giving a com-

mercial value to accurate electrical measurements, and by

affording to electricians the use of apparatus on a scale which

greatly transcends that of any ordinary laboratory. The con-

sequences of this demand for electrical knowledge, and of

these experimental opportunities for acquiring it, have been

already very great, both in stimulating the energies of ad-
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vanced electricians, and in diffusing among practical men
a degree of accurate knowledge which is likely to conduce

to the general scientific progress of the whole engineering

profession.

There are several treatises in which electrical and magnetic

phenomena are described in a popular way. These, however,

are not what is wanted by those who have been brought face

to face with quantities to be measured, and whose minds do

not rest satisfied with lecture-room experiments.

There is also a considerable mass of mathematical memoirs

which are of great importance in electrical science, but they

lie concealed in the bulky Transactions of learned societies

;

they do not form a connected system ; they are of very unequal

merit, and they are for the most part beyond the comprehension

of any but professed mathematicians.

I have therefore thought that a treatise would be useful

which should have for its principal object to take up the

whole subject in a methodical manner, and which should also

indicate how each part of the subject is brought within the

reach of methods of verification by actual measurement.

The general complexion of the treatise differs considerably

from that of several excellent electrical works, published, most
of them, in Germany, and it may appear that scant justice is

done to the speculations of several eminent electricians and
mathematicians. One reason of this is that before I began
the study of electricity I resolved to read no mathematics on the

subject till I had first read through Faraday's Experimental
Researches in Electricity. I was aware that there was supposed
to be a difference between Faraday's way of conceiving phe-
nomena and that of the mathematicians, so that neither he
nor they were satisfied with each other's language. I had
also the conviction that this discrepancy did not arise from
either party being wrong. I was first convinced of this by
Sir William Thomson *, to whose advice and assistance, as

* I take this opportunity of acknowledging my obligations to Sir W.
Thomson and to Professor Tait for many valuable suggestions made during
the printing of this work.



TO THE FIRST EDITION. ix

well as to his published papers, I owe most of what I have

learned on the subject.

As I proceeded with the study of Faraday, I perceived that

his method of conceiving the phenomena was also a mathe-

matical one, though not exhibited in the conventional form

of mathematical symbols. I also found that these methods

were capable of being expressed in the ordinary mathematical

forms, and thus compared with those of the professed ma-

thematicians.

For instance, Faraday, in his mind's eye, saw lines of force

traversing all space where the mathematicians saw centres of

force attracting at a distance : Faraday saw a medium where

they saw nothing but distance : Faraday sought the seat of

the phenomena in real actions going on in the medium, they

were satisfied that they had found it in a power of action at a

distance impressed on the electric fluids.

"When I had translated what I considered to be Faraday's

ideas into a mathematical form, I found that in general the

results of the two methods coincided, so that the same phe-

nomena were accounted for, and the same laws of action de-

duced by both methods, but that Faraday's methods resembled

those in which we begin with the whole and arrive at the

parts by analysis, while the ordinary mathematical methods

were founded on the principle of beginning with the parts

and building up the whole by synthesis.

I also found that several of the most fertile methods of

research discovered by the mathematicians could be expressed

much better in terms of ideas derived from Faraday than in

their original form.

The whole theory, for instance, of the potential, considered

as a quantity which satisfies a certain partial differential equa-

tion, belongs essentially to the method which I have called that

of Faraday. According to the other method, the potential,

if it is to be considered at all, must be regarded as the result

of a summation of the electrified particles divided each by its

distance from a given point. Hence many of the mathematical

discoveries of Laplace, Poisson, Green and Gauss find their



x PREFACE

proper place in this treatise, and their appropriate expressions

in terms of conceptions mainly derived from Faraday.

Great progress has been made in electrical science, chiefly

in Germany, by cultivators of the theory of action at a dis-

tance. The valuable electrical measurements of W. "Weber are

interpreted by him according to this theory, and the electro-

magnetic speculation -which was originated by Gauss, and

carried on by Weber, Eiemann, J. and C. Neumann, Lorenz, &c.,

is founded on the theory of action at a distance, but depending

either directly on the relative velocity of the particles, or on

the gradual propagation of something, whether potential or

force, from the one particle to the other. The great success

which these eminent men have attained in the application of

mathematics to electrical phenomena, gives, as is natural,

additional weight to their theoretical speculations, so that

those who, as students of electricity, turn to them as the

greatest authorities in mathematical electricity, would probably

imbibe, along with their mathematical methods, their physical

hypotheses.

These physical hypotheses, however, are entirely alien from

the way of looking at things which I adopt, and one object

which I have in view is that some of those who wish to study

electricity may, by reading this treatise, come to see that

there is another way of treating the subject, which is no less

fitted to explain the phenomena, and which, though in some

parts it may appear less definite, corresponds, as I think, more
faithfully with our actual knowledge, both in what it affirms

and in what it leaves undecided.

In a philosophical point of view, moreover, it is exceedingly

important that two methods should be compared, both of

which have succeeded in explaining the principal electro-

magnetic phenomena, and both of which have attempted to

explain the propagation of light as an electromagnetic phe-

nomenon and have actually calculated its velocity, while at the

same time the fundamental conceptions of what actually takes

place, as well as most of the secondary conceptions of the

quantities concerned, are radically different.
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I have therefore taken the part of an advocate rather than

that of a judge, and have rather exemplified one method than

attempted to give an impartial description of both. I have

no doubt that the method which I have called the German
one will also find its supporters, and will be expounded with

a skill worthy of its ingenuity.

I have not attempted an exhaustive account of electrical

phenomena, experiments, and apparatus. The student who
desires to read all that is known on these subjects will find

great assistance from the Traite" d'Electricit4 of Professor A.

de la E-ive, and from several German treatises, such as Wiede-

mann's Galvanismus, Eiess' Reibungselektricita't, Beer's Einlei-

tung in die Elektrostatik, &c.

I have confined myself almost entirely to the mathematical

treatment of the subject, but I would recommend the student,

after he has learned, experimentally if possible, what are the

phenomena to be observed, to read carefully Faraday's Experi-

mental Researches in Electricity. He will there find a strictly

contemporary historical account of some of the greatest elec-

trical discoveries and investigations, carried on in an order

and succession which could hardly have been improved if the

results had been known from the first, and expressed in the

language of a man who devoted much of his attention to

the methods of accurately describing scientific operations and

their results*.

It is of great advantage to the student of any subject to

read the original memoirs on that subject, for science is always

most completely assimilated when it is in the nascent state,

and in the case of Faraday's Researches this is comparatively

easy, as they are published in a separate form, and may be

read consecutively. If by anything I have here written I

may assist any student in understanding Faraday's modes of

thought and expression, I shall regard it as the accomplish-

ment of one of my principal aims—to communicate to others

the same delight which I have found myself in reading Fara-

day's Researches.

* Life and Letters ofFaraday, vol. i. p. 395.
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The description of the phenomena, and the elementary parts

of the theory of each subject, will be found in the earlier

chapters of each of the four Parts into which this treatise

is divided. The student will find in these chapters enough

to give him an elementary acquaintance with the whole

science.

The remaining chapters of each Part are occupied with the

higher parts of the theory, the processes of numerical calcu-

lation, and the instruments and methods of experimental

research.

The relations between electromagnetic phenomena and those

of radiation, the theory of molecular electric currents, and

the results of speculation on the nature of action at a dis-

tance, are treated of in the last four chapters of the second

volume.

James Cleek Maxwell.

Feb. 1, 1873.
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"1TTHEN I was asked to read the proof-sheets of the second

edition of the Electricity and Magnetism the work of

printing had already reached the ninth chapter, the greater

part of which had been revised by the author.

Those who are familiar with the first edition will see from a

comparison with the present how extensive were the changes

intended by Professor Maxwell both in the substance and in

the treatment of the subject, and how much this edition has

suffered from his premature death. The first nine chapters

were in some cases entirely rewritten, much new matter being

added and the former contents rearranged and simplified.

From the ninth chapter onwards the present edition is

little more than a reprint. The only liberties I have taken

have been in the insertion here and there of a step in the

mathematical reasoning where it seemed to be an advantage

to the reader and of a few foot-notes on parts of the subject

which my own experience or that of pupils attending my
classes shewed to require further elucidation. These foot-

notes are in square brackets.

There were two parts of the subject in the treatment of

which it was known to me that the Professor contemplated

considerable changes : viz. the mathematical theory of the

conduction of electricity in a network of wires, and the de-

termination of coefficients of induction in coils of wire. In
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these subjects I have not found myself in a position to add,

from the Professor's notes, anything substantial to the work

as it stood in the former edition, with the exception of a

numerical table, printed in vol. ii, pp. 317-319. This table will

be found very useful in calculating coefficients of induction

in circular coils of wire.

In a work so original, and containing so many details of

new results, it was impossible but that there should be a few

errors in the first edition. I trust that in the present edition

most of these will be found to have been corrected. I have

the greater confidence in expressing this hope as, in reading

some of the proofs, I have had the assistance of various

friends conversant with the work, among whom I may men-

tion particularly my brother Professor Charles Niven, and

Mr. J. J. Thomson, Fellow of Trinity College, Cambridge.

W. D. Niven.

Trinity College, Cambeidge,

Oct. 1, 1881.
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T UNDERTOOK the task of reading the proofs of this

Edition at the request of the Delegates of the Clarendon

Press, by whom I was informed, to my great regret, that Mr.

W. D. Niven found that the pressure of his official duties

prevented him from seeing another edition of this work
through the Press.

The readers" of Maxwell's writings owe so much to the un-

tiring labour which Mr. Niven has spent upon them, that I am
sure they will regret as keenly as I do myself that anything

should have intervened to prevent this Edition from receiving

the benefit of his care.

It is now nearly twenty years since this book was written,

and during that time the sciences of Electricity and Mag-
netism have advanced with a rapidity almost unparalleled in

their previous history ; this is in no small degree due to the

views introduced into these sciences by this book : many of

its paragraphs have served as the starting-points of important

investigations. When I began to revise this Edition it was
my intention to give in foot-notes some account of the ad-

vances made since the publication of the first edition, not

only because I thought it might be of service to the students

of Electricity, but also because all recent investigations have

tended to confirm in the most remarkable way the views ad-

vanced by Maxwell I soon found, however, that the progress

made in the science had been so great that it was impossible
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to carry out this intention without disfiguring the book by a

disproportionate quantity of foot-notes. I therefore decided to

throw these notes into a slightly more consecutive form and

to publish them separately. They are now almost ready for

press, and will I hope appear in a few months. This volume

of notes is the one referred to as the ' Supplementary Volume.'

A few foot-notes relating to isolated points which could be

dealt with briefly are given. All the matter added to this

Edition is enclosed within { } brackets.

I have endeavoured to add something in explanation of the

argument in those passages in which I have found from my
experience as a teacher that nearly all students find consider-

able difficulties ; to have added an explanation of all passages

in which I have known students find difficulties would have

required more volumes than were at my disposal.

I have attempted to verify the results which Maxwell gives

without proof; I have not in all instances succeeded in

arriving at the result given by him, and in such cases I have

indicated the difference in a foot-note.

I have reprinted from his paper on the Dynamical Theory of

the Electromagnetic Field, Maxwell's method of determining

the self-induction of a coil. The omission of this from previous

editions has caused the method to be frequently attributed to

other authors.

In preparing this edition I have received the greatest pos-

sible assistance from Mr.Charles Chree, Fellow of King's College,

Cambridge. Mr. Chree has read the whole of the proof sheets,

and his suggestions have been invaluable. I have also received

help from Mr. Larmor, Fellow of St. John's College, Mr.

Wilberforce, Demonstrator at the Cavendish Laboratory, and

Mr. G. T. Walker, Fellow of Trinity College.

J. J. Thomson.

Cavendish Laboratory:

Dee. 5, 1891.
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ELECTEICITY AND MAGNETISM,

PEELIMINAKY.

ON THE MEASUEEMENT OF QUANTITIES.

1.] Evert expression of a Quantity consists of two factors or
components. One of these is the name of a certain known quan-
tity of the same kind as the quantity to be expressed, which is

taken as a standard of reference. The other component is the
number of times the standard is to be taken in order to make up
the required quantity. The standard quantity is technicaUy
called the Unit, and the number is called the Numerical Value
of the quantity.

There must be as many different units as there are different
kinds of quantities to be measured, but in all dynamical sciences
it is possible to define these units in terms of the three funda-
mental units of Length, Time, and Mass. Thus the units of area
and of volume are defined respectively as the square and the
cube whose sides are the unit of length.

Sometimes, however, we find several units of the same kind
founded on independent considerations. Thus the gallon, or the
volume of ten pounds of water, is used as a unit of capacity as
well as the cubic foot. The gallon may be a convenient measure
in some cases, but it is not a systematic one, since its numerical
relation to the cubic foot is not a round integral number.

2.] In framing a mathematical system we suppose the funda-
mental units of length, time, and mass to be given, and deduce
all the derivative units from these by the simplest attainable
definitions.

The formulae at which we arrive must be such that a person
of any nation, by substituting for the different symbols the
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numerical values of the quantities as measured by his own

national units, would arrive at a true result.

Hence, in all scientific studies it is of the greatest importance

to employ units belonging to a properly defined system, and to

know the relations of these units to the fundamental units, so

that we may be able at once to transform our results from one

system to another.

This is most conveniently done by ascertaining the dimensions

of every unit in terms of the three fundamental units. When a

given unit varies as the nth power of one of these units, it is

said to be of n dimensions as regards that unit.

For instance, the scientific unit of volume is always the cube

whose side is the unit of length. If the unit of length varies,

the unit of volume will vary as its third power, and the unit of

volume is said to be of three dimensions with respect to the unit

of length.

A knowledge of the dimensions of units furnishes a test which

ought to be applied to the equations resulting from any lengthened

investigation. The dimensions of every term of such an equa-

tion, with respect to each of the three fundamental units, must

be the same. If not, the equation is absurd, and contains some

error, as its interpretation would be different according to the

arbitrary system of units which we adopt *.

The Three Fundamental Units.

3.] (1) Length. The standard of length for scientific purposes

in this country is one foot, which is the third part of the standard

yard preserved in the Exchequer Chambers.

In France, and other countries which have adopted the metric

system, it is the metre. The metre is theoretically the ten mil-

lionth part of the length of a meridian of the earth measured

from the pole to the equator ; but practically it is the length of

a standard preserved in Paris, which was constructed by Borda

to correspond, when at the temperature of melting ice, with the

value of the preceding length as measured by Delambre. The

metre has not been altered to correspond with new and more

accurate measurements of the earth, but the arc of the meridian

is estimated in terms of the original metre.

* The theory of dimensions was first stated by Fourier, Theorie de C'haleur, § 160.
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In astronomy the mean distance of the earth from the sun is

sometimes taken as a unit of length.

In the present state of science the most universal standard of
length which we could assume would be the wave length in
vacuum of a particular kind of light, emitted by some widely
diffused substance such as sodium, which has well-defined lines

in its spectrum. Such a standard would be independent of any
changes in the dimensions of the earth, and should be adopted
by those who expect their writings to be more permanent than
that body.

In treating of the dimensions of units we shall call the unit of
length [X]. If I is the numerical value of a length, it is under-
stood to be expressed in terms of the concrete unit [Z], so that
the actual length would be fully expressed by I [L~\.

4.] (2) Time. The standard unit of time in all civilized

countries is deduced from the time of rotation of the earth
about its axis. The sidereal day, or the true period of rotation
of the earth, can be ascertained with great exactness by the
ordinary observations of astronomers ; and the mean solar day
can be deduced from this by our knowledge of the length of
the year.

The unit of time adopted in all physical researches is one
second of mean solar time.

In astronomy a year is sometimes used as a unit of time. A
more universal unit of time might be found by taking the
periodic time of vibration of the particular kind of light whose
wave length is the unit of length.

We shall call the concrete unit of time [T], and the numerical
measure of time t.

5.] (3) Mass. The standard unit of mass is in this country
the avoirdupois pound preserved in the Exchequer Chambers.
The grain, which is often used as a unit, is denned to be the
7000th part of this pound.

In the metrical system it is the gramme, which is theoretically

the mass of a cubic centimetre of distilled water at standard
temperature and pressure, but practically it is the thousandth
part of the standard kilogramme preserved in Paris.

The accuracy with which the masses of bodies can be com-
pared by weighing is far greater than that hitherto attained in

the measurement of lengths, so that all masses ought, if possible,
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to be compared directly with the standard, and not deduced from

experiments on water.

In descriptive astronomy the mass of the sun or that of the

earth is sometimes taken as a unit, but in the dynamical theory

of astronomy the unit of mass is deduced from the units of time

and length, combined with the fact of universal gravitation. The

astronomical unit of mass is that mass which attracts another

body placed at the unit of distance so as to pieduce in that body

the unit of acceleration.

In framing a universal system of units we may either deduce

the unit of mass in this way from those of length and time

already denned, and this we can do to a rough approximation in

the present state of science ; or, if we expect * soon to be able to

determine the mass of a single molecule of a standard substance,

we may wait for this determination before fixing a universal

standard of mass.

We shall denote the concrete unit of mass by the symbol [M]

in treating of the dimensions of other units. The unit of mass

will be taken as one of the three fundamental units. When, as

in the French system, a particular substance, water, is taken as

a standard of density, then the unit of mass is no longer inde-

pendent, but varies as the unit of volume, or as [X3
].

If, as in the astronomical system, the unit of mass is denned

with respect to its attractive power, the dimensions of [M] are

[L*T-*].

For the acceleration due to the attraction of a mass m at a

distance r is by the Newtonian Law -j. Suppose this attraction

to act for a very small time t on a body originally at rest, and to

cause it to describe a space s, then by the formula of Galileo,

8 = */t» = *^a
;

whence m = 2 —^ • Since r and s are both lengths, and t is a

time, this equation cannot be true unless the dimensions of m are

[LZ T~2
]. The same can be shewn from any astronomical equa-

* See Prof. J. Loschmidt, ' Zur Grosse der Luftmolecule,' Academy of Vienna,

Oct. 12, 1865 : G. J. Stoney on 'The Internal Motions of Gases,' Phil. Mag., Aug.

1868 ; and Sir W. Thomson on ' The Size of Atoms,' Nature, March 31, 1870.

{See also Sir W. Thomson on 'The Size of Atoms,' Nature, v. 28, pp. 203, 250, 274.

}
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tion in which the mass of a body appears in some but not in all

of the terms *.

Derived Units.

6.] The unit of Velocity is that velocity in which unit of length
is described in unit of time. Its dimensions are [LT~ 1

].

If we adopt the units of length and time derived from the
vibrations of light, then the unit of velocity is the velocity of
light.

The unit of Acceleration is that acceleration in which the
velocity increases by unity in unit of time. Its dimensions are
[LT-*\.

The unit of Density is the density of a substance which con-
tains unit of mass in unit of volume. Its dimensions are [ML'*].
The unit of Momentum is the momentum of unit of mass

moving with unit of velocity. Its dimensions are \MLT~1 '].

The unit of Force is the force which produces unit ofmomentum
in unit of time. Its dimensions are [MLT~2

].

This is the absolute unit of force, and this definition of it is

implied in every equation in Dynamics. Nevertheless, in many
text books in which these equations are given, a different unit of
force is adopted, namely, the weight of the national unit of mass

;

and then, in order to satisfy the equations, the national unit of
mass is itself abandoned, and an artificial unit is adopted as the
dynamical unit, equal to the national unit divided by the
numerical value of the intensity of gravity at the place. In this

way both the unit of force and the unit of mass are made to

depend on the value of the intensity of gravity, which varies

from place to place, so that statements involving these quantities

are not complete without a knowledge of the intensity of gravity
in the places where these statements were found to be true.

The abolition, for all scientific purposes, of this method of
measuring forces is mainly due to the introduction by Gauss of

* If a centimetre and a second are taken as units, the astronomical unit of mass
would be about 1-537 X 107 grammes, or 15-37 tonnes, according to Baily's repetition
of Cavendish's experiment. Baily adopts 5-6604 as the mean result of all his experi-
ments for the mean density of the earth, and this, with the values used by Baily for
the dimensions of the earth and the intensity of gravity at its surface, gives" the
above value as the direct result of his experiments.

{Cornu's recalculation of Baily's results gives 5-55 as the mean density of the
earthy and therefore 1-50 xlO7 grammes as the astronomical unit of mass; while
Cornu's own experiments give 5-50 as the mean density of the earth, and 1-49 x 107

grammes as the astronomical unit of mass.

}
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a general system of making observations of magnetic force in

countries in which the intensity of gravity is different. All such

forces are now measured according to the strictly dynamical

method deduced from our definitions, and the numerical results

are the same in whatever country the experiments are made.

The unit of Work is the work done by the unit of force acting

through the unit of length measured in its own direction. Its

dimensions are [JfZ2T-2
].

The Energy of a system, being its capacity of performing work,

is measured by the work which the system is capable of per-

forming by the expenditure of its whole energy.

The definitions of other quantities, and of the units to which

they are referred, will be given when we require them.

In transforming the values of physical quantities determined in

terms of one unit, so as to express them in terms of any other

unit of the same kind, we have only to remember that every ex-

pression for the quantity consists of two factors, the unit and the

numerical part which expresses how often the unit is to be taken.

Hence the numerical part of the expression varies inversely as

the magnitude of the unit, that is, inversely as the various powers

of the fundamental units which are indicated by the dimensions

of the derived unit.

On Physical Continuity and Discontinuity.

7.] A quantity is said to vary continuously if, when it passes

from one value to another, it assumes all the intermediate values.

We may obtain the conception of continuity from a considera-

tion of the continuous existence of a particle of matter in time

and space. Such a particle cannot pass from one position to

another without describing a continuous line in space, and the

coordinates of its position must be continuous functions of the

time.

In the so-called ' equation of continuity,' as given in treatises

on Hydrodynamics, the fact expressed is that matter cannot

appear in or disappear from an element of volume without pass-

ing in or out through the sides of that element.

A quantity is said to be a continuous function of its variables

if, when the variables alter continuously, the quantity itself alters

continuously.

Thus, if u is a function of x, and if, while x passes continuously
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from x to x
x , u passes continuously from u to u

x , but when x
passes from x

x
to x2 , u passes from u{ to u

2 , u{ being different

from Uj, then u is said to have a discontinuity in its variation
with respect to x for the value x = x

x , because it passes abruptly
from u

x
to u

x
while x passes continuously through x

x
.

If we consider the differential coefficient of u with respect to x
for the value x = x

x as the limit of the fraction

u„—un

when x2 and x are both made to approach x
x without limit, then,

if x
Q and x2 are always on opposite sides of x

x , the ultimate value
of the numerator will be u

x'-ux , and that of the denominator
will be zero. If u is a quantity physically continuous, the dis-

continuity can exist only with respect to particular values of the
variable x. We must in this case admit that it has an infinite
differential coefficient when x = x

x
. If u is not physically con-

tinuous, it cannot be differentiated at all.

It is possible in physical questions to get rid of the idea of
discontinuity without sensibly altering the conditions of the
case. If x

Q
is a very little less than x

x , and x2 a very little

greater than x
x ,
then u will be very nearly equal to ux and u2

to ux . We may now suppose u to vary in any arbitrary but
continuous manner from u to u2 between the limits x and x2

.

In many physical questions we may begin with a hypothesis of
this kind, and then investigate the result when the values of
xQ and x2 are made to approach that of xx and ultimately to reach
it. If the result is independent of the arbitrary manner in
which we have supposed u to vary between the limits, we may
assume that it is true when u is discontinuous.

Discontinuity of a Function of more than One Variable.

8.] If we suppose the values of all the variables except x to be
constant, the discontinuity of the function will occur for particular

values of x, and these will be connected with the values of the

other variables by an equation which we may write

= $ (x, y, z, &c.) = 0.

The discontinuity will occur when ^ = 0. When <£ is positive

the function will have the form F
2 (x, y, z, &c). When

<f>
is
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negative it will have the form Fx
(x, y, z, &c). There need be no

necessary relation between the forms J^ and F2
.

To express this discontinuity in a mathematical form, let one

of the variables, say x, be expressed as a function of $ and the

other variables, and let Fx
and F% be expressed as functions of

<f>, y, z, &c. We may now express the general form of the function

by any formula which is sensibly equal to F2
when </> is positive,

and to Fx
when <p is negative. Such a formula is the following

—

F =
F^ + e^Fs

1 +en *

As long as n is a finite quantity, however great, F will be a

continuous function, but if we make n infinite F will be equal to

F2 when <f>
is positive, and equal to F

x
when

<f>
is negative.

Discontinuity of the Derivatives of a Continuous Function.

The first derivatives of a continuous function may be discon-

tinuous. Let the values of the variables for which the discon-

tinuity of the derivatives occurs be connected by the equation

<£ = </>(«, 2/,z...) = 0,

and let Fx
and F2 be expressed in terms of

<f>
and n— 1 other

variables, say (y, z ...).

Then, when <j> is negative, Fx is to be taken, and when
<f>

is

positive F2
is to be taken, and, since F is itself continuous, when

$ is zero, F
x
= F

2
.

Hence, when <b is zero, the derivatives -~ and -~ may be
cL(p ct<p

different, but the derivatives with respect to any of the other

d W d W
variables, such as —r-1 and -~ > must be the same. The discon-

dy dy

tinuity is therefore confined to the derivative with respect to <£,

all the other derivatives being continuous.

Periodic and Multiple Functions.

9.] If u is a function of x such that its value is the same for

x, x + a, x + na, and all values of x differing by a, u is called a

periodic function of x, and a is called its period.

If x is considered as a function of u, then, for a given value of

u, there must be an infinite series of values of x differing by
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multiples of a. In this case x is called a multiple function of u,

and a is called its cyclic constant.

doc
The differential coefficient -r- has only a finite number of

an J

values corresponding to a given value of u.

On the Relation of Physical Quantities to Directions in Space.

10.] In distinguishing the kinds of physical quantities, it is of

great importance to know how they are related to the directions

of those coordinate axes which we usually employ in defining the

positions of things. The introduction of coordinate axes into

geometry by Des Cartes was one of the greatest steps in mathe-
matical progress, for it reduced the methods of geometry to

calculations performed on numerical quantities. The position

of a point is made to depend on the lengths of three lines which
are always drawn in determinate directions, and the line joining

two points is in like manner considered as the resultant of three

lines.

But for many purposes of physical reasoning, as distinguished

from calculation, it is desirable to avoid explicitly introducing

the Cartesian coordinates, and to fix the mind at once on a point

of space instead of its three coordinates, and on the magnitude
and direction of a force instead of its three components. This

mode of contemplating geometrical and physical quantities is

more primitive and more natural than the other, although the

ideas connected with it did not receive their full development
till Hamilton made the next great step in dealing with space, by
the invention of his Calculus of Quaternions *.

As the methods of Des Cartes are still the most familiar to

students of science, and as they are really the most useful for

purposes of calculation, we shall express all our results in the

Cartesian form. I am convinced, however, that the introduction

of the ideas, as distinguished from the operations and methods of

Quaternions, will be of great use to us in the study of all parts

of our subject, and especially in electrodynamics, where we have
to deal with a number of physical quantities, the relations of

which to each other can be expressed far more simply by a few
expressions of Hamilton's, than by the ordinary equations.

* {For an elementary account of Quaternions, the reader may be referred to Kel-
land and Tait's ' Introduction to Quaternions,' Tait's ' Elementary Treatise on
Quaternions,' and Hamilton's ' Elements of Quaternions.'}
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11.] One of the most important features of Hamilton's method

is the division of quantities into Scalars and Vectors.

A Scalar quantity is capable of being completely denned by a

single numerical specification Its numerical value does not in

any way depend on the directions we assume for the coordinate

axes.

A Vector, or Directed quantity, requires for its definition three

numerical specifications, and these may mosb simply be under-

stood as having reference to the directions of the coordinate axes.

Scalar quantities do not involve direction. The volume of a

geometrical figure, the mass and the energy of a material body,

the hydrostatical pressure at a point in a fluid, and the potential

at a point in space, are examples of scalar quantities.

A vector quantity has direction as well as magnitude, and is

such that a reversal of its direction reverses its sign. The dis-

placement of a point, represented by a straight line drawn from

its original to its final position, may be taken as the typical

vector quantity, from which indeed the name of Vector is

derived.

The velocity of a body, its momentum, the force acting on it,

an electric current, the magnetization of a particle of iron, are

instances of vector quantities.

There are physical quantities of another kind which are related

to directions in space, but which are not vectors. Stresses and

strains in solid bodies are examples of these, and so are some of

the properties of bodies considered in the theory of elasticity and

in the theory of double refraction. Quantities of this class

require for their definition nine numerical specifications. They

are expressed in the language of quaternions by linear and

vector functions of a vector.

The addition of one vector quantity to another of the same

kind is performed according to the rule given in Statics for the

composition of forces. In fact, the proof which Poisson gives of

the ' parallelogram of forces ' is applicable to the composition of

any quantities such that turning them end for end is equivalent

to a reversal of their sign.

When we wish to denote a vector quantity by a single symbol,

and to call attention to the fact that it is a vector, so that we

must consider its direction as well as its magnitude, we shall

denote it by a German capital letter, as 31, 23, &c.
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In the calculus of quaternions, the position of a point in space

is denned by the vector drawn from a fixed point, called the

origin, to that point. If we have to consider any physical

quantity whose value depends on the position of the point, that

quantity is treated as a function of the vector drawn from the

origin. The function may be itself either scalar or vector. The

density of a body, its temperature, its hydrostatical pressure, the

potential at a point, are examples of scalar functions. The

resultant force at a point, the velocity of a fluid at a point, the

velocity of rotation of an element of the fluid, and the couple

producing rotation, are examples of vector functions.

12.] Physical vector quantities may be divided into two classes,

in one of which the quantity is defined with reference to a line,

while in the other the quantity is defined with reference to an

area.

For instance, the resultant of an attractive force in any direction

may be measured by finding the work which it would do on a
body if the body were moved a short distance in that direction

and dividing it by that short distance. Here the attractive force

is defined with reference to a line.

On the other hand, the flux of heat in any direction at any
point of a solid body may be defined as the quantity of heat

which crosses a small area drawn perpendicular to that direction

divided by that area and by the time. Here the flux is defined

with reference to an area.

There are certain cases in which a quantity may be measured
with reference to a line as well as with reference to an area.

Thus, in treating of the displacements of elastic solids, we may
direct our attention either to the original and the actual positions

of a particle, in which case the displacement of the particle is

measured by the line drawn from the first position to the second,

or we may consider a small area fixed in space, and determine

what quantity of the solid passes across that area during the

displacement.

In the same way the velocity of a fluid may be investigated

either with respect to the actual velocity of the individual

particles, or with respect to the quantity of the fluid which flows

through any fixed area.

But in these cases we require to know separately the density

of the body as well as the displacement or velocity, in order to
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apply the first method, and whenever we attempt to form a

molecular theory we have to use the second method.

In the case of the flow of electricity we do not know anything

of its density or its velocity in the conductor, we only know the

value of what, on the fluid theory, would correspond to the

product of the density and the velocity. Hence in all such cases

we must apply the more general method of measurement of the

flux across an area.

In electrical science, electromotive and magnetic intensity

belong to the first class, being defined with reference to lines.

When we wish to indicate this fact, we may refer to them as

Intensities.

On the other hand, electric and magnetic induction, and

electric currents, belong to the second class, being defined with

reference to areas. When we wish to indicate this fact, we shall

refer to them as Fluxes.

Each of these intensities may be considered as producing, or

tending to produce, its corresponding flux. Thus, electromotive

intensity produces electric currents in conductors, and tends to

produce them in dielectrics. It produces electric induction in

dielectrics, and probably in conductors also. In the same sense,

magnetic intensity produces magnetic induction.

13.] In some cases the flux is simply proportional to the inten-

sity and in the same direction, but in other cases we can only

affirm that the direction and magnitude of the flux are functions

of the direction and magnitude of the intensity.

The case in which the components of the flux are linear

functions of those of the intensity is discussed in the chapter on

the Equations of Conduction, Art. 297. There are in general nine

coefficients which determine the relation between the intensity

and the flux. In certain cases we have reason to believe that six

of these coefficients form three pairs of equal quantities. In such

cases the relation between the line of direction of the intensity

and the normal plane of the flux is of the same kind as that be-

tween a semi-diameter of an ellipsoid and its conjugate diametral

plane. In Quaternion language, the one vector is said to be a

linear and vector function of the other, and when there are three

pairs of equal coefficients the function is said to be self-conjugate.

In the case of magnetic induction in iron, the flux (the mag-

netization of the iron) is not a linear function of the magnetizing
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intensity. In all cases, however, the product of the intensity

and the flux resolved in its direction, gives a result of scientific

importance, and this is always a scalar quantity.

14.] There are two mathematical operations of frequent occur-

rence which are appropriate to these two classes of vectors, or

directed quantities.

In the case of intensity, we have to take the integral along a

line of the product of an element of the line, and the resolved

part of the intensity along that element. The result of this

operation is called the Line-integral of the intensity. It repre-

sents the work done on a body carried along the line. In certain

cases in which the line-integral does not depend on the form of

the line, but only on the positions of its extremities, the line-

integral is called the Potential.

In the case of fluxes, we have to take the integral, over a

surface, of the flux through every element of the surface. The
result of this operation is called the Surface-integral of the flux.

It represents the quantity which passes through the surface.

There are certain surfaces across which there is no flux. If

two of these surfaces intersect, their line of intersection is a line

of flux. In those cases in which the flux is in the same direction

as the force, lines of this kind are often called Lines of Force.

It would be more correct, however, to speak of them in electro-

statics and magnetics as Lines of Induction, and in electrokine-

matics as Lines of Flow.

15.] There is another distinction between different kinds of

directed quantities, which, though very important from a physical

point of view, is not so necessary to be observed for the sake of

the mathematical methods. This is the distinction between

longitudinal and rotational properties.

The direction and magnitude of a quantity may depend upon
some action or effect which takes place entirely along a certain

line, or it may depend upon something of the nature of rota-

tion about that line as an axis. The laws of combination of

directed quantities are the same whether they are longitudinal or

rotational, so that there is no difference in the mathematical

treatment of the two classes, but there may be physical circum-

stances which indicate to which class we must refer a particular

phenomenon. Thus, electrolysis consists of the transfer of cer-

tain substances along a line in one direction, and of certain
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other substances in the opposite direction, which is evidently

a longitudinal phenomenon, and there is no evidence of any-

rotational effect about the direction of the force. Hence we
infer that the electric current which causes or accompanies

electrolysis is a longitudinal, and not a rotational phenomenon.

On the other hand, the north and south poles of a magnet do

not differ as oxygen and hydrogen do, which appear at opposite

places during electrolysis, so that we have no evidence that

magnetism is a longitudinal phenomenon, while the effect of

magnetism in rotating the plane of polarization of plane polarized

light distinctly shews that magnetism is a rotational pheno-

menon*.

On Line-integrals.

16.] The operation of integration of the resolved part of a

vector quantity along a line is important in physical science

generally, and should be clearly understood.

Let x, y, z be the coordinates of a point P on a line whose

length, measured from a certain point A, is s. These coordinates

will be functions of a single variable s.

Let R be the numerical value of the vector quantity at P, and

let the tangent to the curve at P make with the direction of R
the angle e, then R cos e is the resolved part of R along the line,

and the integral „,

L — / R cos e ds
Jo

is called the line-integral of R along the line s.

We may write this expression

where X, Y, Z are the components of R parallel to x, y, z respect-

ively.

This quantity is, in general, different for different lines drawn

* {This must not be taken to imply that in any theory in which electric and
magnetic phenomena are supposed to be due to the motion of a medium, the electric

current must necessarily be due to a motion of translation and magnetic force to one
of rotation. There are rotatory effects connected with a current, for example,

a magnetic pole is turned round it, and it is probable that if the medium in which

electrostatic phenomena have their seat has an electric displacement through it

whose components are f, g, h, and is moving with the velocity u, v, w, it will

be the seat of a magnetic force whose components are 4ir(wg— vh), 4ir(uh— w_f),

iir(vf—ug) respectively: thus, in this case, a motion of translation could produce
a magnetic field. Phil. Mag. July, 1889.}
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between A and P. When, however, within a certain region, the

quantity X dx + Ydy +Zdz= -D*,
that is, when it is an exact differential within that region, the

value of L becomes

and is the same for any two forms of the path between A and P,

provided the one form can be changed into the other by con-

tinuous motion without passing out of this region.

On Potentials.

The quantity * is a scalar function of the position of the point,

and is therefore independent of the directions of reference. It

is called the Potential Function, and the vector quantity whose
components are X, Y, Z is said to have a potential *, if

t

x=-0> *-© *-(£)
When a potential function exists, surfaces for which the

potential is constant are called Equipotential surfaces. The
direction of R at any point of such a surface coincides with the

normal to the surface, and if n be a normal at the point P,

then R = —j- .

an

The method of considering the components of a vector as the

first derivatives of a certain function of the coordinates with re-

spect to these coordinates was invented by Laplace * in his treat-

ment of the theory of attractions. The name of Potential was
first given to this function by Green f, who made it the basis of

his treatment of electricity. Green's essay was neglected by
mathematicians till 1846, and before that time most of its im-

portant theorems had been rediscovered by Gauss, Chasles,

Sturm, and Thomson J.

In the theory of gravitation the potential is taken with the

opposite sign to that which is here used, and the resultant force

in any direction is then measured by the rate of increase of the

potential function in that direction. In electrical and magnetic

* Mec. Celeste, liv. iii.

f Essay on the Application of Mathematical Analysis to the Theories of Elec-
tricity and Magnetism, Nottingham, 1828. Reprinted in Crelle's Journal, and in
Mr. Ferrers' edition of Green's Works.
t Thomson and Tait, Natural Philosophy, § 483.
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investigations the potential is defined so that the resultant force

in any direction is measured by the decrease of the potential in

that direction. This method of using the expression makes it

correspond in sign with potential energy, which always decreases

when the bodies are moved in the direction of the forces acting

on them.

17.] The geometrical nature of the relation between the

potential and the vector thus derived from it receives great

light from Hamilton's discovery of the form of the operator

by which the vector is derived from the potential.

The resolved part of the vector in any direction is, as we have

seen, the first derivative of the potential with respect to a co-

ordinate drawn in that direction, the sign being reversed.

Now if i, j, k are three unit vectors at right angles to each

other, and if X, Y, Z are the components of the vector § resolved

parallel to these vectors, then

% = iX+jY+kZ-, (1)

and by what we have said above, if * is the potential,

If we now write V for the operator,

dx dy dz

$ = -V*. (4)

The symbol of operation V may be interpreted as directing us

to measure, in each of three rectangular directions, the rate of

increase of y, and then, considering the quantities thus found as

vectors, to compound them into one. This is what we are

directed to do by the expression (3). But we may also consider

it as directing us first to find out in what direction * increases

fastest, and then to lay off in that direction a vector representing

this rate of increase.

M. Lamd, in his Traite des Fonctions Inverses, uses the term
Differential Parameter to express the magnitude of this greatest

rate of increase, but neither the term itself, nor the mode in

which Lame' uses it, indicates that the quantity referred to has

direction as well as magnitude. On those rare occasions in

which I shall have to refer to this relation as a purely geometrical

one, I shall call the vector % the space-variation of the scalar
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function *, using the phrase to indicate the direction, as well as

the magnitude, of the most rapid decrease of *.

18.] There are cases, however, in which the conditions

dZ dY n dX dZ z dY dX
dy dz dz dx dx dy

which are those of Xdx + Ydy + Zdz being a complete differential,

are satisfied throughout a certain region of space, and yet the

line-integral from A to P may be different for two lines, each of
which lies wholly within that region. This may be the case if

the region is in the form of a ring, and if the two lines from A
to P pass through opposite segments of the ring. In this case,

the one path cannot be transformed into the other by continuous
motion without passing out of the region.

We are here led to considerations belonging to the Geometry
of Position, a subject which, though its importance was pointed

out by Leibnitz and illustrated by Gauss, has been little studied.

The most complete treatment of this subject has been given by
J. B. Listing*.

Let there be p points in space, and let I lines of any form be
drawn joining these points so that no two lines intersect each
other, and no point is left isolated. We shall call a figure com-
posed of lines in this way a Diagram. Of these lines, p— 1 are

sufficient to join the p points so as to form a connected system.

Every new line completes a loop or closed path, or, as we shall

call it, a Cycle. The number of independent cycles in the

diagram is therefore k = I—p+ 1.

Any closed path drawn along the lines of the diagram is com-
posed of these independent cycles, each being taken any number
of times and in either direction.

The existence of cycles is called Cyclosis, and the number of

cycles in a diagram is called its Cyclomatic number.

Cyclosis in Surfaces and Regions.

Surfaces are either complete or bounded. Complete surfaces

are either infinite or closed. Bounded surfaces are limited by
one or more closed lines, which may in the limiting cases become
double finite lines or points.

* Der Census BaiimlicAer Complete, Gott. Abb.., Bd. x. S. 97 (1861). {For an
elementary account of those properties of multiply connected space which are necessary
for physical purposes see Lamb's Treatise on the Motion of Fluids, p. 47.}
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A finite region of space is bounded by one or more closed

surfaces. Of these one is the external surface, the others are

included in it and exclude each other, and are called internal

surfaces.

If the region has one bounding surface, we may suppose that

surface to contract inwards without breaking its continuity or

cutting itself. If the region is one of simple continuity, such as

a sphere, this process may be continued till it is reduced to a

point ; but if the region is like a ring, the result will be a closed

curve ; and if the region has multiple connections, the result will

be a diagram of lines, and the cyclomatic number of the diagram

will be that of the region. The space outside the region has the

same cyclomatic number as the region itself. Hence, if the region

is bounded by internal as well as external surfaces, its cyclomatic

number is the sum of those due to all the surfaces.

When a region encloses within itself other regions, it is called

a Periphractic region.

The number of internal bounding surfaces of a region is called

its periphractic number. A closed surface is also periphractic,

its periphractic number being unity.

The cyclomatic number of a closed surface is twice that of

either of the regions which it bounds. To find the cyclomatic

number of a bounded surface, suppose all the boundaries to con-

tract inwards, without breaking continuity, till they meet. The

surface will then be reduced to a point in the case of an acyclic

surface, or to a linear diagram in the case of cyclic surfaces. The

cyclomatic number of the diagram is that of the surface.

19.] Theorem I. If throughout any acyclic region

Xdx + Ydy + Zdz= - Z>*,

the value of the line-integral from a point A to a point P
taken along any path within the region will be the same.

We shall first shew that the line-integral taken round any

closed path within the region is zero.

Suppose the equipotential surfaces drawn. They are all either

closed surfaces or are bounded entirely by the surface of the re-

gion, so that a closed line within the region, if it cuts any of the

surfaces at one part of its path, must cut the same surface in

the opposite direction at some other part of its path, and the

corresponding portions of the line-integral being equal and

opposite, the total value is zero.
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Hence if AQP and AQ'P are two paths from A to P, the line-

integral for AQ'P is the sum of that for AQP and the closed

path AQ'PQA. But the line-integral of the closed path is zero,

therefore those of the two paths are equal.

Hence if the potential is given at any one point of such a
region, that at any other point is determinate.

20.] Theobem II. In a cyclic region in which the equation

Xdx + Ydy + Zdz = -D*
is everywhere satisfied, the line-integral from A to P along
a line drawn within the region, will not in general be

determinate unless the channel of communication between
A and P be specified.

Let N be the cyclomatic number of the region, then iV sections
of the region may be made by surfaces which we may call Dia-
phragms, so as to close up JV of the channels of communication,
and reduce the region to an acyclic condition without destroying
its continuity.

The line-integral from A to any point P taken along a line

which does not cut any of these diaphragms will be, by the last

theorem, determinate in value.

Now let A and P be taken indefinitely near to each other, but
on opposite sides of a diaphragm, and let K be the line-integral
from A to P.

Let A' and P' be two other points on opposite sides of the same
diaphragm and indefinitely near to each other, and let K' be the
line-integral from A' to P'. Then K'= K.

For if we draw AA' and PP\ nearly coincident, but on oppo-
site sides of the diaphragm, the line-integrals along these lines

will be equal*. Suppose each equal to L, then K\ the line-integral
of uTP', is equal to that of^! +AP + PP'= -L +K +L = K=
that of AP.
Hence the line-integral round a closed curve which passes

through one diaphragm of the system in a given direction is a
constant quantity K. This quantity is called the Cyclic constant
corresponding to the given cycle.

Let any closed curve be drawn within the region, and let it cut
the diaphragm of the first cycle p times in the positive direction

* [Since X, Y, Z, are continuous.}
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and p' times in the negative direction, and letp—p' = nv Then

the line-integral of the closed curve will be nx
Kx .

Similarly the line-integral of any closed curve will be

7i
1
Z

1 + %2^2+ ••• + n8KBl

where n8 represents the excess of the number of positive passages

of the curve through the diaphragm of the cycle S over the

number of negative passages.

If two curves are such that one of them may be transformed

into the other by continuous motion without at any time passing

through any part of space for which the condition of having a

potential is not fulfilled, these two curves are called Reconcileable

curves. Curves for which this transformation cannot be effected

are called Irreconcileable curves *.

The condition that Xdx + Ydy + Zdz is a complete differential

of some function * for all points within a certain region, occurs'

in several physical investigations in which the directed quantity

and the potential have different physical interpretations.

In pure kinematics we may suppose X, F, Z to be the com-

ponents of the displacement of a point of a continuous body whose

original coordinates are x,y,z\ the condition then expresses that

these displacements constitute a non-rotational strain f.

If X, Y, Z represent the components of the velocity of a fluid

at the point x, y, z, then the condition expresses that the motion

of the fluid is irrotational.

If X, Y, Z represent the components of the force at the point

x, y, z, then the condition expresses that the work done on a

particle passing from one point to another is the difference of the

potentials at these points, and the value of this difference is the

same for all reconcileable paths between the two points.

On Surface-Integrals.

21.] Let dS be the element of a surface, and c the angle which

a normal to the surface drawn towards the positive side of the

surface makes with the direction of the vector quantity R, then

f[R cos e dS is called the surface-integral ofR over the surface S J.

* See Sir W. Thomson ' On Vortex Motion,' Trans. R. S. Edin., 1867-8.

f See Thomson and Tait's Natural Philosophy, § 190 (i).

X {
In the following investigations the positive direction of the normal is outwards

from the surface. \
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Theorem III. The surface-integral of the flux inwards through

a closed surface may be expressed as the volume-integral of

its convergence taken within the surface. (See Art. 25.)

Let X, Y, Z be the components of R, and let I, m, n be the

direction-cosines of the normal to S measured outwards. Then
the surface-integral of R over S is

[fRco8edS=ffxidS+ffr?ndS+ffZndSi
(l)

the values of X, Y, Z being those at a point in the surface, and
the integrations being extended over the whole surface.

If the surface is a closed one, then, when y and z are given,

the coordinate x must have an even number of values, since a line

parallel to x must enter and leave the enclosed space an equal

number of times provided it meets the surface at all.

At each entrance

ldS= — dydz,

and at each exit ldS= dydz.

Let a point travelling from x = ~ oo to x— + oo first enter

the space when x = xt , then leave it when x = x
2 , and so on;

and let the values ofX at these points be Xlt X2 , &c, then

fjXldS= -ff{{X
x
-X2) + (X

3-X4) + &c.

+ (X2n_ 1
-X2n)}dydz. (2)

If X is a quantity which is continuous, and has no infinite values

between xx and x2 , then

X2-XX=JJ -^dx\ (3)

where the integration is extended from the first to the second

intersection, that is, along the first segment of x which is within

the closed surface. Taking into account all the segments which

lie within the closed surface, we find

ffxidS = fff~dxdydz, (4)

the double integration being confined to the closed surface, but

the triple integration being extended to the whole enclosed space.

Hence, if X, Y, Z are continuous and finite within a closed surface

8, the total surface-integral of R over that surface will be

JJr cos , ds
=fff(^ + ^+^§) <Mir*. (s)
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the triple integration being extended over the whole space

within S.

Let us next suppose that X, Y, Z are not continuous within

the closed surface, but that at a certain surface F(x, y, z) — the

values of X, Y, Z alter abruptly from X, Y, Z on the negative

side of the surface to X', Y', Z' on the positive side.

If this discontinuity occurs, say, between x
x
and x2 , the value

ofX2
—

X

x
will be

f
X^dx + (X>-X), (6)

where in the expression under the integral sign only the finite

values of the derivative of X are to be considered.

In this case therefore the total surface-integral of R over the

closed surface will be expressed by

+[f{Y'- Y) dzdx+ff(Z'- Z) dxdy
; (7)

or, if V, m', n' are the direction-cosines of the normal to the sur-

face of discontinuity, and dS' an element of that surface,

jJR cos

«

dS =fff(% + g" + f) dxdydz

X) + m'(Y'-Y) + n'(Z'-Z)}dS', (8)vffW
where the integration of the last term is to be extended over the

surface of discontinuity.

If at every point where X, Y, Z are continuous

dX dY dZ =Q /
9)

dx dy dz
'

and at overy surface where they are discontinuous

VX' + m'Y' + n'Z'=VX + m'Y+n' Z, (10)

then the surface-integral over every closed surface is zero, and

the distribution of the vector quantity is said to be Solenoidal.

We shall refer to equation (9) as the General solenoidal con-

dition, and to equation (10) as the Superficial solenoidal condition.

22.] Let us now consider the case in which at every point

within the surface S the equation

dX dY dZ _ . .

dx dy dz~
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is satisfied. We have as a consequence of this the surface-integral

over the closed surface equal to zero.

Now let the closed surface 8 consist of three parts 81} SQ , and
82 . Let 8X be a surface of any form bounded by a closed line Lx .

Let S be formed by drawing lines from every point of Lx always
coinciding with the direction of R. If I, m, n are the direction-

cosines of the normal at any point of the surface 8^, we have

R cos € = XI + Ym + Zn = 0. (12)

Hence this part of the surface contributes nothing towards the

value of the surface-integral.

Let 82 be another surface of any form bounded by the closed

curve L2 in which it meets the surfaee 8 .

Let Q x , Q , Q2 be the surface-integrals of the surfaces #15 # , S.,,

and let Q be the surface-integral of the closed surface S. Then

Q = Q1 +Q + Q2
= 0; (13)

and we know that Q = ; (14)

therefore Q2
= _Ql5 (15)

or, in other words, the surface-integral over the surface S2
is equal

and opposite to that over S
x whatever be the form and position

of S2 , provided that the intermediate surface 8 is one for which
R is always tangential.

If we suppose X
x a closed curve of small area, 8 will be a

tubular surface having the property that the surface-integral over
every complete section of the tube is the same.

Since the whole space can be divided into tubes of this kind
provided dX dY dZ _

dx dy dz
~~

'
' '

a distribution of a vector quantity consistent with this equation

is called a Solenoidal Distribution.

On Tubes and Lines of Flow.

If the space is so divided into tubes that the surfaee-integral

for every tube is unity, the tubes are called Unit tubes, and the

surface-integral over any finite surface 8 bounded by a closed

curve L is equal to the number of such tubes which pass through

8 in the positive direction, or, what is the same thing, the number
which pass through the closed curve L.

Hence the surface-integral of S depends only on the form of

its boundary L, and not on the form of the surface within its

boundary.
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On Periphractic Regions.

If, throughout the whole region bounded externally by the

single closed surface S, the solenoidal condition

dX dY dZ_
Q

dx dy dz

is satisfied, then the surface-integral taken over any closed surface

drawn within this region will be zero, and the surface-integral

taken over a bounded surface within the region will depend only

on the form of the closed curve which forms its boundary.

It is not, however, generally true that the same results follow

if the region within which the solenoidal condition is satisfied is

bounded otherwise than by a single surface.

For if it is bounded by more than one continuous surface, one of

these is the external surface and the others are internal surfaces,

and the region S is a periphractic region, having within it other

regions which it completely encloses.

If within one of these enclosed regions, say, that bounded by the

closed surface Slt the solenoidal condition is not satisfied, let

R cos e dS
x«> =//J

be the surface-integral for the surface enclosing this region, and

let Q2 , Q 3 , &c. be the corresponding quantities for the other en-

closed regions S2 , S3 , &c.

Then, if a closed surface S' is drawn within the region S, the

value of its surface-integral will be zero only when this surface

S' does not include any of the enclosed regions S
x , S2 , &c. If it

includes any of these, the surface-integral is the sum of the surface-

integrals of the different enclosed regions which lie within it.

For the same reason, the surface-integral taken over a surface

bounded by a closed curve is the same for such surfaces only,

bounded by the closed curve, as are reconcileable with the given

surface by continuous motion of the surface within the region S.

"When we have to deal with a periphractic region, the first thing

to be done is to reduce it to an aperiphractic region by drawing

lines Llf L2 , &c. joining the internal surfaces Slt S2 , &c. to the

external surface S. Each of these lines, provided it joins surfaces

which were not already in continuous connexion, reduces the

periphractic number by unity, so that the whole number of lines

to be drawn to remove the periphraxy is equal to the periphractic
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number, or the number of internal surfaces. In drawing these

lines we must remember that any line joining surfaces which are

already connected does not diminish theperiphraxy,but introduces

cyclosis. When these lines have been drawn we may assert that

if the solenoidal condition is satisfied in the region £, any closed

surface drawn entirely within S, and not cutting any of the lines,

has its surface-integral zero. If it cuts any line, say L
x , once or

any odd number of times, it encloses the surface 8
X
and the

surface-integral is Qx
.

The most familiar example of a periphractic region within which

the solenoidal condition is satisfied is the region surrounding a

mass attracting or repelling inversely as the square of the distance.

In the latter case we have

X = m— » Y=nri%:, Z — m— ;
if'O ,p6 j.6

'

where m is the mass, supposed to be at the origin of coordinates.

At any point where r is finite

dX dY dZ
~j- + — + -t-=0,
dx ay dz

but at the origin these quantities become infinite. For any closed

surface not including the origin, the surface-integral is zero. If a

closed surface includes the origin, its surface-integral is 477971.

If, for any reason, we wish to treat the region round m as if it

were not periphractic, we must draw a line from m to an infinite

distance, and in taking surface-integrals we must remember to

add 4 7rm whenever this line crosses from the negative to the

positive side of the surface.

On Right-handed and Left-handed Relations in Space.

23.] In this treatise the motions of translation along any axis

and of rotation about that axis will be assumed to be of the same
sign when their directions correspond to those of the translation

and rotation of an ordinary or right-handed screw *.

* The combined action of the muscles of the arm when we turn the upper side of
the right-hand outwards, and at the same time thrust the hand forwards, will impress
the right-handed screw motion on the memory more firmly than any verbal definition.

A common corkscrew may be used as a material symbol of the same relation.

Professor W. H. Miller has suggested to me that as the tendrils of the vine are
right-handed screws and those of the hop left-handed, the two systems of relations
in space might be called those of the vine and the hop respectively.

The system of the vine, which we adopt, is that of Linnaeus, and of screw-makers
in all civilized countries except Japan. £>e Candolle was the first who called the
hop-tendril right-handed, and in this he is followed by Listing, and by most writers
on the circular polarization of light. Screws like the hop-tendril are made for the
couplings of railway-carriages, and for the fittings of wheels on the left side of ordinary
carriages, but they are always called left-handed screws by those who use them.
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For instance, if the actual rotation of the earth from west to east

is taken positive, the direction of the earth's axis from south to

north will be taken positive, and if a man walks forward in the

positive direction, the positive rotation is in the order, head, right-

hand, feet, left-hand.

If we place ourselves on the positive side of a surface, the

positive direction along its bounding curve will be opposite to

the motion of the hands of a watch with its face towards us.

This is the right-handed system which is adopted in Thomson

and Tait's Natural Philosophy, and in Tait's Quaternions.

The opposite, or left-handed system, is adopted in Hamilton's

Quaternions {Lectures, p. 76, and Elements, p. 108, and p. 117

note). The operation of passing from the one system to the other

is called by Listing, Perversion.

The reflexion of an object in a mirror is a perverted image of

the object.

When we use the Cartesian axes of x, y, z, we shall draw them

so that the ordinary conventions about the cyclic order of the

symbols lead to a right-handed system of directions in space.

Thus, if x is drawn eastward and y northward, z must be drawn

upward *.

The areas of surfaces will be taken positive when the order of

integration coincides with the cyclic order of the symbols. Thus,

the area of a closed curve in the plane of xy may be written either

xdy or — ydx;

the order of integration being x, y in the first expression, and y, x

in the second.

This relation between the two products dx dy and dy dx may
be compared with the rule for* the product of two perpendicular

vectors in the method of Quaternions, the sign of which depends

on the order of multiplication ; and with the reversal of the sign

of a determinant when the adjoining rows or columns are ex-

changed.

For similar reasons a volume-integral is to be taken positive

when the order of integration is in the cyclic order of the variables

x, y, 0, and negative when the cyclic order is reversed.

z
A

* {As in the diagram •% .}
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We now proceed to prove a theorem which is useful as estab-

lishing a connection between the surface-integral taken over a
finite surface and a line-integral taken round its boundary.

24.] Theoeem IV. A line-integral taken round a closed curve

may be expressed in terms of a surface-integral taken over

a surface bounded by the curve.

Let X, Y, Z be the components of a vector quantity 21 whose
line-integral is to be taken round a closed curve s.

Let S be any continuous finite surface bounded entirely by the

closed curve s, and let £, -q, £ be the components of another vector

quantity 33, related to X, Y, Z by the equations

c = dZ_dY } z= <^_ clz dY_dX
dy dz ' v

dz dx' dx dy
'

* '

Then the surface-integral of 33 taken over the surface S is equal to

the line-integral of 21 taken round the curve s. It is manifest that

f, rj, ( satisfy of themselves the solenoidal condition.

dx dy dz

Let I, m, n be the direction-cosines of the normal to an element
of the surface dS, reckoned in the positive direction. Then the

value of the surface-integral of 33 may be written

ff{l£+mr, + nC)dS. (2)

In order to form a definite idea of the meaning of the element
dS, we shall suppose that the values of the coordinates x, y, z for

every point of the surface are given as functions of two inde-

pendent variables a and /3. If j3 is constant and a varies, the point

(x, y, z) will describe a curve on the surface, and if a series of values

is given to /3, a series of such curves will be traced, all lying on
the surface 8. In the same way, by giving a series of constant

values to a, a second series of curves may be traced, cutting the

first series, and dividing the whole surface into elementary

portions, any one of which may be taken as the element dS.

The projection of this element on the plane of yz is, by the

ordinary formula,

The expressions for mdS and ndS are obtained from this by
substituting x, y, z in cyclic order.
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The surface-integral which we have to find is

(l€+mri + nC)dS; (4)//<

or, substituting the values of £ tj, £ in terms of X, Y, Z,

//(
dX dX dT

7
dY ,dZ dZ, JO /t .

m—: n -j—\-n-. 1—.—1-6-7 m-T-)db. (5)
dz dy dx dz dy dx'

The part of this which depends on X may be written

CTidX ,dz dx dzdx. dX,dxdy dc^K , _
, .

JJ \dz\~da~dp~ d^d^^~~ay^da'dp~ dUda'S ^
a

' *
'

adding and subtracting ——7- -7- , this becomes
(XQo CvCL Cv 10

dx ,dX dx dX dy dX dz \

d/3 ^ dx da dy da dz da'

,dXd,x dX dy dX dz-S[ Ja 7
..

^dxdB dydB dzdfiJ)
H yj

dX dx dXdx^ 7 _ , / Q \

da dji dp da'

III

Let us now suppose that the curves for which a is constant

form a series of closed curves surrounding a point on the

surface for which a has its minimum value, a , and let the last

curve of the series, for which a = alf
coincide with the closed

curve s.

Let us also suppose that the curves for which (3 is constant

form a series of lines drawn from the point at which a = a

to the closed curve s, the first, /3 , and the last, j3v being

identical.

Integrating (8) by parts, the first term with respect to a and

the second with respect to (3, the double integrals destroy each

other and the expression becomes

Since the point (a, fa) is identical with the point (a, /3 ), the

third and fourth terms destroy each other ; and since there is
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but one value of x at the point where a = a , the second term is

zero, and the expression is reduced to the first term

:

Since the curve a = a
x
is identical with the closed curve s, we

may write the expression in the form

where the integration is to be performed round the curve s. We
may treat in the same way the parts of the surface-integral

which depend upon Y and Z, so that we get finally,

where the first integral is extended over the surface S, and the

second round the bounding curve s *.

On the effect of the operator V on a vector function.

25.] We have seen that the operation denoted by V is that by
which a vector quantity is deduced from its potential. The same
operation, however, when applied to a vector function, produces

results which enter into the two theorems we have just proved

(III and IV). The extension of this operator to vector displace-

ments, and most of its further development, are due to Professor

Tait f.

Let <r be a vector function of p, the vector of a variable point.

Let us suppose, as usual, that

P=ix +jy + hz,

and <r=iX+jY+kZ;
where X, Y, Z are the components of o- in the directions of the

axes.

We have to perform on <r the operation

_ . d . d ,d
~~ dx dy

v
dz

Performing this operation, and remembering the rules for the

multiplication of i, j, Jc, we find that Vo- consists of two parts,

one scalar and the other vector.

* This theorem waa given by Professor Stokes, Smith's Prize Examination, 1854,
question 8. It is proved in Thomson and Tait's Natural Philosophy, § 190 (/).

f See Proc. R. S. Edin., April 28, 1862. ' On Green's and other allied Theorems,'
Trans. R. 8. Edin., 1869-70, a very valuable paper ; and ' On some Quaternion
Integrals/ Proc. R. S. Edin., 1870-71.
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The scalar part is

S Vo- = — ( ,- + -r- + -t-) > see Theorem III,
^ ax ay dz'

and the vector part is

. fdZ dYs . (dX dZ, . ,dY dX,
VV^<Ty-^ + J (^~ah) + k ^--a^)'

If the relation between X, Y, Z and £, rj, C is that given by

equation (1) of the last theorem, we may write

VV<r = i£+jri+ k(. See Theorem IV.

It appears therefore that the functions of X, Y, Z which occur

in the two theorems are both obtained by the operation V on

the vector whose components are X, Y, Z. The theorems them-

selves may be written

fjjsv<rd<; = Jfs.aUvds, (III)

and fsadp = - ffs .VaUvds; (IV)

where cZs is an element of a volume, ds of a surface, dp of a

curve, and TJv a unit-vector in the direction

\
v

/ of the normal.
^ ' To understand the meaning of these func-

—*~ • *— tions of a vector, let us suppose that o- is the

v y value of «r at a point P, and let us examine

'
t the value of 0-— o- in the neighbourhood of P.

If we draw a closed surface round P, then,
lg

*

*

if the surface-integral of a- over this surface

is directed inwards, SVa will be positive, and the vector <r— a
t)

^ near the point P will be on the whole directed

I I towards P, as in the figure (1).

t
p

' I propose therefore to call the scalar part of Vo-

" *" the convergence of <r at the point P.

To interpret the vector part of V<r, let the direc-

/ tion of the vector whose components are £, 77, ( be

v upwards from the paper and at right angles to it,

^ • \^ and let us examine the vector <r— <r near the point

yf P. It will appear as in the figure (2), this vector
' being arranged on the whole tangentially in the

lg
" ' direction opposite to the hands of a watch.

I propose (with great diffidence) to call the vector part of Vo-

the rotation of <r at the point P.
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In Fig. 3 we have an illustration of rotation combined with

convergence.

Let us now consider the meaning of the equation

FVo- = 0.

This implies that V<x is a scalar, or that the vector a is the space-

variation of some scalar function VJ/ .

26.] One of the most remarkable properties of the operator V
is that when repeated it becomes

V*=-f— +*- + ^- ),
^ dxl dy'z dzl '

'

an operator occurring in all parts of Physics, which we may refer

to as Laplace's Operator.

This operator is itself essentially scalar. When it acts on a

scalar function the result is scalar, when it acts on a vector

function the result is a vector.

If, with any point P as centre, we draw a small sphere whose
radius is r, then if q is the value of q at the centre, and q the

mean value of q for all points within the sphere,

q -q = T
1
o

,r2 V i
q;

so that the value at the centre exceeds or falls short of the mean
value according as V2

q is positive or negative.

I propose therefore to call V2
q the concentration of q at the

point P, because it indicates the excess of the value of q at that

point over its mean value in the neighbourhood of the point.

If q is a scalar function, the method of finding its mean value

is well known. If it is a vector function, we must find its mean
value by the rules for integrating vector functions. The result

of course is a vector.
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ELECTROSTATICS.

CHAPTER I.

DESCRIPTION OF PHENOMENA.

Electrification by Friction.

27.] Expekiment I *. Let a piece of glass and a piece of resin,

neither of which exhibits any electrical properties, be rubbed to-

gether and left with the rubbed surfaces in contact. They will

still exhibit no electrical properties. Let them be separated. They

will now attract each other.

If a second piece of glass be rubbed with a second piece of

resin, and if the pieces be then separated and suspended in the

neighbourhood of the former pieces of glass and resin, it may be

observed

—

(1) That the two pieces of glass repel each other.

(2) That each piece of glass attracts each piece of resin.

(3) That the two pieces of resin repel each other.

These phenomena of attraction and repulsion are called Elec-

trical phenomena, and the bodies which exhibit them are said to

be electrified, or to be charged with electricity.

Bodies may be electrified in many other ways, as well as by

friction.

The electrical properties of the two pieces of glass are similar

to each other but opposite to those of the two pieces of resin :

the glass attracts what the resin repels and repels what the resin

attracts.

* See Sir W. Thomson ' On the Mathematical Theory of Electricity in Equilibrium,'

Cambridge and Dublin Mathematical Journal, March, 1848.
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If a body electrified in any manner whatever behaves as the

glass does, that is, if it repels the glass and attracts the resin, the

body is said to be vitreously electrified, and if it attracts the glass

and repels the resin it is said to be resinously electrified. All

electrified bodies are found to be either vitreously or resinously

electrified.

It is the established practice ofmen ofscience to call the vitreous

electrification positive, and the resinous electrification negative.

The exactly opposite properties of the two kinds of electrification

justify us in indicating them by opposite signs, but the applica-

tion of the positive sign to one rather than to the other kind must

be considered as a matter of arbitrary convention, just as it is a

matter of convention in mathematical diagrams to reckon positive

distances towards the right hand.

No force, either of attraction or of repulsion, can be observed

between an electrified body and a body not electrified. When, in

any case, bodies not previously electrified are observed to be acted

on by an electrified body, it is because they have become electrified

by induction.

Electrification by Induction.

28.] Experiment II *. Let a hollow vessel of metal be hung

up by white silk threads, and let a similar thread

be attached to the lid of the vessel so that the vessel

may be opened or closed without touching it.

Let the pieces of glass and resin be similarly sus-

pended and electrified as before.

Let the vessel be originally unelectrified, then if

an electrified piece of glass is hung up within it by

its thread without touching the vessel, and the lid

closed, the outside of the vessel will be found to

be vitreously electrified, and it may be shewn that j"""

the electrification outside of the vessel is exactly the A
same in whatever part of the interior space the glass Fig. 4.

is suspended f

.

If the glass is now taken out of the vessel without touching

it, the electrification of the glass will be the same as before it

was put in, and that of the vessel will have disappeared.

* This, and several experiments which follow, are due to Faraday, ' On Static

Electrical Inductive Action/ Phil. Mag., 1843, or Exp. Res., vol. ii. p. 279.

•f* { This is an illustration of Art. 100 c.
}
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This electrification of the vessel, which depends on the glass

being within it, and which vanishes when the glass is removed, is

called electrification by Induction.

Similar effects would be produced if the glass were suspended

near the vessel on the outside, but in that case we should find

an electrification, vitreous in one part of the outside of the vessel

and resinous in another. When the glass is inside the vessel

the whole of the outside is vitreously and the whole of the inside

resinously electrified.

Electrification by Conduction.

29.] Experiment III Let the metal vessel be electrified by

induction, as in the last experiment, let a second metallic body

be suspended by white silk threads near it, and let a metal wire,

similarly suspended, be brought so as to touch simultaneously the

electrified vessel and the second body.

The second body will now be found to be vitreously electrified,

and the vitreous electrification of the vessel will have diminished.

The electrical condition has been transferred from the vessel to

the second body by means of the wire. The wire is called a con-

ductor of electricity, and the second body is said to be electrified

by conduction.

Conductors and Insulators.

Experiment IV. If a glass rod, a stick of resin .or gutta-percha,

or a white silk thread, had been used instead of the metal wire, no

transfer of electricity would have taken place. Hence these latter

substances are called Non-conductors of electricity. Non-conduc-

tors are used in electrical experiments to support electrified

bodies without carrying offtheir electricity. They are then called

Insulators.

The metals are good conductors ; air, glass, resins, gutta-percha,

vulcanite, paraffin, &c. are good insulators ; but, as we shall see

afterwards, all substances resist the passage of electricity, and all

substances allow it to pass,though in exceedingly different degrees.

This subject will be considered when we come to treat of the

motion of electricity. For the present we shall consider only two

classes of bodies, good conductors, and good insulators.

In Experiment II an electrified body produced electrification in

the metal vessel while separated from it by air, a non-conducting
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medium. Such a medium, considered as transmitting these

electrical effects without conduction, has been called by Faraday

a Dielectric medium, and the action which takes place through it

is called Induction.

In Experiment III the electrified vessel produced electrification

in the second metallic body through the medium of the wire.

Let us suppose the wire removed, and the electrified piece of

glass taken out of the vessel without touching it, and removed

to a sufficient distance. The second body will still exhibit

vitreous electrification, but the vessel, when the glass is removed,

will have resinous electrification. If we now bring the wire into

contact with both bodies, conduction will take place along the

wire, and all electrification will disappear from both bodies,

shewing that the electrification of the two bodies was equal and

opposite.

30.] Experiment V. In Experiment II it was shewn that if

a piece of glass, electrified by rubbing it with resin, is hung up in

an insulated metal vessel, the electrification observed outside does

not depend on the position of the glass. If we now introduce the

piece of resin with which the glass was rubbed into the same vessel,

without touching it or the vessel, it will be found that there is

no electrification outside the vessel. From this we conclude that

the electrification of the resin is exactly equal and opposite to that

of the glass. By putting in any number of bodies, electrified in

any way, it may be shewn that the electrification of the outside of

the vessel is that due to the algebraic sum of all the electrifica-

tions, those being reckoned negative which are resinous. We have

thus a practical method of adding the electrical effects of several

bodies without altering their electrification.

31.] Experiment VI. Let a second insulated metallic vessel,

B, be provided, and let the electrified piece of glass be put into

the first vessel A, and the electrified piece of resin into the second

vessel B. Let the two vessels be then put in communication by
the metal wire, as in Experiment III. All signs of electrification

will disappear.

Next, let the wire be removed, and let the pieces of glass and of

resin be taken out of the vessels without touching them. It will

be found that A is electrified resinously and B vitreously.

If now the glass and the vessel A be introduced together into

a larger insulated metal vessel G, it will be found that there is no
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electrification outside G. This shews that the electrification of A
is exactly equal and opposite to that of the piece of glass, and

that of B may be shewn in the same way to be equal and opposite

to that of the piece of resin.

We have thus obtained a method of charging a vessel with a

quantity of electricity exactly equal and opposite to that of an

electrified body without altering the electrification of the latter,

and we may in this way charge any number of vessels with

exactly equal quantities of electricity of either kind, which we
may take for provisional units.

32.] Expekiment VII. Let the vessel B, charged with a

quantity of positive electricity, which we shall call, for the

present, unity, be introduced into the larger insulated vessel G
without touching it. It will produce a positive electrification

on the outside of C. Now let B be made to touch the inside of

C. No change of the external electrification will be observed.

If B is now taken out of C without touching it, and removed to

a sufficient distance, it will be found that B is completely dis-

charged, and that G has become charged with a unit of positive

electricity.

We have thus a method of transferring the charge of B to G.

Let B be now recharged with a unit of electricity, introduced

into C already charged, made to touch the inside of C, and re-

moved. It will be found that B is again completely discharged,

so that the charge of G is doubled.

If this process is repeated, it will be found that however

highly G is previously charged, and in whatever way B is

charged, when B is first entirely enclosed in C, then made to

touch C, and finally removed without touching C, the charge of

B is completely transferred to (7, and B is entirely free from

electrification.

This experiment indicates a method of charging a body with

any number of units of electricity. We shall find, when we
come to the mathematical theory of electricity, that the result of

this experiment affords an accurate test of the truth of the

theory *.

* {The difficulties which would have to be overcome to make several of the

preceding experiments conclusive are so great as to be almost insurmountable. Their

description however serves to illustrate the properties of Electricity in a very

Btriking way. In Experiment V no method is given by which the electrification of

the outer vessel can be measured. ]
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33.] Before we proceed to the investigation of the law of

electrical force, let us enumerate the facts we have already

established.

By placing any electrified system inside an insulated hollow

conducting vessel, and examining the resultant effect on the

outside of the vessel, we ascertain the character of the total

electrification of the system placed inside, without any com-
munication of electricity between the different bodies of the

system.

The electrification of the outside of the vessel may be tested

with great delicacy by putting it in communication with an
electroscope.

We may suppose the electroscope to consist of a strip of gold

leaf hanging between two bodies charged, one positively, and
the other negatively. If the gold leaf becomes electrified it will

incline towards the body whose electrification is opposite to its

own. By increasing the electrification of the two bodies and the

delicacy of the suspension, an exceedingly small electrification of

the gold leaf may be detected.

When we come to describe electrometers and multipliers we
shall find that there are still more delicate methods of detecting

electrification and of testing the accuracy of our theories, but at

present we shall suppose the testing to be made by connecting

the hollow vessel with a gold leaf electroscope.

This method was used by Faraday in his very admirable

demonstration of the laws of electrical phenomena *.

34.] I. The total electrification of a body, or system of bodies,

remains always the same, except in so far as it receives electrifi-

cation from or gives electrification to other bodies.

In all electrical experiments the electrification of bodies is

found to change, but it is always found that this change is due
to want of perfect insulation, and that as the means of insulation

are improved, the loss of electrification becomes less. We may
therefore assert that the electrification of a body placed in a
perfectly insulating medium would remain perfectly constant.

II. When one body electrifies another by conduction, the

total electrification of the two bodies remains the same, that

is, the one loses as much positive or gains as much negative

* 'On Static Electrical Inductive Action,' Phil. Mag., 1843 or Exp. lies., vol. ii.

p. 279.
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electrification as the other gains of positive or loses of negative

electrification.

For if the two bodies are enclosed in the hollow vessel, no

change of the total electrification is observed.

III. When electrification is produced by friction, or by any

other known method, equal quantities of positive and negative

electrification are produced.

For the electrification of the whole system may be tested in

the hollow vessel, or the process of electrification may be carried

on within the vessel itself, and however intense the electrifi-

cation of the parts of the system may be, the electrification of

the whole, as indicated by the gold leaf electroscope, is in-

variably zero.

The electrification of a body is therefore a physical quantity

capable of measurement, and two or more electrifications can be

combined experimentally with a result of the same kind as

when two quantities are added algebraically. We therefore are

entitled to use language fitted to deal with electrification as a

quantity as well as a quality, and to speak of any electrified

body as ' charged with a certain quantity of positive or negative

electricity.'

35.] While admitting electricity, as we have now done, to the

rank of a physical quantity, we must not too hastily assume

that it is, or is not, a substance, or that it is, or is not, a form of

energy, or that it belongs to any known category of physical

quantities. All that we have hitherto proved is that it cannot

be created or annihilated, so that if the total quantity of elec-

tricity within a closed surface is increased or diminished, the

increase or diminution must have passed in or out through

the closed surface.

This is true of matter, and is expressed by the equation known
as the Equation of Continuity in Hydrodynamics.

It is not true of heat, for heat may be increased or diminished

within a closed surface, without passing in or out through the

surface, by the transformation of some other form of energy into

heat, or of heat into some other form of energy.

It is not true even of energy in general if we admit the imme-

diate action of bodies at a distance. For a body outside the

closed surface may make an exchange of energy with a body

within the surface. Buj; if all apparent action at a distance is
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the result of the action between the parts of an intervening

medium, it is conceivable that in all cases of the increase or

diminution of the energy within a closed surface we may be

able, when the nature of this action of the parts of the medium
is clearly understood, to trace the passage of the energy in or

out through that surface.

There is, however, another reason which warrants us in

asserting that electricity, as a physical quantity, synonymous
with the total electrification of a body, is not, like heat, a form

of energy. An electrified system has a certain amount of

energy, and this energy can be calculated by multiplying the

quantity of electricity in each of its parts by another physical

quantity, called the Potential of that part, and taking half the

sum of the products. The quantities ' Electricity ' and ' Potential,'

when multiplied together, produce the quantity ' Energy.' It is

impossible, therefore, that electricity and energy should be

quantities of the same category, for electricity is only one of the

factors of energy, the other factor being ' Potential.' *

Energy, which is the product of these factors, may also be

considered as the product of several other pairs of factors,

such as

A Force X A distance through which the force is to act.

A Mass x Gravitation acting througha certain height.

A Mass x Half the square of its velocity.

A Pressure x A volume of fluid introduced into a vessel

at that pressure.

A Chemical Affinity x A chemical change, measured by the num-
ber of electro-chemical equivalents which

enter into combination.

If we ever should obtain distinct mechanical ideas of the nature

of electric potential, we may combine these with the idea of

energy to determine the physical category in which ' Electricity

'

is to be placed.

36.] In most theories on the subject, Electricity is treated as

a substance, but inasmuch as there are two kinds of electrifi-

cation which, being combined, annul each other, and since

we cannot conceive of two substances annulling each other, a

distinction has been drawn between Free Electricity and Com-
bined Electricity.

* { It is shown afterwards that ' Potential ' is not of zero dimensions. ]•
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Theory of Two Fluids.

In what is called the Theory of Two Fluids, all bodies, in

their unelectrified state, are supposed to be charged with equal

quantities of positive and negative electricity. These quantities

are supposed to be so great that no process of electrification

has ever yet deprived a body of all the electricity of either

kind. The process of electrification, according to this theory,

consists in taking a certain quantity P of positive electricity

from the body A and communicating it to B, or in taking

a quantity N of negative electricity from B and communicating

it to A, or in some combination of these processes.

The result will be that A will have P +N units of negative

electricity over and above its remaining positive electricity,

which is supposed to be in a state of combination with an equal

quantity of negative electricity. This quantity P+N is called

the Free electricity, the rest is called the Combined, Latent, or

Fixed electricity.

In most expositions of this theory the two electricities are

called ' Fluids,' because they are capable of being transferred

from one body to another, and are, within conducting bodies,

extremely mobile. The other properties of fluids, such as their

inertia, weight, and elasticity, are not attributed to them by
those who have used the theory for merely mathematical pur-

poses ; but the use of the word Fluid has been apt to mislead

the vulgar, including many men of science who are not natural

philosophers, and who have seized on the word Fluid as the

only term in the statement of the theory which seemed in-

telligible to them.

We shall see that the mathematical treatment of the subject

has been greatly developed by writers who express themselves

in terms of the { Two Fluids ' theory. Their results, however,

have been deduced entirely from data which can be proved by
experiment, and which must therefore be true, whether we
adopt the theory of two fluids or not. The experimental veri-

fication of the mathematical results therefore is no evidence for

or against the peculiar doctrines of this theory.

The introduction of two fluids permits us to consider the

negative electrification of A and the positive electrification of B
as the effect of any one of three different processes which would

lead to the same result. We have already supposed it produced
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by the transfer of P units of positive electricity from A to B,

together with the transfer of iV units of negative electricity from
B to A. But if P +N units of positive electricity had been

transferred from A to B, or if P + JV units of negative electricity

had been transferred from B to A, the resulting 'free electricity'

on A and on B would have been the same as before, but the

quantity of ' combined electricity ' in A would have been less in

the second case and greater in the third than it was in the first.

It would appear therefore, according to this theory, that it is

possible to alter not only the amount of free electricity in a

body, but the amount of combined electricity. But no phe-

nomena have ever been observed in electrified bodies which can

be traced to the varying amount of their combined electricities.

Hence either the combined electricities have no observable

properties, or the amount of the combined electricities is in-

capable of variation. The first of these alternatives presents no
difficulty to the mere mathematician, who attributes no pro-

perties to the fluids except those of attraction and repulsion, for

he conceives the two fluids simply to annul one another, like

+ e and — e, and their combination to be a true mathematical

zero. But to those who cannot use the word Fluid without

thinking of a substance it is difficult to conceive how the

combination of the two fluids can have no properties at all, so

that the addition of more or less of the combination to a body
shall not in any way affect it, either by increasing its mass or

its weight, or altering some of its other properties. Hence it

has been supposed by some, that in every process of electrifica-

tion exactly equal quantities of the two fluids are transferred in

opposite directions, so that the total quantity of the two fluids

in any body taken together remains always the same. By this

new law they 'contrive to save appearances,' forgetting that

there would have been no need of the law except to reconcile

the ' Two Fluids ' theory with facts, and to prevent it from pre-

dicting non-existent phenomena.

Theoi^y of One Fluid.

37.] In the theory of One Fluid everything is the same as in

the theory of Two Fluids except that, instead of supposing the

two substances equal and opposite in all respects, one of them,

generally the negative one, has been endowed with the pro-
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perties and name of Ordinary Matter, while the other retains

the name of The Electric Fluid. The particles of the fluid are

supposed to repel one another according to the law of the

inverse square of the distance, and to attract those of matter

according to the same law. Those of matter are supposed to

repel each other and attract those of electricity.

If the quantity of the electric fluid in a body is such that a

particle of the electric fluid outside the body is as much repelled

by the electric fluid in the body as it is attracted by the matter

of the body, the body is said to be Saturated. If the quantity

of fluid in the body is greater than that required for saturation,

the excess is called the Redundant fluid, and the body is said to

be Overcharged. If it is less, the body is said to be Under-

charged, and the quantity of fluid which would be required to

saturate it is sometimes called the Deficient fluid. The number

of units of electricity required to saturate one gramme of

ordinary matter must be very great, because a gramme of gold

may be beaten out to an area of a square metre, and when in

this form may have a negative charge of at least 60,000 units of

electricity. In order to saturate the gold leaf when so charged,

this quantity of electric fluid must be communicated to it, so

that the whole quantity required to saturate it must be greater

than this. The attraction between the matter and the fluid

in two saturated bodies is supposed to be a very little greater

than the repulsion between the two portions of matter and that

between the two portions of fluid. This residual force is supposed

to account for the attraction of gravitation.

This theory does not, like the Two Fluid theory, explain too

much. It requires us, however, to suppose the mass of the

electric fluid so small that no attainable positive or negative

electrification has yet perceptibly increased or diminished either

the mass or the weight of a body *, and it has not yet been able

to assign sufficient reasons why the vitreous rather than the

resinous electrification should be supposed due to an excess of

electricity.

One objection has sometimes been urged against this theory

by men who ought to have reasoned better. It has been said

that the doctrine that the particles of matter uncombined with

* { The apparent mass of a body is increased by a charge of electricity whether

vitreous or resinous (see Phil. Mag. 1861, v. xi. p. 229).}
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electricity repel one another, is in direct antagonism with the

well-established fact that every particle of matter attracts every

other particle throughout the universe. If the theory of One
Fluid were true we should have the heavenly bodies repelling

one another.

It is manifest however that the heavenly bodies, according to

this theory, if they consisted of matter uncombined with elec-

tricity, would be in the highest state of negative electrification,

and would repel each other. We have no reason to believe that

they are in such a highly electrified state, or could be maintained

in that state. The earth and all the bodies whose attraction has

been observed are rather in an unelectrified state, that is, they con-

tain the normal charge of electricity, and the only action between

them is the residual force lately mentioned. The artificial manner,

however, in which this residual force is introduced is a much
more valid objection to the theory.

In the present treatise I propose, at different stages of the in-

vestigation, to test the different theories in the light of additional

classes of phenomena. For my own part, I look for additional

light on the nature of electricity from a study of what takes place

in the space intervening between the electrified bodies. Such is

the essential character of the mode of investigation pursued by
Faraday in his Experimental Researches, and as we go on I

intend to exhibit the results, as developed by Faraday,

W. Thomson, &c, in a connected and mathematical form, so

that we may perceive what phenomena are explained equally well

by all the theories, and what phenomena indicate the peculiar

difficulties of each theory.

Measurement of the Force between Electrified Bodies.

38.] Forces may be measured in various ways. For instance,

one of the bodies may be suspended from one arm of a delicate

balance, and weights suspended from the other arm, till the body,

when unelectrified, is in equilibrium. The other body may then

be placed at a known distance beneath the first, so that the

attraction or repulsion of the bodies when electrified may increase

or diminish the apparent weight of the first. The weight which

must be added to or taken from the other arm, when expressed

in dynamical measure, will measure the force between the bodies.

This arrangement was used by Sir W. Snow Harris, and is that
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adopted in Sir W. Thomson's absolute electrometers. See

Art. 217.

It is sometimes more convenient to use a torsion-balance, in

which a horizontal arm is suspended by a fine wire or fibre, so as

to be capable of vibrating about the vertical wire as an axis, and

the body is attached to one end of the arm and acted on by the

force in the tangential direction, so as to turn the arm round the

vertical axis, and so twist the suspension wire through a certain

angle. The torsional rigidity of the wire is found by observing

the time of oscillation of the arm, the moment of inertia of the

arm being otherwise known, and from the angle of torsion and

the torsional rigidity the force of attraction or repulsion can be

deduced. The torsion-balance was devised by Michell for the

determination of the force of gravitation between small bodies,

and was used by Cavendish for this purpose. Coulomb, working

independently of these philosophers, reinvented it, thoroughly

studied its action, and successfully applied it to discover the laws

of electric and magnetic forces ; and the torsion-balance has ever

since been used in researches where small forces have to be

measured. See Art. 215.

39.] Let us suppose that by either of these methods we can

measure the force between two electrified bodies. We shall

suppose the dimensions of the bodies small compared with the

distance between them, so that the result may not be much
altered by any inequality of distribution of the electrification on

either body, and we shall suppose that both bodies are so

suspended in air as to be at a considerable distance from other

bodies on which they might induce electrification.

It is then found that if the bodies are placed at a fixed distance

and charged respectively with e and e
f
of our provisional units of

electricity, they will repel each other with a force proportional

to the product of e and e''. If either e or e' is negative, ihat is,

if one of the charges is vitreous and the other resinous, the force

will be attractive, but if both e and e' are negative the force is

again repulsive.

We may suppose the first body, A, charged with m units of

positive and n units of negative electricity, which may be con-

ceived separately placed within the body, as in Experiment V.

Let the second body, B, be charged with m' units of positive

and n' units of negative electricity.
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Then each of the m positive units in A will repel each of the

m' positive units in B with a certain force, say /, making a total

effect equal to rani' f.

Since the effect of negative electricity is exactly equal and
opposite to that of positive electricity, each of the m positive units

in A will attract each of the n' negative units in B with the

same force /, making a total effect equal to m n'f.

Similarly the n negative units in A will attract the m' positive

units in B with a force nm' f, and will repel the n' negative units

in B with a force n n'f.

The total repulsion will therefore be (mm' + nn')f; and the

total attraction will be (mnr + m'ri)f.

The resultant repulsion will be

(mm' + 7in'—rnn'—7im')f or (m— n) (m'-n')f.

Now m—n = e is the algebraical value of the charge on A, and
tth'—n' — e' is that of the charge on B, so that the resultant re-

pulsion may be written ee'f, the quantities e and e' being always

understood to be taken with their proper signs.

Variation of the Force with the Distance.

40.] Having established the law of force at a fixed distance,

we may measure the force between bodies charged in a constant

manner and placed at different distances. It is found by direct

measurement that the force, whether of attraction or repulsioD,

varies inversely as the square of the distance, so that if/ is the

repulsion between two units at unit distance, the repulsion at dis-

tance r will be/r-2, and the general expression for the repulsion

between e units and e' units at distance r will be

fee' r~2
.

Definition of the Electrostatic Unit of Electricity.

41.] We have hitherto used a wholly arbitrary standard for our
unit of electricity, namely, the electrification of a certain piece of

glass as it happened to be electrified at the commencement of our
experiments. We are now able to select a unit on a definite

principle, and in order that this unit may belong to a general
system we define it so that/ may be unity, or in other words

—

The electrostatic unit of electricity is that quantity of positive
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electricity which, when placed at unit of distancefrom an equal

quantity, repels it with unit offorce *.

This unit is called the Electrostatic unit to distinguish it from

the Electromagnetic unit, to be afterwards defined.

We may now write the general law of electrical action in the

simple form j? _ ee
f
T-i . or

The repulsion hetween two small bodies charged respectively

with e and e' units of electricity is numerically equal to the

product of the charges divided by the square of the distance.

Dimensions of the Electrostatic Unit of Quantity.

42.] If [Q] is the concrete electrostatic unit of quantity itself,

and e, e' the numerical values of particular quantities ; if [L] is

the unit of length, and r the numerical value of the distance ; and

if [F] is the unit of force, and F the numerical value of the force,

then the equation becomes

i^] = eeV-2
[Q

2][Z-2
];

whence [Q] = [LF*]

This unit is called the Electrostatic Unit of electricity. Other

units may be employed for practical purposes, and in other de-

partments of electrical science, but in the equations of electro-

statics quantities of electricity are understood to be estimated in

electrostatic units, just as in physical astronomy we employ a

unit of mass which is founded on the phenomena of gravitation,

and which differs from the units of mass in common use.

Proof of the Law of Electrical Force.

43.] The experiments of Coulomb with the torsion-balance

may be considered to have established the law of force with a

certain approximation to accuracy. Experiments of this kind,

however, are rendered difficult, and in some degree uncertain, by

several disturbing causes, which must be carefully traced and

corrected for.

In the first place, the two electrified bodies must be of sensible

dimensions relative to the distance between them, in order to be

* {In this definition and in the enunciation of the law of electrical action the

medium surrounding the electrified bodies is supposed to be air. See Art. 94.}
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capable of carrying charges sufficient to produce measurable

forces. The action of each body will then produce an effect on

the distribution of electricity on the other, so that the charge

cannot be considered as evenly distributed over the surface, or

collected at the centre of gravity ; but its effect must be calcu-

lated by an intricate investigation. This, however, has been

done as regards two spheres by Poisson in an extremely able

manner, and the investigation has been greatly simplified by
Sir W. Thomson in his Theory of Electrical Images. See Arts.

172-175.

Another difficulty arises from the action of the electricity

induced on the sides of the case containing the instrument. By
making the inner surface of the instrument of metal, this effect

can be rendered definite and measurable.

An independent difficulty arises from the imperfect insulation

of the bodies, on account of which the charge continually de-

creases. Coulomb investigated the law of dissipation, and made
corrections for it in his experiments.

The methods of insulating charged conductors, and of measur-

ing electrical effects, have been greatly improved since the time

of Coulomb, particularly by Sir W. Thomson ; but the perfect

accuracy of Coulomb's law of force is established, not by any

direct experiments and measurements (which may be used as

illustrations of the law), but by a mathematical consideration ofthe

phenomenon described as Experiment VII, namely, that an elec-

trified conductor B, if made to touch the inside of a hollow closed

conductor G and then withdrawn without touching C, is per-

fectly discharged, in whatever manner the outside of C may be

electrified. By means of delicate electroscopes it is easy to shew

that no electricity remains on B after the operation, and by the

mathematical theory given at Arts. 74 c, 74 d, this can only be the

case if the force varies inversely as the square of the distance,

for if the law were of any different form B would be electrified.

The Electric Field.

44.] The Electric Field is the portion of space in the neigh-

bourhood of electrified bodies, considered with reference to elec-

tric phenomena. It may be occupied by air or other bodies, or

it may be a so-called vacuum, from which we have withdrawn
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every substance which we can act upon with the means at our

disposal.

If an electrified body be placed at any part of the electric field

it will, in general, produce a sensible disturbance in the electri-

fication of the other bodies.

But if the body is very small, and its charge also very small,

the electrification of the other bodies will not be sensibly dis-

turbed, and we may consider the position of the body as deter-

mined by its centre of mass. The force acting on the body will

then be proportional to its charge, and will be reversed when

the charge is reversed.

Let e be the charge of the body, and F the force acting on the

body in a certain direction, then when e is very small F is propor-

tional to e, or F = Re,

where R depends on the distribution of electricity on the other

bodies in the field. If the charge e could be made equal to

unity without disturbing the electrification of other bodies we
should have F=R.
We shall call R the Resultant Electromotive Intensity at the

given point of the field. When we wish to express the fact that

this quantity is a vector we shall denote it by the German letter (&.

Total Electromotive Force and Potential.

45.] If the small body carrying the small charge e be moved

from one given point, A, to another B, along a given path, it

will experience at each point of its course a force Re, where R
varies from point to point of the course. Let the whole work

done on the body by the electrical force be Ee, then E is called

the Total Electromotive Force along the path AB. If the path

forms a complete circuit, and if the total electromotive force round

the circuit does not vanish, the electricity cannot be in equi-

librium but a current will be produced. Hence in Electrostatics

the total electromotive force round any closed circuit must be

zero, so that if A and B are two points on the circuit, the total

electromotive force from A to B is the same along either of the

two paths into which the circuit is broken, and since either of

these can be altered independently of the other, the total electro-

motive force from A to B is the same for all paths from A to B.

If B is taken as a point of reference for all other points, then the

total electromotive force from A to B is called the Potential of A.
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It depends only on the position of A. In mathematical investi-

gations, B is generally taken at an infinite distance from the

electrified bodies.

A body charged positively tends to move from places of greater

positive potential to places of smaller positive, or of negative,

potential, and a body charged negatively tends to move in the

opposite direction.

In a conductor the electrification is free to move relatively to

the conductor. If therefore two parts of a conductor have

different potentials, positive electricity will move from the part

having greater potential to the part having less potential as long

as that difference continues. A conductor therefore cannot be

in electrical equilibrium unless every point in it has the same

potential. This potential is called the Potential of the Conductor.

Equipotential Surfaces.

46.] If a surface described or supposed to be described in the

electric field is such that the electric potential is the same at

every point of the surface it is called an Equipotential surface.

An electrified particle constrained to rest upon such a surface

will have no tendency to move from one part of the surface to

another, because the potential is the same at every point. An
equipotential surface is therefore a surface of equilibrium or a

level surface.

The resultant force at any point of the surface is in the direc-

tion of the normal to the surface, and the magnitude of the force

is such that the work done on an electrical unit in passing from

the surface V to the surface V is V— V.

No two equipotential surfaces having different potentials can

meet one another, because the same point cannot have more than

one potential, but one equipotential surface may meet itself, and

this takes place at all points and along all lines of equilibrium.

The surface of a conductor in electrical equilibrium is neces-

sarily an equipotential surface. If the electrification of the con-

ductor is positive over the whole surface, then the potential will

diminish as we move away from the surface on every side, and

the conductor will be surrounded by a series of surfaces of lower

potential.

But if (owing to the action of external electrified bodies) some
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regions of the conductor are charged positively and others ne-

gatively, the complete equipotential surface will consist of the

surface of the conductor itself together with a system of other

surfaces, meeting the surface of the conductor in the lines which

divide the positive from the negative regions *. These lines will

be lines of equilibrium, and an electrified particle placed on one

of these lines will experience no force in any direction.

When the surface of a conductor is charged positively in some

parts and negatively in others, there must be some other electri-

fied body in the field besides itself. For if we allow a positively

electrified particle, starting from a positively charged part of the

surface, to move always in the direction of the resultant force

upon it, the potential at the particle will continually diminish till

the particle reaches either a negatively charged surface at a poten-

tial less than that of the first conductor, or moves off to an infinite

distance. Since the potential at an infinite distance is zero, the

latter case can only occur when the potential of the conductor is

positive.

In the same way a negatively electrified particle, moving off

from a negatively charged part of the surface, must either reach

a positively charged surface, or pass off to infinity, and the latter

case can only happen when the potential of the conductor is

negative.

Therefore, if both positive and negative charges exist on a

conductor, there must be some other body in the field whose

potential has the same sign as that of the conductor but a greater

numerical value, and if a conductor of any form is alone in the

field the charge of every part is of the same sign as the potential

of the conductor.

The interior surface of a hollow conducting vessel containing

no charged bodies is entirely free from charge. For if any part

of the surface were charged positively, a positively electrified

particle moving in the direction of the force upon it, must reach

a negatively charged surface at a lower potential. But the whole

interior surface has the same potential. Hence it can have no

charge f.

* {See Arts. 80, 114.}

f {To make the proof rigid it is necessary to state that by Art. 80 the force cannot

vanish where the surface i.s charged, and that by Art. 112 the potential cannot have a

maximum or minimum value at a point where there is no electrification. ]•
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A conductor placed inside the vessel and communicating with

it, may be considered as bounded by the interior surface. Hence

such a conductor has no charge.

Lines of Force.

47.] The line described by a point moving always in the direc-

tion of the resultant intensity is called a Line of Force. It cuts

the equipotential surfaces at right angles. The properties of

lines of force will be more fully explained afterwards, because

Faraday has expressed many of the laws of electrical action in

terms of his conception of lines of force drawn in the electric

field, and indicating both the direction and the intensity at every

point.

Electric Tension.

48.] Since the surface of a conductor is an equipotential surface,

the resultant intensity is normal to the surface, and it will be

shewn in Art. 80 that it is proportional to the superficial density of

the electrification. Hence the electricity on any small area of the

surface will be acted on by a force tending from the conductor

and proportional to the product of the resultant intensity and

the density, that is, proportional to the square of the resultant

intensity.

This force, which acts outwards as a tension on every part of the

conductor, will be called electric Tension. It is measured like

ordinary mechanical tension, by the force exerted on unit of area.

The word Tension has been used by electricians in several vague

senses, and it has been attempted to adopt it in mathematical

language as a synonym for Potential ; but on examining the cases

in which the word has been used, I think it will be more con-

sistent with usage and with mechanical analogy to understand by
tension a pulling force of so many pounds weight per square inch

exerted on the surface of a conductor or elsewhere. We shall

find that the conception of Faraday, that this electric tension

exists not only at the electrified surface but all along the lines of

force, leads to a theory of electric action as a phenomenon of

stress in a medium.

Electromotive Force.

49.] When two conductors at different potentials are connected

by a thin conducting wire, the tendency of electricity to flow



52 ELECTEOSTATIC PHENOMENA. [5 1.

along the wire is measured by the difference of the potentials of

the two bodies. The difference of potentials between two con-

ductors or two points is therefore called the Electromotive force

between them.

Electromotive force cannot in all cases be expressed in the

form of a difference of potentials. These cases, however, are not

treated of in Electrostatics. We shall consider them when we
come to heterogeneous circuits, chemical actions, motions of

magnets, inequalities of temperature, &c.

Capacity of a Conductor.

50.] If one conductor is insulated while all the surrounding

conductors are kept at the zero potential by being put in commu-
nication with the earth, and if the conductor, when charged with

a quantity E of electricity, has a potential V, the ratio of E to V
is called the Capacity of the conductor. If the conductor is

completely enclosed within a conducting vessel without touching

it, then the charge on the inner conductor will be equal and op-

posite to the charge on the inner surface of the outer conductor,

and will be equal to the capacity of the inner conductor multiplied

by the difference of the potentials of the two conductors.

Electric Accumulators.

A system consisting of two conductors whose opposed surfaces

are separated from each other by a thin stratum of an insulating

medium is called an electric Accumulator. The two conductors

are called the Electrodes and the insulating medium is called the

Dielectric. The capacity of the accumulator is directly propor-

tional to thearea of the opposed surfaces and inverselyproportional

to the thickness of the stratum between them. A Leyden jar is

an accumulator in which glass is the insulating medium. Accu-

mulators are sometimes called Condensers, but I prefer to restrict

the term ' condenser ' to an instrument which is used not to hold

electricity but to increase its superficial density.

PROPERTIES OF BODIES IN RELATION TO STATICAL ELECTRICITY.

Resistance to the Passage of Electricity through a Body.

51.] When a charge of electricity is communicated to any part

of a mass of metal the electricity is rapidly transferred from places

of high to places of low potential till the potential of the whole
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mass becomes the same. In the case of pieces of metal used in

ordinary experiments this process is completed in a time too short

to be observed, but in the case of very long and thin wires, such

as those used in telegraphs, the potential does not become uniform

till after a sensible time, on account of the resistance of the wire

to the passage of electricity through it.

The resistance to the passage of electricity is exceedingly dif-

ferent in different substances, as may be seen from the tables at

Arts. 362, 364, and 367, which will be explained in treating of

Electric Currents.

All the metals are good conductors, though the resistance of lead

is 1 2 times that of copper or silver, that of iron 6 times, and that

of mercury 60 times that of copper. The resistance of all metals

increases as their temperature rises.

Many liquids conduct electricity by electrolysis. This mode of

conduction will be considered in Part II. For the present, we
may regard all liquids containing water and all damp bodies as

conductors, far inferior to the metals but incapable of insulating

a charge of electricity for a sufficient time to be observed. The

resistance of electrolytes diminishes as the temperature rises.

On the other hand, the gases at the atmospheric pressure,

whether dry or moist, are insulators so nearly perfect when the

electric tension is small that we have as yet obtained no evidence

of electricity passing through them by ordinary conduction. The

gradual loss of charge by electrified bodies may in every case be

traced to imperfect insulation in the supports, the electricity

either passing through the substance of the support or creeping

over its surface. Hence, when two charged bodies are hung up

near each other, they will preserve their charges longer if they

are electrified in opposite ways, than if they are electrified in the

same way. For though the electromotive force tending to make

the electricity pass through the air between them is much greater

when they are oppositely electrified, no perceptible loss occurs in

this way. The actual loss takes place through the supports, and

the electromotive force through the supports is greatest when the

bodies are electrified in the same way. The result appears

anomalous only when we expect the loss to occur by the passage

of electricity through the air between the bodies. The passage

of electricity through gases takes place, in general, by disruptive

discharge, and does not begin till the electromotive intensity has
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reached a certain value. The value of the electromotive intensity

which can exist in a dielectric without a discharge taking place

is called the Electric Strength of the dielectric. The electric

strength of air diminishes as the pressure is reduced from the

atmospheric pressure to that of about three millimetres of

mercury *. When the pressure is still further reduced, the electric

strength rapidly increases ; and when the exhaustion is carried to

the highest degree hitherto attained, the electromotive intensity

required to produce a spark of a quarter of an inch is greater

than that which will give a spark of eight inches in air at the

ordinary pressure.

A vacuum, that is to say, that which remains in a vessel after

we have removed everything which we can remove from it, is

therefore an insulator of very great electric strength.

The electric strength of hydrogen is much less than that of air

at the same pressure.

Certain kinds of glass when cold are marvellously perfect in-

sulators, and Sir W. Thomson has preserved charges of electricity

for years in bulbs hermetically sealed. The same glass, however,

becomes a conductor at a temperature below that of boiling water.

Gutta-percha, caoutchouc, vulcanite, paraffin, and resins are

good insulators, the resistance of gutta-percha at 75° F. being

about 6 x 1
19 times that of copper.

Ice, crystals, and solidified electrolytes, are also insulators.

Certain liquids, such as naphtha, turpentine, and some oils, are

insulators, but inferior to the best solid insulators.

DIELECTRICS.

Specific Inductive Capacity.

52.] All bodies whose insulating power is such that when they

are placed between two conductors at different potentials the

electromotive force acting on them does not immediately dis-

tribute their electricity so as to reduce the potential to a constant

value, are called by Faraday Dielectrics.

It appears from the hitherto unpublished researches of

Cavendish f that he had, before 1773, measured the capacity of

plates of glass, resin, bees-wax, and shellac, and had determined

* {The pressure at which the electric strength is a minimum depends on the

shape and size of the vessel in which the gas is contained.

}

f { See Electrical Besearches of the Honourable Henry Cavendish.
}
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the ratios in which their capacities exceeded that of plates of air

of the same dimensions.

Faraday, to whom these researches were unknown, discovered

that the capacity of an accumulator depends on the nature of the

insulating medium between the two conductors, as well as on the

dimensions and relative position of the conductors themselves.

By substituting other insulating media for air as the dielectric of

the accumulator, without altering it in any other respect, he found

that when air and other gases were employed as the insulating

medium the capacity of the accumulator remained sensibly the

same, but that when shellac, sulphur, glass, &c. were substituted

for air, the capacity was increased in a ratio which was different

for each substance.

By a more delicate method ofmeasurement Boltzmann succeeded

in observing the variation of the inductive capacities of gases at

different pressures.

This property of dielectrics, which Faraday called Specific In-

ductive Capacity, is also called the Dielectric Constant of the

substance. It is defined as the ratio of the capacity of an

accumulator when its dielectric is the given substance, to its

capacity when the dielectric is a vacuum.

If the dielectric is not a good insulator, it is difficult to measure

its inductive capacity, because the accumulator will not hold a

charge for a sufficient time to allow it to be measured ; but it is

certain that inductive capacity is a property not confined to

good insulators, and it is probable that it exists in all bodies *.

Absorption of Electricity.

53.] It is found that when an accumulator is formed of certain

dielectrics, the following phenomena occur.

When the accumulator has been for some time electrified and

is then suddenly discharged and again insulated, it becomes

recharged in the same sense as at first, but to a smaller degree,

so that it may be discharged again several times in succession,

these discharges always diminishing. This phenomenon is called

that of the Eesidual Discharge.

* {Cohn and Arons {Wiedemann'1

s Annalen, v. 33, p. 13) have investigated the

specific inductive capacities of some non-insulating fluids such as water and alcohol :

they find that these are very large ; thus, that of distilled water is about 76 and that of

ethyl alcohol about 26 times that of air.
}
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The instantaneous discharge appears always to be proportional

to the difference of potentials at the instant of discharge, and

the ratio of these quantities is the true capacity of the accumu-

lator ; but if the contact of the discharger is prolonged so as to

include some of the residual discharge, the apparent capacity of

the accumulator, calculated from such a discharge, will be too

great.

The accumulator if charged and left insulated appears to lose

its charge by conduction, but it is found that the proportionate

rate of loss is much greater at first than it is afterwards, so that

the measure of conductivity, if deduced from what takes place

at first, would be too great. Thus, when the insulation of a

submarine cable is tested, the insulation appears to improve as

the electrification continues.

Thermal phenomena of a kind at first sight analogous take

place in the case of the conduction of heat when the opposite

sides of a body are kept at different temperatures. In the case

of heat we know that they depend on the heat taken in and

given out by the body itself. Hence, in the case of the electrical

phenomena, it has been supposed that electricity is absorbed and

emitted by the parts of the body. We shall see, however, in

Art. 329, that the phenomena can be explained without the

hypothesis of absorption of electricity, by supposing the dielectric

in some degree heterogeneous.

That the phenomena called Electric Absorption are not an

actual absorption of electricity by the substance may be shewn

by charging the substance in any manner with electricity while

it is surrounded by a closed metallic insulated vessel. If, when
the substance is charged and insulated, the vessel be instan-

taneously discharged and then left insulated, no charge is ever

communicated to the vessel by the gradual dissipation of the

electrification of the charged substance within it *.

54.] This fact is expressed by the statement of Faraday that it

is impossible to charge matter with an absolute and independent

charge of one kind of electricity f.

In fact it appears from the result of every experiment which

has been tried that in whatever way electrical actions may take

* { For a detailed account of the phenomena of Electric absorption, see Wiedemann's
EleJctricitat, v. 2, p. 83.}

f Exp. Res., vol. i. series xi. % ii. ' On the Absolute Charge of Matter,' and § 1244.
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place among a system of bodies surrounded by a metallic vessel,

the charge on the outside of that vessel is not altered.

Now if any portion of electricity could be forced into a body

so as to be absorbed in it, or to become latent, or in any way
to exist in it, without being connected with an equal portion

of the opposite electricity by lines of induction, or if, after

having been absorbed, it could gradually emerge and return

to its ordinary mode of action, we should find some change of

electrification in the surrounding vessel.

As this is never found to be the case, Faraday concluded that

it is impossible to communicate an absolute charge to matter, and

that no portion of matter can by any change of state evolve or

render latent one kind of electricity or the other. He therefore

regarded induction as ' the essential function both in the first

development and the consequent phenomena of electricity.' His

'induction' is (1298) a polarized state of the particles of the

dielectric, each particle being positive on one side and negative

on the other, the positive and the negative electrification of each

particle being always exactly equal.

Disruptive Discharge*

55.] If the electromotive intensity at any point of a dielectric

is gradually increased, a limit is at length reached at which there

is a sudden electrical discharge through the dielectric, generally

accompanied with light and sound, and with a temporary or

permanent rupture of the dielectric.

The electromotive intensity when this takes place is a measure

of what we may call the electric strength of the dielectric.

It depends on the nature of the dielectric, and is greater in

dense air than in rare air, and greater in glass than in air, but

in every case, if the electromotive force be made great enough,

the dielectric gives way and its insulating power is destroyed, so

that a current of electricity takes place through it. It is for this

reason that distributions of electricity for which the electromotive

intensity becomes anywhere infinite cannot exist.

* See Faraday, Exp. Sen., vol. i., series xii. and xiii.

{So many investigations have been made on the passage of electricity through
gases since the first edition of this book was published that the mere enumeration of
them would stretch beyond the limits of a foot-note. A summary of the results
obtained by these researches will be given in the Supplementary Volume.

}
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The Electric Gloiv.

Thus, when a conductor having a sharp point is electrified, the

theory, based on the hypothesis that it retains its charge, leads

to the conclusion that as we approach the point the superficial

density of the electricity increases without limit, so that at the

point itself the surface-density, and therefore the resultant

electromotive intensity, would be infinite. If the air, or other

surrounding dielectric, had an invincible insulating power, this

result would actually occur ; but the fact is, that as soon as the

resultant intensity in the neighbourhood of the point has reached

a certain limit, the insulating power of the air gives way, so that

the air close to the point becomes a conductor. At a certain

distance from the point the resultant intensity is not sufficient to

break through the insulation of the air, so that the electric current

is checked, and the electricity accumulates in the air round the

point.

The point is thus surrounded by particles of air * charged with

electricity of the same kind as its own. The effect of this charged

air round the point is to relieve the air at the point itself from

part of the enormous electromotive intensity which it would have

experienced if the conductor alone had been electrified. In fact

the surface of the electrified body is no longer pointed, because the

point is enveloped by a rounded mass of charged air, the surface

of which, rather than that of the solid conductor, may be regarded

as the outer electrified surface.

If this portion of charged air could be kept still, the electrified

body would retain its charge, if not on itself at least in its

neighbourhood, but the charged particles of air being free to move

under the action of electrical force, tend to move away from the

electrified body because it is charged with the same kind of elec-

tricity. The charged particles of air therefore tend to move off

in the direction of the lines of force and to approach those sur-

rounding bodies which are oppositely electrified. When they are

gone, other uncharged particles take their place round the point,

and since these cannot shield those next the point itself from the

excessive electric tension, a new discharge takes place, after which

the newly charged particles move oft', and so on as long as the body

remains electrified.

*
\ Or dust ? It is doubtful whether air free from dust and aqueous vapour can be

electrified except at very high temperatures ; see Supplementary Volume.}
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In this way the following phenomena are produced :—At and
close to the point there is a steady glow, arising from the con-

stant discharges which are taking place between the point and
the air very near it.

The charged particles of air tend to move off in the same general

direction, and thus produce a current of air from the point, con-

sisting of the charged particles, and probably of others carried

along by them. By artificially aiding this current we may increase

the glow, and by checking the formation of the current we may
prevent the continuance of the glow *.

The electric wind in the neighbourhood of the point is sometimes

very rapid, but it soon loses its velocity, and the air with its

charged particles is carried about with the general motions of the

atmosphere, and constitutes an invisible electric cloud. "When the

charged particles come near to any conducting surface, such as a
wall, they induce on that surface a charge opposite to their own,
and are then attracted towards the wall, but since the electro-

motive force is small they may remain for a long time near the

wall without being drawn up to the surface and discharged. They
thus form an electrified atmosphere clinging to conductors, the

presence of which may sometimes be detected by the electrometer.

The electrical forces, however, acting between large masses of

charged air and other bodies are exceedingly feeble compared with

the ordinary forces which produce winds, and which depend on
inequalities of density due to differences of temperature, so that

it is very improbable that any observable part of the motion
of ordinary thunder clouds arises from electrical causes.

The passage of electricity from one place to another by the

motion of charged particles is called Electrical Convection or

Convective Discharge.

The electrical glow is therefore produced by the constant passage

of electricity through a small portion of air in which the tension

is very high, so as to charge the surrounding particles of air which
are continually swept off by the electric wind, which is an essential

part of the phenomenon.

The glow is more easily formed in rare air than in dense air,

and more easily when the point is positive than when it is negative.

* See Priestley's History of Electricity, pp. 117 and 591 ; and Cavendish's 'Elec-
trical Researches,' Phil. Trans., 1771, § 4, or Art. 125 of Electrical Researches of the
Honourable Henry Cavendish.
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This and many other differences between positive and negative

electrification must be studied by those who desire to discover

something about the nature of electricity. They have not,

however, been satisfactorily brought to bear upon any existing

theory.

The Electric Brush.

56.] The electric brush is a phenomenon which may be pro-

duced by electrifying a blunt point or small ball so as to produce

an electric field in which the tension diminishes as the distance

increases, but in a less rapid manner than when a sharp point is

used. It consists of a succession of discharges, ramifying as they

diverge from the ball into the air, and terminating either by

charging portions of air or by reaching some other conductor. It

is accompanied by a sound, the pitch of which depends on the

interval between the successive discharges, and there is no

current of air as in the case of the glow.

The Electric Spark.

57.] When the tension in the space between two conductors is

considerable all the way between them, as in the case of two balls

whose distance is not great compared with their radii, the

discharge, when it occurs, usually takes the form of a spark, by

which nearly the whole electrification is discharged at once.

In this case, when any part of the dielectric has given way,

the parts on either side of it in the direction of the electric force

are put into a state of greater tension so that they also give way,

and so the discharge proceeds right through the dielectric, just as

when a little rent is made in the edge of a piece of paper a

tension applied to the paper in the direction of the edge causes the

paper to be torn through, beginning at the rent, but diverging

occasionally where there are weak places in the paper. The

electric spark in the same way begins at the point where the

electric tension first overcomes the insulation of the dielectric,

and proceeds from that point, in an apparently irregular path,

so as to take in other weak points, such as particles of dust

floating in air.

All these phenomena differ considerablyin different gases, and in

the same gas at different densities. Some of the forms of electrical

discharge through rare gases are exceedingly remarkable. In some

cases there is a regular alternation of luminous and dark strata,
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so that if the electricity, for example, is passing along a tube
containing a very small quantity of gas, a number of luminous
disks will be seen arranged transversely at nearly equal intervals

along the axis of the tube and separated by dark strata. If the

strength of the current be increased a new disk will start into

existence, and it and the old disks will arrange themselves in

closer order. In a tube described by Mr. Gassiot * the light of

each of the disks is bluish on the negative and reddish on the
positive side, and bright red in the central stratum.

These, and many other phenomena of electrical discharge, are

exceedingly important, and when they are better understood they
will probably throw great light on the nature of electricity as

well as on the nature of gases and of the medium pervading space.

At present, however, they must be considered as outside the
domain of the mathematical theory of electricity.

Electric Phenomena of Tourmaline f.

58.] Certain crystals of tourmaline, and of other minerals,
possess what may be called Electric Polarity. Suppose a crystal

of tourmaline to be at a uniform temperature, and apparently
free from electrification on its surface. Let its temperature be
now raised, the crystal remaining insulated. One end will be
found positively and the other end negatively electrified. Let
the surface be deprived of this apparent electrification by means
of a flame or otherwise, then if the crystal be made still hotter,

electrification of the same kind as before will appear, but if the
crystal be cooled the end which was positive when the crystal

was heated will become negative.

These electrifications are observed at the extremities of the
crystallographic axis. Some crystals are terminated by a six-

sided pyramid at one end and by a three-sided pyramid at the
other. In these the end having the six-sided pyramid becomes
positive when the crystal is heated.

Sir W. Thomson supposes every portion of these and other
hemihedral crystals to have a definite electric polarity, the
intensity of which depends on the temperature. When the
surface is passed through a flame, every part of the surface

becomes electrified to such an extent as to exactly neutralize,

* Intellectual Observer, March 1866.

_ t { For a fuller account of this property and the electrification of crystals by radiant
light and heat, see Wiedemann's Elektricitat , v. 2, p. 316.}
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for all external points, the effect of the internal polarity. The

crystal then has no external electrical action, nor any tendency

to change its mode of electrification. But if it be heated or cooled

the interior polarization of each particle of the crystal is altered,

and can no longer be balanced by the superficial electrification,

so that there is a resultant external action.

Plan of this Treatise.

59.] In the following treatise I propose first to explain the

ordinary theory of electrical action, which considers it as de-

pending only on the electrified bodies and on their relative

position, without taking account of any phenomena which may

take place in the intervening media. In this way we shall

establish the law of the inverse square, the theory of the poten-

tial, and the equations of Laplace and Poisson. We shall next

consider the charges and potentials of a system of electrified

conductors as connected by a system of equations, the coefficients

of which may be supposed to be determined by experiment in

those cases in which our present mathematical methods are not

applicable, and from these we shall determine the mechanical

forces acting between the different electrified bodies.

We shall then investigate certain general theorems by which

Green, Gauss, and Thomson have indicated the conditions of so-

lution of problems in the distribution of electricity. One result

of these theorems is, that if Poisson's equation is satisfied by any

function, and if at the surface of every conductor the function

has the value of the potential of that conductor, then the func-

tion expresses the actual potential of the system at every point.

We also deduce a method of finding problems capable of exact

solution.

In Thomson's theorem, the total energy of the system is ex-

pressed in the form of the integral of a certain quantity extended

over the whole space between the electrified bodies, and also in

the form of an integral extended over the electrified surfaces

only. The equality of these two expressions may be thus inter-

preted physically. We may conceive the physical relation be-

tween the electrified bodies, either as the result of the state of the

intervening medium, or as the result of a direct action between

the electrified bodies at a distance. If we adopt the latter con-

ception, we may determine the law of the action, but we can go
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no further in speculating on its cause. If, on the other hand, we
adopt the conception of action through a medium, we are led to

enquire into the nature of that action in each part of the medium.
It appears from the theorem, that if we are to look for the seat

of the electric energy in the different parts of the dielectric me-
dium, the amount of energy in any small part must depend on
the square of the resultant electromotive intensity at that place

multiplied by a coefficient called the specific inductive capacity
of the medium.

It is better, however, in considering the theory of dielectrics

from the most general point of view, to distinguish between the

electromotive intensity at any point and the electric polarization

of the medium at that point, since these directed quantities,

though related to one another, are not, in some solid substances,

in the same direction. The most general expression for the electric

energy of the medium per unit of volume is half the product of

the electromotive intensity and the electric polarization multi-
plied by the cosine of the angle between their directions. In
all fluid dielectrics the electromotive intensity and the electric

polarization are in the same direction and in a constant ratio.

If we calculate on this hypothesis the total energy residing

in the medium, we shall find it equal to the energy due to the

electrification of the conductors on the hypothesis of direct action

at a distance. Hence the two hypotheses are mathematically
equivalent.

If we now proceed to investigate the mechanical state of the

medium on the hypothesis that the mechanical action observed

between electrified bodies is exerted through and by means of

the medium, as in the familiar instances of the action of one
body on another by means of the tension of a rope or the

pressure of a rod, we find that the medium must be in a state of

mechanical stress.

The nature of this stress is, as Faraday pointed out *, a tension

along the lines of force combined with an equal pressure in all

directions at right angles to these lines. The magnitude of these

stresses is proportional to the energy of the electrification per

unit of volume, or, in other words, to the square of the resultant

electromotive intensity multiplied by the specific inductive

capacity of the medium.

* Exp. Res., series xi. 1297.
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This distribution of stress is the only one consistent * with the

observed mechanical action on the electrified bodies, and also

with the observed equilibrium of the fluid dielectric which

surrounds them. I have therefore thought it a warrantable step

in scientific procedure to assume the actual existence of this

state of stress, and to follow the assumption into its consequences.

Finding the phrase electric tension used in several vague senses,

I have attempted to confine it to what I conceive to have been

in the minds of some of those who have used it, namely, the

state of stress in the dielectric medium which causes motion

of the electrified bodies, and leads, when continually augmented,

to disruptive discharge. Electric tension, in this sense, is a

tension of exactly the same kind, and measured in the same way,

as the tension of a rope, and the dielectric medium, which can

support a certain tension and no more, may be said to have

a certain strength in exactly the same sense as the rope is said

to have a certain strength. Thus, for example, Thomson has

found that air at the ordinary pressure and temperature can

support an electric tension of 9600 grains weight per square

foot before a spark passes.

60.] From the hypothesis that electric action is not a direct

action between bodies at a distance, but is exerted by means of

the medium between the bodies, we have deduced that this

medium must be in a state of stress. We have also ascertained

the character of the stress, and compared it with the stresses

which may occur in solid bodies. Along the lines of force there

is tension, and perpendicular to them there is pressure, the

numerical magnitude of these forces being equal, and each pro-

portional to the square of the resultant intensity at the point.

Having established these results, we are prepared to take another

step, and to form an idea of the nature of the electric polarization

of the dielectric medium.

An elementary portion of a body may be said to be polarized

when it acquires equal and opposite properties on two opposite

sides. The idea of internal polarity may be studied to the

greatest advantage as exemplified in permanent magnets, and it

will be explained at greater length when we come to treat of

magnetism.

* {This statement requires modification : the distribution of stress referred to is

only one among many such distributions which will all produce the required effect.

}
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The electric polarization of an elementary portion ofa dielectric

is a forced state into which the medium is thrown by the action
of electromotive force, and which disappears when that force is

removed. We may conceive it to consist in what we may call

an electric displacement, produced by the electromotive intensity.

When the electromotive force acts on a conducting medium it

produces a current through it, but if the medium is a non-con-
ductor or dielectric, the current cannot {continue to} flow through
the medium, but the electricity is displaced within the medium
in the direction of the electromotive intensity, the extent of this

displacement depending on the magnitude of the electromotive
intensity, so that if the electromotive intensity increases or

diminishes, the electric displacement increases or diminishes in
the same ratio.

The amount of the displacement is measured by the quantity
of electricity which crosses unit of area, while the displacement
increases from zero to its actual amount. This, therefore, is the
measure of the electric polarization.

The analogy between the action of electromotive intensity in
producing electric displacement and of ordinary mechanical force
in producing the displacement of an elastic body is so obvious that
I have ventured to call the ratio of the electromotive intensity to
the corresponding electric displacement the coefficient of electric

elasticity of the medium. This coefficient is different in different

media, and varies inversely as the specific inductive capacity of
each medium.

The variations of electric displacement evidently constitute

electric currents*. These currents, however, can only exist

during the variation of the displacement, and therefore, since

the displacement cannot exceed a certain value without causing
disruptive discharge, they cannot be continued indefinitely in

the same direction, like the currents through conductors.

In tourmaline, and other pyro-electric crystals, it is probable
that a state of electric polarization exists, which depends upon
temperature, and does not require an external electromotive force

to produce it. If the interior of a body were in a state of
permanent electric polarization, the outside would gradually
become charged in such a manner as to neutralize the action of
the internal polarization for all points outside the body. This

* { If we assume the views enunciated in the preceding paragraph.

}
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external superficial charge could not be detected by any of the

ordinary tests, and could not be removed by any of the ordinary

methods for discharging superficial electrification. The internal

polarization of the substance would therefore never be discovered

unless by some means, such as change of temperature, the amount

of the internal polarization could be increased or diminished.

The external electrification would then be no longer capable

of neutralizing the external effect of the internal polarization,

and an apparent electrification would be observed, as in the case

of tourmaline.

If a charge e is uniformly distributed over the surface of a

sphere, the resultant intensity at any point of the medium sur-

rounding the sphere is proportional to the charge e divided

by the square of the distance from the centre of the sphere.

This resultant intensity, according to our theory, is accompanied

by a displacement of electricity in a direction outwards from the

sphere.

If we now draw a concentric spherical surface of radius r, the

whole displacement, E, through this surface will be proportional

to the resultant intensity multiplied by the area of the spherical

surface. But the resultant intensity is directly as the charge e

and inversely as the square of the radius, while the area of the

surface is directly as the square of the radius.

Hence the whole displacement, #, is proportional to the charge

e, and is independent of the radius.

To determine the ratio between the charge e, and the quantity

of electricity, E, displaced outwards through any one of the

spherical surfaces, let us consider the work done upon the

medium in the region between two concentric spherical surfaces,

while the displacement is increased from E to E+bE. If V1

and V2
denote the potentials at the inner and the outer of these

surfaces respectively, the electromotive force by which the

additional displacement is produced is V1
-V2 , so that the work

spent in augmenting the displacement is {V
1
— V2

)bE.

If we now make the inner surface coincide with that of the

electrified sphere, and make the radius of the outer infinite, V
x

becomes V, the potential of the sphere, and V2
becomes zero, so

that the whole work done in the surrounding medium is VbE.

But by the ordinary theory, the work done in augmenting the

charge is Vbe, and if this is spent, as we suppose, in augmenting
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the displacement, bE = 8e, and since E and e vanish together,

E = e, or

—

Tike displacement outwards through any spherical surface
concentric with the sphere is equal to the charge on the sphere.

To fix our ideas of electric displacement, let us consider an
accumulator formed of two conducting plates A and B, separated
by a stratum of a dielectric C. Let W he & conducting wire
joining A and B, and let us suppose that by the action of an
electromotive force a quantity Q of positive electricity is trans-

ferred along the wire from B to A. The positive electrification

of A and the negative electrification of B will produce a certain

electromotive force acting from A towards B in the dielectric

stratum, and this will produce an electric displacement from
A towards B within the dielectric. The amount of this dis-

placement, as measured by the quantity of electricity forced

across an imaginary section of the dielectric dividing it into

two strata, will be, according to our theory, exactly Q. See Arts.

75, 76, 111.

It appears, therefore, that at the same time that a quantity

Q of electricity is being transferred along the wire by the electro-

motive force from B towards A, so as to cross every section of

the wire, the same quantity of electricity crosses every section
of the dielectric from A towards B by reason of the electric dis-

placement.

The displacements of electricity during the discharge of the
accumulator will be the reverse of these. In the wire the dis-

charge will be Q from. J. to B, and in the dielectric the displace-

ment will subside, and a quantity of electricity Q will cross

every section from B towards A.
Every case of charge or discharge may therefore be considered

as a motion in a closed circuit, such that at every section of

the circuit the same quantity of electricity crosses in the same
time, and this is the case, not only in the voltaic circuit where
it has always been recognized, but in those cases in which elec-

tricity has been generally supposed to be accumulated in certain

places.

61.] We are thus led to a very remarkable consequence of the
theory which we are examining, namely, that the motions of
electricity are like those of an incompressible fluid, so that the
total quantity within an imaginary fixed closed surface remains
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always the same. This result appears at first sight in direct

contradiction to the fact that we can charge a conductor and

then introduce it into the closed space, and so alter the quan-

tity of electricity within that space. But we must remember

that the ordinary theory takes no account of the electric dis-

placement in the substance of dielectrics which we have been

investigating, but confines its attention to the electrification at

the bounding surfaces of the conductors and dielectrics. In the

case of the charged conductor let us suppose the charge to be

positive, then if the surrounding dielectric extends on all sides

beyond the closed surface there will be electric polarization,

accompanied with displacement from within outwards all over

the closed surface, and the surface-integral of the displacement

taken over the surface will be equal to the charge on the con-

ductor within.

Thus when the charged conductor is introduced into the closed

space there is immediately a displacement of a quantity of elec-

tricity equal to the charge through the surface from within out-

wards, and the whole quantity within the surface remains the

same.

The theory of electric polarization will be discussed at

greater length in Chapter V, and a mechanical illustration of

it will be given in Art. 334, but its importance cannot be fully

understood till we arrive at the study of electromagnetic phe-

nomena.

62.] The peculiar features of the theory are :

—

That the energy of electrification resides in the dielectric

medium, whether that medium be solid, liquid, or gaseous, dense

or rare, or even what is called a vacuum, provided it be still

capable of transmitting electrical action.

That the energy in any part of the medium is stored up in

the form of a state of constraint called electric polarization, the

amount of which depends on the resultant electromotive intensity

at the place.

That electromotive force acting on a dielectric produces what

we have called electric displacement, the relation between the in-

tensity and the displacement being in the most general case of a

kind to be afterwards investigated in treating of conduction, but

in the most important cases the displacement is in the same

direction as the intensity, and is numerically equal to the intensity
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multiplied by — K, where K is the specific inductive capacity of

the dielectric.

That the energy per unit of volume of the dielectric arising

from the electric polarization is half the product of the electro-

motive intensity and the electric displacement, multiplied, if

necessary, by the cosine of the angle between their directions.

That in fluid dielectrics the electric polarization is accompanied
by a tension in the direction of the lines of induction, combined
with an equal pressure in all directions at right angles to the

lines of induction, the tension or pressure per unit of area being
numerically equal to the energy per unit of volume at the same
place.

That the surface of any elementary portion into which we may
conceive the volume of the dielectric divided must be conceived
to be charged so that the surface-density at any point of the
surface is equal in magnitude to the displacement through that

point of the surface reckoned inwards. If the displacement is in

the positive direction, the surface of the element will be charged
negatively on the positive side of the element, and positively on
the negative side. These superficial charges will in general

destroy one another when consecutive elements are considered,

except where the dielectric has an internal charge, or at the

surface of the dielectric.

That whatever electricity may be, and whatever we may
understand by the movement of electricity, the phenomenon
which we have called electric displacement is a movement of

electricity in the same sense as the transference of a definite

quantity of electricity through a wire is a movement of elec-

tricity, the only difference being that in the dielectric there is a
force which we have called electric elasticity which acts against

the electric displacement, and forces the electricity back when
the electromotive force is removed ; whereas in the conducting

wire the electric elasticity is continually giving way, so that

a current of true conduction is set up, and the resistance depends

not on the total quantity of electricity displaced from its position

of equilibrium, but on the quantity which crosses a section of

the conductor in a given time.

That in every case the motion of electricity is subject to the

same condition as that of an incompressible fluid, namely, that
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at every instant as much must flow out of any given closed

surface as flows into it.

It follows from this that every electric current must form a

closed circuit. The importance of this result will be seen when

we investigate the laws of electro-magnetism.

Since, as we have seen, the theory of direct action at a dis-

tance is mathematically identical with that of action by means

of a medium, the actual phenomena may be explained by the one

theory as well as by the other, provided suitable hypotheses be

introduced when any difficulty occurs. Thus, Mossotti has de-

duced the mathematical theory of dielectrics from the ordinary

theory of attraction merely by giving an electric instead of a

magnetic interpretation to the symbols in the investigation by

which Poisson has deduced the theory of magnetic induction

from the theory of magnetic fluids. He assumes the existence

within the dielectric of small conducting elements, capable of

having their opposite surfaces oppositely electrified by induction,

but not capable of losing or gaining electricity on the whole,

owing to their being insulated from each other by a non-

conducting medium. This theory of dielectrics is consistent

with the laws of electricity, and may be actually true. If it is

true, the specific inductive capacity of a dielectric may be greater,

but cannot be less, than that of a vacuum. No instance has yet

been found of a dielectric having an inductive capacity less than

that of a vacuum, but if such should be discovered, Mossotti'

s

physical theory must be abandoned, although his formulae

would all remain exact, and would only require us to alter the

sign of a coefficient.

In many parts of physical science, equations of the same form

are found applicable to phenomena which are certainly of quite

different natures, as, for instance, electric induction through di-

electrics, conduction through conductors, and magnetic induction.

In all these cases the relation between the intensity and the effect

produced is expressed by a set of equations of the same kind,

so that when a problem in one of these subjects is solved, the

problem and its solution may be translated into the language

of the other subjects and the results in their new form will still

be true.



CHAPTER II.

ELEMENTARY MATHEMATICAL THEORY OP STATICAL

ELECTRICITY.

Definition of Electricity as a Mathematical Quantity.

63.] We have seen that the properties of charged bodies are

such that the charge of one body may be equal to that of an-

other, or to the sum of the charges of two bodies, and that when
two bodies are equally and oppositely charged they have no elec-

trical effect on external bodies when placed together within a

closed insulated conducting vessel. We may express all these

results in a concise and consistent manner by describing an

electrified body as charged with a certain quantity of electricity,

which we may denote by e. When the charge is positive, that

is, according to the usual convention, vitreous, e will be a positive

quantity. When the charge is negative or resinous, e will be

negative, and the quantity — e may be interpreted either as a

negative quantity of vitreous electricity or as a positive quantity

of resinous electricity.

The effect of adding together two equal and opposite charges

of electricity, +e and — e, is to produce a state of no charge

expressed by zero. We may therefore regard a body not charged

as virtually charged with equal and opposite charges of indefinite

magnitude, and a charged body as virtually charged with un-

equal quantities of positive and negative electricity, the algebraic

sum of these charges constituting the observed electrification.

It is manifest, however, that this way of regarding an electrified

body is entirely artificial, and may be compared to the concep-

tion of the velocity of a body as compounded of two or more

different velocities, no one of which is the actual velocity of the

body.
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ON ELECTRIC DENSITY.

Distribution in Three Dimensions.

64.] Definition. The electric volume-density at a given point

in space is the limiting ratio of the quantity of electricity within

a sphere whose centre is the given point to the volume of the

sphere, when its radius is diminished without limit.

We shall denote this ratio by the symbol />, which may be

positive or negative.

Distribution over a Surface.

It is a result alike of theory and of experiment, that, in certain

cases, the charge of a body is entirely on the surface. The density

at a point on the surface, if defined according to the method given

above, would be infinite. We therefore adopt a different method

for the measurement of surface-density.

Definition. The electric density at a given point on a surface

is the limiting ratio of the quantity of electricity within a sphere

whose centre is the given point to the area of the surface con-

tained within the sphere, when its radius is diminished without

limit.

We shall denote the surface-density by the symbol a-.

Those writers who supposed electricity to be a material fluid

or a collection of particles, were obliged in this case to suppose

the electricity distributed on the surface in the form of a stratum

of a certain thickness 0, its density being p , or that value of p

which would result from the particles having the closest contact

of which they are capable. It is manifest that on this theory

Po d = <r.

When <r is negative, according to this theory, a certain stratum

of thickness 6 is left entirely devoid of positive electricity, and

filled entirely with negative electricity, or, on the theory of one

fluid, with matter.

There is, however, no experimental evidence either of the

electric stratum having any thickness, or of electricity being a

fluid or a collection of particles. We therefore prefer to do

without the symbol for the thickness of the stratum, and to use

a special symbol for surface- density.
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Distribution on a Line.

It is sometimes convenient to suppose electricity distributed

on a line, that is, a long narrow body of which we neglect the

thickness. In this case we may define the line-density at any
point to be the limiting ratio of the charge on an element of the

line to the length of that element when the element is diminished

without limit.

If A denotes the line-density, then the whole quantity of elec-

tricity on a curve is e= / kds, where ds is the element of the

curve. Similarly, if o- is the surface-density, the whole quantity

of electricity on the surface is

= ff<rdS,

where dS is the element of surface.

If p is the volume-density at any point of space, then the

whole electricity with a certain volume is

= / / pdxdydz,

where dxdydz is the element of volume. The limits of in-

tegration in each case are those of the curve, the surface, or the

portion of space considered.

It is manifest that e, A, a and p are quantities differing in kind,

each being one dimension in space lower than the preceding, so

that if I be a line, the quantities e,l\, I
2

<r, and l
3
p will be all of

the same kind, and if [X] be the unit of length, and [a], [a], [p]

the units of the different kinds of density, [e], [L\\, [L2 a], and

[L3
p] will each denote one unit of electricity.

Definition of the Unit of Electricity.

65.] Let A and B be two points the distance between which

is the unit of length. Let two bodies, whose dimensions are

small compared with the distance AB, be charged with equal

quantities of positive electricity and placed at A and B respect-

ively, and let the charges be such that the force with which they

repel each other is the unit of force, measured as in Art. 6. Then
the charge of either body is said to be the unit of electricity *.

If the charge of the body at B were a unit of negative

* { In this definition the dielectric separating the charged bodies is supposed to be
air.

J
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electricity, then, since the action between the bodies would be

reversed, we should have an attraction equal to the unit of force.

If the charge of A were also negative, and equal to unity, the

force would be repulsive, and equal to unity.

Since the action between any two portions of electricity is not

affected by the presence of other portions, the repulsion between

e units of electricity at A and e' units at B is ee\ the distance

AB being unity. See Art. 39.

Laiv of Force between Charged Bodies.

66.] Coulomb shewed by experiment that the force between

charged bodies whose dimensions are small compared with the

distance between them, varies inversely as the square of the dis-

tance. Hence the repulsion between two such bodies charged

with quantities e and e' and placed at a distance r is

We shall prove in Arts. 74 c, 74 d, 74 e that this law is the only

one consistent with the observed fact that a conductor, placed

in the inside of a closed hollow conductor and in contact with

it, is deprived of all electrical charge. Our conviction of the

accuracy of the law of the inverse square of the distance may
be considered to rest on experiments of this kind, rather than

on the direct measurements of Coulomb.

Resultant Force between Two Bodies.

67.] In order to calculate the resultant force between two

bodies we might divide each of them into its elements of volume,

and consider the repulsion between the electricity in each of the

elements of the first body and the electricity in each of the

elements of the second body. We should thus get a system of

forces equal in number to the product of the numbers of the

elements into which we have divided each body, and we should

have to combine the effects of these forces by the rules of Statics.

Thus, to find the component in the direction of x we should

have to find the value of the sextuple integral

p p {x— x')dx dy dz dxf
dy'dz

r

{{x-xj^{y-yf

f + (z-zj}^
where x

} y, z are the coordinates of a point in the first body at

mm



68.] RESULTANT INTENSITY AT A POINT. 75

which the electrical density is p, and x', y\ z\ and p are the

corresponding quantities for the second body, and the integration

is extended first over the one body and then over the other.

Resultant Intensity at a Point.

68.] In order to simplify the mathematical process, it is con-
venient to consider the action of an electrified body, not on
another body of any form, but on an indefinitely small body,
charged with an indefinitely small amount of electricity, and
placed at any point of the space to which the electrical action

extends. By making the charge of this body indefinitely small

we render insensible its disturbing action on the charge of the

first body.

Let e be the charge of the small body, and let the force acting

on it when placed at the point (x, y, z) be Re, and let the

direction-cosines of the force be I, m, n, then we may call R the

resultant electric intensity at the point (x, y, z).

If X, Y, Z denote the components of R, then

X = Rl, Y = Rm> Z = Rn.

In speaking of the resultant electric intensity at a point, we
do not necessarily imply that any force is actually exerted there,

but only that if an electrified body were placed there it would be
acted on by a force R e, where e is the charge of the body *.

Definition. The resultant electric intensity at any point is

the force which would be exerted on a small body charged with
the unit of positive electricity, if it were placed there without
disturbing the actual distribution of electricity.

This force not only tends to move a body charged with
electricity, but to move the electricity within the body, so that

the positive electricity tends to move in the direction of R and
the negative electricity in the opposite direction. Hence the

quantity R is also called the Electromotive Intensity at the

point (x, y, z).

When we wish to express the fact that the resultant intensity

is a vector, we shall denote it by the German letter (£. If the

body is a dielectric, then, according to the theory adopted in

this treatise, the electricity is displaced within it, so that the

* The Electric and Magnetic Intensities correspond, in electricity and magnetism,
to the intensity of gravity, commonly denoted by g, in the theory of heavy bodies.
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quantity of electricity which is forced in the direction of (§ across

unit of area fixed perpendicular to (S is

4 77

where 2) is the displacement, (§ the resultant intensity, and K the

specific inductive capacity of the dielectric.

If the body is a conductor, the state of constraint is continually

giving way, bo that a current of conduction is produced and

maintained as long as (5 acts on the medium.

Line-Integral of Electric Intensity, or Electromotive Force

along an Arc of a Curve.

69.] The Electromotive force along a given arc AP of a curve

is numerically measured by the work which would be done by

the electric intensity on a unit of positive electricity carried along

the curve from A, the beginning, to P, the end of the arc.

If s is the length of the arc, measured from A, and if the re-

sultant intensity R at any point of the curve makes an angle e

with the tangent drawn in the positive direction, then the work

done on unit of electricity in moving along the element of the

curve ds will be R cos eds,

and the total electromotive force E will be

E = / R cos e ds,

i'Jo
the integration being extended from the beginning to the end

of the arc.

If we make use of the components of the intensity, the ex-

pression becomes

E=[\x d^+Y^- + Z^)d8.
J CIS CLS (LS

If X, Y, and Z are such that Xdx + Ydy + Zdz is the complete

differential of — V, a function of x, y, z, then

E = f
P
(Xdx + Ydy + Zdz)=-[

P
dV=VA -J$;

JA JA

where the integration is performed in any way from the point A
to the point P, whether along the given curve or along any other

line between A and P.
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In this case V is a scalar function of the position of a point in

space, that is, when we know the coordinates of the point, the

value of V is determinate, and this value is independent of the

position and direction of the axes of reference. See Art. 16.

On Functions of the Position of a Point.

In what follows, when we describe a quantity as a function of

the position of a point, we mean that for every position of the

point the function has a determinate value. We do not imply

that this value can always be expressed by the same formula

for all points of space, for it may be expressed by one formula

on one side of a given surface and by another formula on the

other side.

On Potential Functions.

70.] The quantity X dx + Ydy + Zdz is an exact differential

whenever the force arises from attractions or repulsions whose

intensity is a function of the distances from any number of

points. For if r
x
be the distance of one of the points from the

point (x, y, z), and if R
x
be the repulsion, then

with similar expressions for Y
1
and Zv so that

X
xdx + Yxdy + Zx

dz = Rx
dr

x ;

and since R
x
is a function of r

x
only, R

x
dr

x
is an exact differ-

ential of some function of r
x , say — Yx .

Similarly for any other force R2 , acting from a centre at dis-

tance r2 , X
2
dx+Y,dy +Z2dz = R2dr2

= -dV.A .

But X=X
l +X2 + kc.

i
and Fand Z are compounded in the same

way, therefore

Xdx+ Ydy + Zdz = -dV[-dV,-&c. = -dV.

The integral of this quantity, under the condition that it vanishes

at an infinite distance, is called the Potential Function.

The use of this function in the theory of attractions was intro-

duced by Laplace in the calculation of the attraction of the

earth. Green, in his essay ' On the Application of Mathematical

Analysis to Electricity,' gave it the name of the Potential

Function. Gauss, working independently of Green, also used
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the word Potential. Clausius and others have applied the term

Potential to the work which would be done if two bodies or

systems were removed to an infinite distance from one another.

"We shall follow the use of the word in recent English works,

and avoid ambiguity by adopting the following definition due to

Sir W. Thomson.

Definition of Potential. The Potential at a Point is the work
which would be done on a unit of positive electricity by the

electric forces if it were placed at that point without disturbing

the electric distribution, and carried from that point to an in-

finite distance : or, what comes to the same thing, the work
which must be done by an external agent in order to bring the

unit of positive electricity from an infinite distance (or from any

place where the potential is zero) to the given point.

71.] Expressions for the Resultant Intensity and its

components in terms of the Potential.

Since the total electromotive force along any arc AB is

Eab = Ya — Vb,

if we put ds for the arc AB we shall have for the intensity re-

solved in the direction of ds,

7?
dVR cos e = r- ;

ds

whence, by assuming ds parallel to each of the axes in succession,

we get

X=~— , Y-~— Z-~—-
dx ~ dy

' ~ dz'

12

dz\ )ldx\ dy

We shall denote the intensity itself, whose magnitude, or

tensor, is R and whose components are X, Y, Z, by the German
letter (§, as in Art. 68.

The Potential at all Points within a Conductor is the same.

72.] A conductor is a body which allows the electricity within

it to move from one part of the body to any other when acted on

by electromotive force. When the electricity is in equilibrium

there can be no electromotive intensity acting within the
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conductor. Hence R — throughout the whole space occupied

by the conductor. From this it follows that

dV dV n dV n

dx dy dz

and therefore for every point of the conductor

V=C,
where C is a constant quantity.

Since the potential at all points within the substance of the

conductor is C, the quantity C is called the Potential of the con-

ductor. C may be defined as the work which must be done by

external agency in order to bring a unit of electricity from an

infinite distance to the conductor, the distribution of electricity

being supposed not to be disturbed by the presence of the unit *.

It will be shewn at Art. 246 that in general when two bodies

of different kinds are in contact, an electromotive force acts from

one to the other through the surface of contact, so that when
they are in equilibrium the potential of the latter is higher than

that of the former. For the present, therefore, we shall suppose

all our conductors made of the same metal, and at the same

temperature.

If the potentials of the conductors A and B be VA and VH
respectively, then the electromotive force along a wire joining

A and B will be yA_ yB
in the direction AB, that is, positive electricity will tend to pass

from the conductor of higher potential to the other.

Potential, in electrical science, has the same relation to Elec-

tricity that Pressure, in Hydrostatics, has to Fluid, or that Tem-

perature, in Thermodynamics, has to Heat. Electricity, Fluids,

and Heat all tend to pass from one place to another, if the

Potential, Pressure, or Temperature is greater in the first place

than in the second. A fluid is certainly a substance, heat is as

certainly not a substance, so that though we may find assistance

from analogies of this kind in forming clear ideas of formal

relations of electrical quantities, we must be careful not to let

the one or the other analogy suggest to us that electricity is

either a substance like water, or a state of agitation like heat.

* {If there is any discontinuity in the potential as we pass from the dielectric to

the conductor it is necessary to state whether the electrified point is brought inside

the conductor or merely to the surface. ]
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Potential due to any Electrical System.

73.] Let there be a single electrified point charged with a
quantity e of electricity, and let r be the distance of the point

a', y\ z' from it, then

V=rRdr=r^dr= e
--

Jr Jr r2 r

Let there be any number of electrified points whose coordinates

are (x1} yu z
t ), (x

2 , y2 , z2), &c. and their charges eu e2 , &c., and
let their distances from the point (x\ y', z

f

) be i\, r
2 , &c, then

the potential of the system at (x', y', z') will be

Let the electric density at any point (x, y, z) within an elec-

trified body be p, then the potential due to the body is

V=fff^dxdydz;

where r = {(x __xy + (y _y)« + (z-z')2 }i,

the integration being extended throughout the body.

On the Proof of the Law of the Inverse Square.

74 a.] The fact that the force between electrified bodies is

inversely as the square of the distance may be considered to be

established by Coulomb's direct experiments with the torsion-

balance. The results, however, which we derive from such ex-

periments must be regarded as affected by an error depending on

the probable error of each experiment, and unless the skill of

the operator be very great, the probable error of an experiment

with the torsion-balance is considerable.

A far more accurate verification of the law of force may be

deduced from an experiment similar to that described at Art. 32

(Exp. VII).

Cavendish, in his hitherto unpublished work on electricity,

makes the evidence of the law of force depend on an experiment

of this kind.

He fixed a globe on an insulating support, and fastened two

hemispheres by glass rods to two wooden frames hinged to an

axis so that the hemispheres, when the frames were brought
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together, formed an insulated spherical shell concentric with the

globe.

The globe could then be made to communicate with the hemi-

spheres by means of a short wire, to which a silk string was
fastened so that the wire could be removed without discharging

the apparatus.

The globe being in communication with the hemispheres, he
charged the hemispheres by means of a Leyden jar, the potential

of which had been previously measured by an electrometer, and
immediately drew out the communicating wire by means of the

silk string, removed and discharged the hemispheres, and tested

the electrical condition of the globe by means of a pith ball

electrometer.

No indication of any charge of the globe could be detected by
the pith ball electrometer, which at that time (1773) was con-

sidered the most delicate electroscope.

Cavendish next communicated to the globe a known fraction

of the charge formerly communicated to the hemispheres, and
tested the globe again with his electrometer.

He thus found that the charge of the globe in the original

experiment must have been less than *V of the charge of the

whole apparatus, for if it had been greater it would have been
detected by the electrometer.

He then calculated the ratio of the charge of the globe to

that of the hemispheres on the hypothesis that the repulsion is

inversely as a power of the distance differing slightly from 2,

and found that if this difference was TV there would have
been a charge on the globe equal to TV of that of the whole
apparatus, and therefore capable of being detected by the
electrometer.

746.] The experiment has recently been repeated at the

Cavendish Laboratory in a somewhat different manner.
The hemispheres were fixed on an insulating stand, and the

globe fixed in its proper position within them by means of an
ebonite ring. By this arrangement the insulating support of the
globe was never exposed to the action of any sensible electric

force, and therefore never became charged, so that the disturbing
effect of electricity creeping along the surface of the insulators
was entirely removed.

Instead ofremoving the hemispheres before testing the potential
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of the globe, they were left in their position, but discharged to

earth. The effect of a given charge of the globe on the electro-

meter was not so great as if the hemispheres had been removed,

but this disadvantage was more than compensated by the perfect

security afforded by the conducting vessel against all external

electric disturbances.

The short wire which made the connexion between the shell

and the globe was fastened to a small metal disk which acted

as a lid to a small hole in the shell, so that when the wire

and the lid were lifted up by a silk string, the electrode of the

electrometer could be made to dip into the hole and rest on the

globe within.

The electrometer was Thomson's Quadrant Electrometer de-

scribed in Art. 219. The case of the electrometer and one of the

electrodes were always connected to earth, and the testing

electrode was connected to earth till the electricity of the shell

had been discharged.

To estimate the original charge of the shell, a small brass ball

was placed on an insulating support at a considerable distance

from the shell.

The operations were conducted as follows :

—

The shell was charged by communication with a Leyden jar.

The small ball was connected to earth so as to give it a negative

charge by induction, and was then left insulated.

The communicating wire between the globe and the shell was

removed by a silk string.

The shell was then discharged, and kept connected to earth.

The testing electrode was disconnected from earth, and made

to touch the globe, passing through the hole in the shell.

Not the slightest effect on the electrometer could be observed.

To test the sensitiveness of the apparatus the shell was discon-

nected from earth and the small ball was discharged to earth.

The electrometer {the testing electrode remaining in contact with

the globe} then shewed a positive deflection, D.

The negative charge of the brass ball was about - T̂ of the ori-

ginal charge of the shell, and the positive charge induced by the

ball when the shell was put to earth was about £ of that of

the ball. Hence when the ball was put to earth the potential

of the shell, as indicated by the electrometer, was about T|¥ of

its original potential.
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But if the repulsion had been as r*
-2

, the potential of the globe

would have been —0-1478 q of that of the shell by equation (22),

p. 85.

Hence if ±d be the greatest deflection of the electrometer

which could escape observation, and D the deflection observed in

the second part of the experiment, {since -1478 gF/^f^Fmustbe
less than d/D,} q cannot exceed

+1L- 72 D
Now even in a rough experiment D was more than 300 d, so

that q cannot exceed ,

- 21600*

Theory of the Experiment.

74 c] To find the potential at any point due to a uniform

spherical shell, the repulsion between two units of matter being

any given function of the distance.

Let
<f>

(r) be the repulsion between two units at distance r, and
letf(r) be such that

^?(-/M)-'jf%(r)*. (0

Let the radius of the shell be a, and its surface density <r, then,

if a denotes the whole charge of the shell,

a = 4 ir a2
cr. (2)

Let b denote the distance of the given point from the centre of

the shell, and let r denote its distance from any given point of

the shell.

If we refer the point on the shell to spherical coordinates, the

pole being the centre of the shell, and the axis the line drawn to

the given point, then
7-2 = a2 + &2 -2a&cos0. (3)

The mass of the element of the shell is

era2 8VO.0 d$dd, (4)

and the potential due to this element at the given point is

fir)
aa2 sin 6

J—^ d 6 d
; (5)
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and this has to be integrated with respect to cf> from
<f>
= to

(jf>
= 2 ir, which gives ,

,

27T(ra2 sin0^-^cZ0, (6)

which has to be integrated from 6 = to 6 = it.

Differentiating (3) we find

rdr = ab sin 9d 9. (7)

Substituting the value of d 9 in (6) we obtain

2Ttcrp'(r)dr, (8)

the integral of which is

7=2*<r|{/(r
1
)-/(r,)}

> (9)

where r
x
is the greatest value of r, which is always a + b, and r

2

is the least value of r, which is 6—a when the given point is

outside the shell and a— b when it is within the shell.

If we write a for the whole charge of the shell, and V for its

potential at the given point, then for a point outside the shell

F=
2V&

(/(6 + a)-/(6- a)) - (10)

For a point on the shell itself

F=d? /(2a) * (11)

and for a point inside the shell

y=^if(a + b)-f(a-b)}. (12)

We have next to determine the potentials of two concentric

spherical shells, the radii of the outer and inner shells being a

and b, and their charges a and ft.

Calling the potential of the outer shell A, and that of the

inner B, we have by what precedes

A=^-J(2a)+£
;B
{f(a + b)-f(a-b)}, (13)

B = ip/(26)+ 2^5 (/(« + &)-/ ("-&)}• (
14

)

In the first part of the experiment the shells communicate by

the short wire and are both raised to the same potential, say V.

*
{ Strictly/(2 a) —f (0), but the conclusions arrived at in Art. 74 d are not altered

if we write /(2 a) -/(0) for /(2 a) and / (2 b) -f (0) for / (2 b) all through.

}
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By putting A = B — V, and solving the equations (13) and

(14) for ft, we find for the charge of the inner shell

a _ 2Vh bf(2a)-a[f(a + b)-f(g-b)]
<* - ' y

°f(2a)f(2b)-[f(a + b)-f(a-b)f
(15 '

In the experiment of Cavendish, the hemispheres forming the

outer shell were removed to a distance which we may suppose

infinite, and discharged. The potential of the inner shell (or

globe) would then become

Bl
= -^J{2b). (16)

In the form of the experiment as repeated at the Cavendish

Laboratory the outer shell was left in its place, but connected

to earth, so that A = 0. In this, case we find for the potential

of the inner globe in terms of V

74 d.] Let us now assume, with Cavendish, that the law of

force is some inverse power of the distance, not differing much
from the inverse square, and let us put

0(r)=r9"2
; (18)

then /(r) = _L. rt+i* (19)

If we suppose q to be small, we may expand this by the ex-

ponential theorem in the form

/(r) = T3^ r
{
1+ ^ log r+ ni^ los r

)2+&cj ; (2°)

and if we neglect terms involving q
2

, equations (16) and (17) be-

come

_ . T_ r, 4a2 a, a + bl .
rt .

from which we may determine q in terms of the results of the

experiment.

74 e.] Laplace gave the first demonstration that no function of

the distance except the inverse square satisfies the condition that

a uniform spherical shell exerts no force on a particle within it f.

* { Strictly /(r)-/(0) =
J3~a

^+1 if 2
a be less than unity.}

t Mec. Cel., I. 2.
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If we suppose that /3 in equation (15) is always zero, we may
apply the method of Laplace to determine the form of f(r). We
have by (15),

bf(2a) -af(a + b) + af(a- b) = 0.

Differentiating twice with respect to b, and dividing by a, we
find

f"(a + b)=f"(a-b).

If this equation is generally true

f"(r) = CQ , a constant.

Hence, f{r) = C
Qr + Cx \

and by(l) fo(r)dr =
f^ = <7 +S,

We may observe, however, that though the assumption of

Cavendish, that the force varies as some power of the distance,

may appear less general than that of Laplace, who supposes it

to be any function of the distance, it is the only one consistent

with the fact that similar surfaces can be electrified so as to

have similar electrical properties, {so that the lines of force are

similar}.

For if the force were any function of the distance except a
power of the distance, the ratio of the forces at two different

distances would not be a function of the ratio of the distances,

but would depend on the absolute value of the distances, and
would therefore involve the ratios of these distances to an
absolutely fixed length.

Indeed Cavendish himself points out * that on his own hypo-
thesis as to the constitution of the electric fluid, it is impossible for

the distribution of electricity to be accurately similar in two con-

ductors geometrically similar, unless the charges are proportional

to the volumes. For he supposes the particles of the electric

fluid to be closely pressed together near the surface of the body,
and this is equivalent to supposing that the law of repulsion is

no longer the inverse square f, but that as soon as the particles

come very close together, their repulsion begins to increase at a
much greater rate with any further diminution of their distance.

* {Electrical Researches of the Hon. H. Cavendish, pp. 27, 28.
}

f {idem, Note 2, p. 370.}
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Surface-Integral of Electric Induction, and Electric

Displacement through a surface.

75.] Let R be the resultant intensity at any point of the

surface, and e the angle which R makes with the normal drawn
towards the positive side of the surfaee, then R cos e is the

component of the intensity normal to the surface, and if dS is the

element of the surface, the electric displacement through dS will

be, by Art. 68, 1 TjrT) 1aJ * —KR cos edS.
471

Since we do not at present consider any dielectric except air,

K= 1.

We may, however, avoid introducing at this stage the theory

of electric displacement, by calling R cos e d S the Induction

through the element dS. This quantity is well known in

mathematical physics, but the name of induction is borrowed

from Faraday. The surface-integral of induction is

.Rcos idS,JP
and it appears by Art. 21, that if X, Y, Z are the components

of R, and if these quantities are continuous within a region

bounded by a closed surface S, the induction reckoned from

within outwards is

the integration being extended through the whole space within

the surface.

Induction through a Closed Surface due to a single

Centre of Force.

76.] Let a quantity e of electricity be supposed to be placed at

a point 0, and let r be the distance of any point P from 0, the

intensity at that point is R = er~ l in the direction OP.

Let a line be drawn from in any direction to an infinite dis-

tance. If is without the closed surface this line will either

not cut the surface at all, or it will issue from the surface as

many times as it enters. If is within the surface the line

must first issue from the surface, and then it may enter and

issue any number of times alternately, ending by issuing from it.

Let e be the angle between OP and the normal to the surface

drawn outwards where OP cuts it, then where the line issues
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from the surface, cos e will be positive, and where it enters, cos e

will be negative.

Now let a sphere be described with centre and radius unity,

and let the line OP describe a conical surface of small angular

aperture about as vertex.

This cone will cut off a small element d <o from the surface of

the sphere, and small elements dSly dS2 , &c. from the closed

surface at the different places where the line OP intersects it.

Then, since any one of these elements dS intersects the cone

at a distance r from the vertex and at an obliquity e,

dS = ± r2 seceeZco
;

and, since R = er~2
, we shall have

Rcoa edS — ±ed<a;

the positive sign being taken when r issues from the surface, and

the negative when it enters it.

If the point is without the closed surface, the positive values

are equal in number to the negative ones, so that for any

direction of r, %R cos €dS=0,

and therefore / / R cos tdS — 0,

the integration being extended over the whole closed surface.

If the point is within the closed surface the radius vector OP
first issues from the closed surface, giving a positive value of e d a>,

and then has an equal number of entrances and issues, so that in

this case 2 i2 cos edS = eda>.

Extending the integration over the whole closed surface, we
shall include the whole of the spherical surface, the area of which
is 4 ir, SO that r r r r

/ Rco8(dS = e I / do> = 4i:e.

Hence we conclude that the total induction outwards through

a closed surface due to a centre of force e placed at a point is

zero when is without the surface, and 4-ne when is within

the surface.

Since in air the displacement is equal to the induction divided

by 4 ir, the displacement through a closed surface, reckoned out-

wards, is equal to the electricity within the surface.

Corollary. It also follows that if the surface is not closed but

is bounded by a given closed curve, the total induction through

it is oj e, where &> is the solid angle subtended by the closed curve
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at 0. This quantity, therefore, depends only on the closed curve,

and the form of the surface of which it is the boundary may be

changed in any way. provided it does not pass from one side to

the other of the centre of force.

On the Equations of Laplace and Poisson.

77.] Since the value of the total induction of a single centre

of force through a closed surface depends only on whether the

centre is within the surface or not, and does not depend on its

position in any other way, if there are a number of such centres

elf e2 , &c. within the surface, and e/, e
2
', &c. without the surface,

we shall have r r

/ R cos edS = 4-ne;

where e denotes the algebraical sum of the quantities of elec-

tricity at all the centres of force within the closed surface, that

is, the total electricity within the surface, resinous electricity

being reckoned negative.

If the electricity is so distributed within the surface that the

density is nowhere infinite, we shall have by Art. 64,

4 ire = 4 it / / pdxdy dz,

and by Art. 75,

JJR cos * dS =fff(§ +J + gj dx dy dz.

If we take as the closed surface that of the element of volume

dx dy dz, we shall have, by equating these expressions,

dX dY dZ_
dx dy dz~

and if a potential V exists, we find by Art. 71,

d2V d2V d2V
dx2 dyz dz2

This equation, in the case in which the density is zero, is called

Laplace's Equation. In its more general form it was first given

by Poisson. It enables us, when we know the potential at every

point, to determine the distribution of electricity.

We shall denote, as in Art. 26, the quantity

<PV d?V d?V 2y
do*

+
dy*

+
dz* y

and we may express Poisson's equation in words by saying that
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the electric density multiplied by 4 it is the concentration of the

potential. Where there is no electrification, the potential has no

concentration, and this is the interpretation of Laplace's equation.

By Art. 72, Fis constant within a conductor. Hence within

a conductor the volume-density is zero, and the whole charge

must be on the surface.

If we suppose that in the superficial and linear distributions

of electricity the volume-density p remains finite, and that the

electricity exists in the form of a thin stratum or a narrow fibre,

then, by increasing p and diminishing the depth of the stratum

or the section of the fibre, we may approach the limit of true

superficial or linear distribution, and the equation being true

throughout the process will remain true at the limit, if inter-

preted in accordance with the actual circumstances.

Variation of the Potential at a Charged Surface.

78 a.] The potential function, V, must be physically continuous

in the sense defined in Art. 7, except at the bounding surface of

two different media, in which case, as we shall see in Art. 246,

there may be a difference of potential between the substances,

so that when the electricity is in equilibrium, the potential at

a point in one substance is higher than the potential at the

contiguous point in the other substance by a constant quantity,

C, depending on the natures of the two substances and on their

temperatures.

But the first derivatives of V with respect to x, y, or z may be

discontinuous, and, by Art. 8, the points at which this discon-

tinuity occurs must lie on a surface, the equation of which may
be expressed in the form

<t>
= <p(x,y,z)=0. (1)

This surface separates the region in which </> is negative from the

region in which </> is positive.

Let Tf denote the potential at any given point in the negative

region, and V2 that at any given point in the positive region,

then at any point in the surface at which <p = 0, and which may
be said to belong to both regions,

V1 + C = V2 , (2)

where C is the constant excess of potential, if any, in the sub-

stance on the positive side of the surface.

Let I, m, n be the direction-cosines of the normal v2 drawn
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from a given point of the surface into the positive region. Those

of the normal vx drawn from the same point into the negative

region will be — I, — m, and — n.

The rates of variation of V along the normals are

dv
x
~ dx dy dz

'

^ '

dV2= i^ +m ^K n ^3
dv

2
dx dy dz

'

^ '

Let any line be drawn on the surface, and let its length, measured
from a fixed point in it, be s, then at every point of the surface,

and therefore at every point of this line, % — Tf = C. Differen-

tiating this equation with respect to s, we get

(
dV2 _d]{,dx

{
W_^dJL ,(W_dVL,dz_

^dx dx'ds^^dy dy) ds ^dz dz^ds~ ' [)

and since the normal is perpendicular to this line

,dx . dy dz
l

d-8
+m

ds
+n

d-8
= °' W

tVo \AfO 1*0

From (3), (4), (5), (6) we find

^5-^ = J(4E+^, (7)
dx dx \-dv

x dvj' '

*5-*5 = m<^ + ^, (8)
dy dy ^dv

x
dvj' v '

dz dz ^<iv
x dvj v ;

If we consider the variation of the electromotive intensity at

a point in passing through the surface, that component of the in-

tensity which is normal to the surface may change abruptly at

the surface, but the other two components parallel to the tangent

plane remain continuous in passing through the surface.

78 &.] To determine the charge of the surface, let us consider a

closed surface which is partly in the positive region and partly in

the negative region, and which therefore encloses a portion of the

surface of discontinuity.

* \Since (5) and (6) are true for an infinite number of values of -7- : -7- : -=- , we have
<

v ' ds ds as
d%_d\ dh_dVi dVa_dVl
d* dx dy' dy _ dz ~dz~ ^ l(

dVa dVt ,dV2 _dVi\ „(^J_^n

.

I to »
=

» dx dx

'

* dy dy' dz dz ' *

dV dV)
and therefore by equations (8) and (4) each of these ratios — -7-- + -r-'r*' dvt dva

)
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The surface integral, .
r

/ / jK cos edS,

extended over this surface, is equal to 4 ire, where e is the quantity

of electricity within the closed surface.

Proceeding as in Art. 21, we find

fJRcos<dS=fff^ + ^+^)dxdydz

+ ff{l(X2-Xl) +m(Yjt
-YJ + n(Zi

-Z
1
)}dS, (10)

where the triple integral is extended throughout the closed surface,

and the double integral over the surface of discontinuity.

Substituting for the terms of this equation their values from

(7), (8), (9),

^e=jJJ^Pdxdydz-fJ{§^§)dB. (")

But by the definition of the volume-density, p, and the surface-

density, 0-,

47re =4tt pdxdydz + 4ir <rdS. (12)

Hence, comparing the last terms of these two equations,

dV d% A /10 *

t-1 + -=-* +4*-(r=0. (13)
av

x
av

2

This equation is called the characteristic equation of V at an

electrified surface of which the surface-density is <r.

78 c] If V is a function of x, y, z which, throughout a given

continuous region of space, satisfies Laplace's equation

d*v' d*V d*V =
dx2 + df + dzl ~ '

and if throughout a finite portion of this region V is constant and

equal to C, then V must be constant and equal to G throughout

the whole region in which Laplace's equation is satisfied*.

If V is not equal to G throughout the whole region, let S be

the surface which bounds the finite portion within which V— G.

At the surface S, V— G.

Let v be a normal drawn outwards from the surface S. Since

S is the boundary of the continuous region for which V= G, the

value of V as we travel from the surface along the normal begins

* {It would perhaps be clearer to say that the potential is equal to C at any point

which can be reached from the region of constant potential without passing through

electricity. \
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dV
to differ from C. Hence -y— just outside the surface may be

positive or negative, but cannot be zero except for normals

drawn from the boundary line between a positive and a negative

area.

But if / is the normal drawn inwards from the surface S, V= C

and -,—. = 0.
dv

Hence, at every point of the surface except certain boundary

lines
> dV dV'

A ,

dv dv

is a finite quantity, positive or negative, and therefore the surface

S has a continuous distribution of electricity over all parts of it

except certain boundary lines which separate positively from

negatively charged areas.

Laplace's equation is not satisfied at the surface S except at

points lying on certain lines on the surface. The surface S there-

fore, within which V= G, includes the whole of the continuous

region within which Laplace's equation is satisfied.

Force Acting on a Charged Surface.

79.] The general expressions for the components of the force

acting on a charged body parallel to the three axes are of the form

A= IIIpXdxdydz, (14)

with similar expressions for B and C, the components parallel to

y and z.

But at a charged surface p is infinite, and X may be discon-

tinuous, so that we cannot calculate the force directly from

expressions of this form.

We have proved, however, that the discontinuity affects only

that component of the intensity which is normal to the charged

surface, the other two components being continuous.

Let us therefore assume the axis of x normal to the surface at

the given point, and let us also assume, at least in the first part

of our investigation, that X is not really discontinuous, but that

it changes continuously from X
x
to X2

while x changes from xx

to x
2

. If the result of our calculation gives a definite limiting

value for the force when x.2
— x

1
is diminished without limit, we



J X\

94 ELECTROSTATICS. [79.

may consider it correct when x2
= x

x , and the charged surface

has no thickness.

Substituting for p its value as found in Art. 77,

A -hfff<£ + %+%)**>*»** <16 >

Integrating this expression with respect to x from x = x
x to

x = x2
it becomes

A = hfj[*w-^ +r
(d

i + £)-""]

^

(16)

This is the value of A for a stratum parallel to yz of which the

thickness is x2—xv
dY dZ

Since Y and Z are continuous, -5—h -3- is finite, and since X
is also finite,

**t&Y dZs VJ _, .

Xl (d^ +
d^)

Xdx<C^-x^
dY dZ

where C is the greatest value of (-1—H -5-) X between x~x
x

and a; = x2
.

Hence when x2—xx is diminished without limit this term must
ultimately vanish, leaving

A =ff^(^-^
2)dydz, (17)

where Xx is the value ofX on the negative andX2 on the positive

side of the surface.

But by Art. 786, X2-X1
=^- ^5 = 4v<r, (18)

so that we may write

A
=JJ\

(X
2 + X,) a dy dz. (1 9)

Here dy dz is the element of the surface, <r is the surface-density,

and \ (X2 + Xj) is the arithmetical mean of the electromotive in-

tensities on the two sides of the surface.

Hence an element of a charged surface is acted on by a force,

the component of which normal to the surface is equal to the

charge of the element into the arithmetical mean of the normal

electromotive intensities on the two sides of the surface.

Since the other two components of the electromotive intensity

are not discontinuous, there can be no ambiguity in estimating

the corresponding components of the force acting on the surface.
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We may now suppose the direction of the normal to the surface

to be in any direction with respect to the axes, and write the

general expressions for the components of the force on the element

of surface d S, A=\(X
l
+X2) *dS,

]B=\(Y
l
+Y>)<rdS, \ (20)

C=\(Z
1
+Z.2)<rdS.)

Charged Surface of a Conductor.

80.] We have already shewn (Art. 72) that throughout the

substance of a conductor in electric equilibrium X = Y= Z = 0,

and therefore V is constant.

„ dX dY dZ „Hence ^ \- -=- + -,- = l-no = 0,
dx dy dz

and therefore p must be zero throughout the substance of the

conductor, or there can be no electricity in the interior of the

conductor.

Hence a superficial distribution of electricity is the only

possible distribution in a conductor in equilibrium.

A distribution throughout the mass of a body can exist only

when the body is a non-conductor.

Since the resultant intensity within the conductor is zero, the

resultant intensity just outside the conductor must be in the

direction of the normal and equal to 4 it a, acting outwards from

the conductor.

This relation between the surface-density and the resultant in-

tensity close to the surface of a conductor is known as Coulomb's

Law, Coulomb having ascertained by experiment that the elec-

tromotive intensity near a given point of the surface of a con-

ductor is normal to the surface and proportional to the surface-

density at the given point. The numerical relation

jR = 47T(T

was established by Poisson.

The force acting on an element, d S, of the charged surface of

a conductor is, by Art. 79, (since the intensity is zero on the

inner side of the surface,)

lR<rdS=2TTcr2dS= ±-R2dS.

This force acts along the normal outwards from the conductor,

whether the charge of the surface is positive or negative.
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Its value in dynes per square centimetre is

\R<r = 2 7r<r
2 = —R2

,

8ir

acting as a tension outwards from the surface of the conductor.

81.] If we now suppose an elongated body to be electrified,

we may, by diminishing its lateral dimensions, arrive at the

conception of an electrified line.

Let ds be the length of a small portion of the elongated body,

and let c be its circumference, and o- the surface-density of the

electricity on its surface; then, if k is the charge per unit of

length, A. = c<r, and the resultant electric intensity close to the

surface will be \
4ttct = 4-Tr — •

c

If, while A remains finite, c be diminished indefinitely, the in-

tensity at the surface will be increased indefinitely. Now in

every dielectric there is a limit beyond which the intensity

cannot be increased without a disruptive discharge. Hence a

distribution of electricity in which a finite quantity is placed on

a finite portion of a line is inconsistent with the conditions

existing in nature.

Even if an insulator could be found such that no discharge

could be driven through it by an infinite force, it would be

impossible to charge a linear conductor with a finite quantity of

electricity, for {since a finite charge would make the potential

infinite} an infinite electromotive force would be required to

bring the electricity to the linear conductor.

In the same way it may be shewn that a point charged with

a finite quantity of electricity cannot exist in nature. It is con-

venient, however, in certain cases, to speak of electrified lines and
points, and we may suppose these represented by electrified wires,

and by small bodies of which the dimensions are negligible com-
pared with the principal distances concerned.

Since the quantity of electricity on any given portion of a wire

at a given potential diminishes indefinitely when the diameter of

the wire is indefinitely diminished, the distribution of electricity

on bodies of considerable dimensions will not be sensibly affected

by the introduction of very fine metallic wires into the field,

such as are used to form electrical connexions between these

bodies and the earth, an electrical machine, or an electrometer.
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On Lines of Force.

82.] If a line be drawn whose direction at every point of its

course coincides with that of the resultant intensity at that

point, the line is called a Line of Force.

In every part of the course of a line of force, it is proceeding

from a place of higher potential to a place of lower potential.

Hence a line of force cannot return into itself, but must have

a beginning and an end. The beginning of a line of force must,

by § 80, be in a positively charged surface, and the end of a line

of force must be in a negatively charged surface.

The beginning and the end of the line are called corresponding

points on the positive and negative surface respectively.

If the line of force moves so that its beginning traces a closed

curve on the positive surface, its end will trace a corresponding

closed curve on the negative surface, and the line of force itself

will generate a tubular surface called a tube of induction. Such

a tube is called a Solenoid *.

Since the force at any point of the tubular surface is in the

tangent plane, there is no induction across the surface. Hence

if the tube does not contain any electrified matter, by Art. 77

the total induction through the closed surface formed by the

tubular surface and the two ends is zero, and the values of

//R cos edS for the two ends must be equal in magnitude

but opposite in sign.

If these surfaces are the surfaces of conductors

e = and jR = — 47TO-,

and / / R cos e dS becomes — 4 n / / a dS, or the charge of the sur-

face multiplied by 4 it f.

Hence the positive charge of the surface enclosed within the

closed curve at the beginning of the tube is numerically equal to

the negative charge enclosed within the corresponding closed

curve at the end of the tube.

Several important results may be deduced from the properties

of lines of force.

* From awX-qv, a tube. Faraday use3 (3271) the term ' Sphondyloid ' in the same
sense.

f {B here is drawn outwards frcm the tube.}



98 ELEOTEOSTATICS. [82.

The interior surface of a closed conducting vessel is entirely-

free from charge, and the potential at every point within it is

the same as that of the conductor, provided there is no insulated

and charged body within the vessel.

For since a line of force must begin at a positively charged

surface and end at a negatively charged surface, and since no

charged body is within the vessel, a line of force, if it exists

within the vessel, must begin and end on the interior surface of

the vessel itself.

But the potential must be higher at the beginning of a line

of force than at the end of the line, whereas we have proved that

the potential at all points of a conductor is the same.

Hence no line of force can exist in the space within a hollow

conducting vessel, provided no charged body be placed inside it.

If a conductor within a closed hollow conducting vessel is

placed in communication with the vessel, its potential becomes

the same as that of the vessel, and its surface becomes con-

tinuous with the inner surface of the vessel. The conductor is

therefore free from charge.

If we suppose any charged surface divided into elementary

portions such that the charge of each element is unity, and if

solenoids having these elements for their bases are drawn through

the field of force, then the surface-integral for any other surface

will be represented by the number of solenoids which it cuts. It

is in this sense that Faraday uses his conception of lines of force

to indicate not only the direction but the amount of the force at

any place in the field.

We have used the phrase Lines of Force because it has been

used by Faraday and others. In strictness, however, these lines

should be called Lines of Electric Induction.

In the ordinary cases the lines of induction indicate the direc-

tion and magnitude of the resultant electromotive intensity at

every point, because the intensity and the induction are in the

same direction and in a constant ratio. There are other cases,

however, in which it is important to remember that these lines

indicate primarily the induction, and that the intensity is

directly indicated by the equipotential surfaces, being normal

to these surfaces and inversely proportional to the distances

of consecutive surfaces.
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On Specific Inductive Capacity.

83 a.] In the preceding investigation of surface-integrals we
have adopted the ordinary conception of direct action at a dis-

tance, and have not taken into consideration any effects de-

pending on the nature of the dielectric medium in which the

forces are observed.

But Faraday has observed that the quantity of electricity in-

duced by a given electromotive force on the surface of a
conductor which bounds a dielectric is not the same for all

dielectrics. The induced electricity is greater for most solid

and liquid dielectrics than for air and gases. Hence these bodies

are said to have a greater specific inductive capacity than air,

which he adopted as the standard medium.

We may express the theory of Faraday in mathematical

language by saying that in a dielectric medium the induction

across any surface is the product of the normal electric intensity

into the coefficient of specific inductive capacity of that medium.
If we denote this coefficient by K, then in every part of the in-

vestigation of surface-integrals we must multiply X, T, and Z
by K, so that the equation of Poisson will become

d rrdV d Tr dV d Tr dV . , v

ax ax ay ay dz dz v J

At the surface of separation of two media whose inductive

capacities are K
x
and K2 , and in which the potentials are T£ and

J£, the characteristic equation may be written

T_ dV Tr d\ A n , .

where vu v2 , are the normals drawn in the two media, and a is

the true surface-density on the surface of separation ; that is to

say, the quantity of electricity which is actually on the surface

in the form of a charge, and which can be altered only by con-

veying electricity to or from the spot.

Apparent distribution of Electricity.

83 &.] If we begin with the actual distribution of the potential

and deduce from it the volume-density p and the surface-density

<r
f on the hypothesis that K is everywhere equal to unity, we

* {See note at the end of this chapter.}
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may call p the apparent volume-density and a the apparent

surface-density, because a distribution of electricity thus defined

would account for the actual distribution of potential, on the

hypothesis that the law of electric force as given in Art. 66

requires no modification on account of the different properties of

dielectrics.

The apparent charge of electricity within a given region may
increase or diminish without any passage of electricity through

the bounding surface of the region. We must therefore dis-

tinguish it from the true charge, which satisfies the equation of

continuity.

In a heterogeneous dielectric in which K varies continuously,

if p be the apparent volume-density,

dW <PV ^!Z +47r / =0 / 3 \

dx2 dy2 dz2 ^""'

Comparing this with the equation (1) above, we find

dKdV dKdV dKdV_
Q

^ p ' dx dx dy dy dz dz '
'

The true electrification, indicated by p, in the dielectric whose

variable inductive capacity is denoted by K, will produce the

same potential at every point as the apparent electrification,

denoted by //, would produce in a dielectric whose inductive

capacity is everywhere equal to unity.

The apparent surface charge, a-', is that deduced from the

electrical forces in the neighbourhood of the surface, using the

ordinary characteristic equation

dV dV, , .„.
j- + -r-

? +47r</= 0. (5)
dv

1
dv

2
v '

If a solid dielectric of any form is a perfect insulator, and if

its surface receives no charge, then the true electrification

remains zero, whatever be the electrical forces acting on it.

Hence K
1 %% + kJ%=0,

d]^ _ ±TtCT'K
2

dV; _ ±TS<t'K
x

^

dv
x

K
1
—K

2
dr

2
K2
—K2

The surface-density </ is that of the apparent electrification

produced at the surface of the solid dielectric by induction. It

disappears entirely when the inducing force is removed, but if

during the action of the inducing force the apparent electrifica-
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tion of the surface is discharged by passing a flame over the

surface, then, when the inducing force is taken away, there will

appear a true electrification opposite to </*.

APPENDIX TO CHAPTER II.

The equations

d s„dVs d frrd\\ d ( dV.
*(**) + dy(

K
dj)

+dK
te)

+4*» = °'

rjr dV _ dV
A

av
2

av
l

are the expressions of the condition that the displacement across any

closed surface is 4ir times the quantity of electricity inside it. The first

equation follows at once if we apply this principle to a parallelepiped

whose faces are at right angles to the co-ordinate axes, and the second if

we apply it to a cylinder enclosing a portion of the charged surface. #

If we anticipate the results of the next chapter, we can deduce these

equations directly from Faraday's definition of specific inductive capacity.

Let us take the case of a condenser consisting of two infinite parallel

plates. Let V^, V
2

be the potentials of the plates respectively, d the

distance between them, and E the charge on an area A of one of the

plates, then, if K is the specific inductive capacity of the dielectric

separating them,

V— VE = KA ' :* .

47ia

Q, the energy of the system, is by Art. 84 equal to

(V— V)*

or if F is the electromotive intensity at any point between the plates

1

8~V

If we regard the energy as resident in the dielectric there will be

Q/Ad units of energy per unit of volume, so that the energy per unit

volume equals KF^/SSt:. This result will be true when the field is not

* See Faraday's ' Remarks on Static Induction,' Proceedings of the Royal In-
stitution, Feb. 12, 1858.
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uniform, so that if Q denotes the energy in any electric field

Q = — fffKFHxdydz

Let us suppose that the potential at any point of the field is increased

by a small quantity 8 V when b V is an arbitrary function of x, y, z, then

bQ, the variation in the energy, is given by the equation

J_ ff(K \

dVd - bV dVd.bV dVd.hVU
dxd d^

4irjJ^ \dx dx dy dy dz dz S'

this, by Green's Theorem,

-m&*% +&*£ +ics}^*^
where dv

z
and dv^ denote elements of the normal to the surface drawn from

the first to the second and from the second to the first medium respectively.

But by (Arts. 85, 86)

bQ - 2(e8T) = ff(7bVdS+ fffpbVdxdydz,

and since bV is arbitrary we must have

4ttv dv
x

dp/

1 {d,„dV^ d , rr dV^ d, dV^)

-rA^Kd^) + dy-i
K
d^)

+
dz{K dz-)\^ p '

which are the equations in the text.

In Faraday's experiment the flame may be regarded as a conductor in

connexion with the earth, the effect of the dielectric may be represented

by an apparent electrification over its surface, this apparent electrifica-

tion acting on the conducting flame will attract the electricity of the

opposite sign, which will spread over the surface of the dielectric while

it will drive the electricity of the same sign through the flame to

earth. Thus over the surface of the dielectric there will be a real elec-

trification masking the effect of the apparent one ; when the inducing force

is removed the apparent electrification will disappear but the real electri-

fication will remain and will no longer be masked by the apparent

electrification.



CHAPTER III.

ON ELECTRICAL WORK AND ENERGY IN A SYSTEM

OF CONDUCTORS.

84.] On the Work which must be done by an external agent in
order to charge an electrified system in a given manner.

The work spent in bringing a quantity of electricity 8 e from
an infinite distance (or from any place where the potential is zero)

to a given part of the system where the potential is V, is, by the

definition of potential (Art. 70), Vbe.

The effect of this operation is to increase the charge of the

given part of the system by b e, so that if it was e before, it will

become e + be after the operation.

We may therefore express the work done in producing a given

alteration in the charges of the system by the integral

W= 2(fvbe); (1)

where the summation, (2), is to be extended to all parts of the

electrified system.

It appears from the expression for the potential in Art. 73,

that the potential at a given point may be considered as the sum
of a number of parts, each of these parts being the potential due

to a corresponding part of the charge of the system.

Hence if V is the potential at a given point due to a system

of charges which we may call 2 (e), and V the potential at the

same point due to another system of charges which we may call

S(e'), the potential at the same point due to both systems of

charges existing together would be V+ V.
If, therefore, every one of the charges of the system is altered

in the ratio of n to 1, the potential at any given point in the

system will also be altered in the ratio of n to 1.
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Let us, therefore, suppose that the operation of charging the

system is conducted in the following manner. Let the system

be originally free from charge and at potential zero, and let the

different portions of the system be charged simultaneously, each

at a rate proportional to its final charge.

Thus if e is the final charge, and V the final potential of any

part of the system, then, if at any stage of the operation the

charge is n e, the potential will be n V, and we may represent

the process of charging by supposing n to increase continuously

from to 1.

While n increases from n to n + Sn, any portion of the system

whose final charge is e, and whose final potential is V, receives

an increment of charge ebn, its potential being n V, so that the

work done on it during this operation is eVnbn.
Hence the whole work done in charging the system is

(eV)f
l

Jo
ndn = \2(eV), (2)

or half the sum of the products of the charges of the different

portions of the system into their respective potentials.

This is the work which must be done by an external agent in

order to charge the system in the manner described, but since

the system is a conservative system, the work required to bring

the system into the same state by any other process must be the

same.

We may therefore call

W=\2{eV) (3)

the electric energy of the system, expressed in terms of the charges

of the different parts of the system and their potentials.

85 a.] Let us next suppose that the system passes from the

state (e, V) to the state (e, V) by a process in which the different

charges increase simultaneously at rates proportional for each to

its total increment e''— e.

If at any instant the charge of a given portion of the system
is e + n (e'— e), its potential will be V+n (V— V), and the work
done in altering the charge of this portion will be

\e'-e) [V+n(V- V)] dn = £ (e'-e) (V+V);IJo
so that if we denote by W the energy of the system in the state

(e\ V) W'- W = i2 (e'-e) (F+ V) (4)
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But W = i 2 (e V),

and r = 12(e'F).

Substituting these values in equation (4), we find

2(eV')=-2(e'V). (5)

Hence if, in the same fixed system of electrified conductors, we
consider two different states of electrification, the sum of the

products of the charges in the first state into the potentials of

the corresponding portions of the conductors in the second state,

is equal to the sum of the products of the charges in the second

state into the potentials of the corresponding conductors in the

first state.

This result corresponds, in the elementary theory of electricity,

to Green's Theorem in the analytical .theory. By properly

choosing the initial and final states of the system, we may deduce

a number of useful results.

85 &.] From (4) and (5) we find another expression for the in-

crement of the energy, in which it is expressed in terms of the

increments of potential,

W- F=i2 (e' + e) (F- V). (6)

If the increments are infinitesimal, we may write (4) and (6)

dW=2(Vbe) = 2(ebV); (7)

and if we denote by W
e
and Wr the expressions for W in terms

of the charges and the potentials of the system respectively, and

by A,., er , and T^a particular conductor of the system, its charge,

and its potential, then

-?• «
86.] If in any fixed system of conductors, any one of them,

which we may denote by A
t , is without charge, both in the initial

and final state, then for that conductor e
t
= 0, and e/ = 0, so

that the terms depending on A t
vanish from both members of

equation (5).

If another conductor, say A ui is at potential zero in both states

of the system, then ]£ = and Vu ' = 0, so that the terms de-

pending on A u vanish from both members of equation (5).

If, therefore, all the conductors except two, A r and A
s , are
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either insulated and without charge, or else connected to the

earth, equation (5) is reduced to the form

If in the initial state

er = 1 and e„ — ,

and in the final state

e'. — and e/ = 1

,

equation (10) becomes Vv f =Vt \ (11)

or if a unit charge communicated to A,, raises A
a
when insulated

to a potential V, then a unit charge communicated to A
s
will

raise A r when insulated to the same potential F, provided that

every one of the other conductors of the system is either insulated

and without charge, or else connected to earth so that its poten-

tial is zero.

This is the first instance we have met with in electricity of a

reciprocal relation. Such reciprocal relations occur in every

branch of science, and often enable us to deduce the solutions of

new problems from those of simpler problems already solved.

Thus from the fact that at a point outside a conducting sphere

whose charge is 1 the potential is r
_1

, where r is the distance

from the centre, we conclude that if a small body whose charge

is 1 is placed at a distance r from the centre of a conducting

sphere without charge, it will raise the potential of the sphere

to r-1 .

Let us next suppose that in the initial state

Vr = 1 and X = 0»

and in the final state

V/=0 and TT= 1,

equation (10) becomes e, = e/
; (

12
)

or if, when A r is raised to unit potential, a charge e is induced

on A
a
put to earth, then if A„ is raised to unit potential, an equal

charge e will be induced on A r put to earth.

Let us suppose in the third place, that in the initial state

Vr — 1 and e„ = 0,

and that in the final state

V/ = and e/ = 1,

equation (10) becomes in this case

e/+X=0. (13)

Hence if when A„ is without charge, the operation of charging

A,, to potential unity raises A„ to potential V, then if A r is kept
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at potential zero, a unit charge communicated to A
a
will induce

on i,. a negative charge, the numerical value of which is V.

In all these cases we may suppose some of the other con-

ductors to be insulated and without charge, and the rest to be

connected to earth.

The third case is an elementary form of one of Green's theorems.

As an example of its use let us suppose that we have ascertained

the distribution of electric charge on the different elements of a

conducting system at potential zero, induced by a charge unity

communicated to a given body A t of the system.

Let r]r be the charge of A r under these circumstances. Then

if we suppose A
s
without charge, and the other bodies raised each

to a different potential, the potential of A t will be

1J= -2 (,,?).
^

/H)
Thus if we have ascertained the surface-density at any given

point of a hollow conducting vessel at zero potential due to a

unit charge placed at a given point within it, then, if we know
the value of the potential at every point of a surface of the

same size and form as the interior surface of the vessel, we can

deduce the potential at a point within it the position of which

corresponds to that of the unit charge.

Hence if the potential is known for all points of a closed

surface it may be determined for any point within the surface,

if there be no electrified body within it, and for any point

outside, if there be no electrified body outside.

Theory of a system of conductors.

87.] Let A
l
,A 2 ,...A n ben conductors of any form; let elt e

2 ,

... en be their charges ; and Tf, V2 , ... Vn their potentials.

Let us suppose that the dielectric medium which separates the

conductors remains the same, and does not become charged with

electricity during the operations to be considered.

We have shown in Art. 84 that the potential of each conductor

is a homogeneous linear function of the n charges.

Hence since the electric energy of the system is half the sum

of the products of the potential of each conductor into its charge,

the electric energy must be a homogeneous quadratic function of

the n charges, of the form

W
e
= \pvtf +pnexe2 + \prff +pX3e l

e3 +p^e2
ez + |p33e3

2 + &c. (1 5)

The suffix e indicates that W is to be expressed as a function
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of the charges. When W is written without a suffix it denotes

the expression (3), in which both charges and potentials occur.

From this expression we can deduce the potential of any one

of the conductors. ]?or since the potential is defined as the work
which must be done to bring a unit of electricity from potential

zero to the given potential, and since this work is spent in

increasing W, we have only to differentiate W
e
with respect to the

charge of the given conductor to obtain its potential. We thus

obtain

% = Pn ei— + Pner— + P*i*»> x

Vg — Pxs e\ — - + Prs er • • • + Pns en [ (16)

a system of n linear equations which express the n potentials in

terms of the n charges.

The coefficients pra &c, are called coefficients of potential. Each

has two suffixes, the first corresponding to that of the charge,

and the second to that of the potential.

The coefficient p^, in which the two suffixes are the same,

denotes the potential of A r when its charge is unity, that of all

the other conductors being zero. There are n coefficients of this

kind, one for each conductor.

The coefficient pyg , in which the two suffixes are different,

denotes the potential of J.„ when A r receives a charge unity, the

charge of each of the other conductors, except A r , being zero.

We have already proved in Art. 86 that prs = pt r , but we may
prove it more briefly by considering that

^r
* der der det det

der
~~ det

^ar '
^ '

The number of different coefficients with two different suffixes

is therefore \n (n—l), being one for each pair of conductors.

By solving the equations (16) for ev e2 , &c, we obtain n
equations giving the charges in terms of the potentials

er = qnl$...+qrgVs ...+qrnyi , V (18)
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We have in this case also qrg = qtr , for

_ der _ d dWr d dWv _des

qr
'
~~ dV~ dX~Wr

=
dVr1y ~dVr

= ?"•' (19J

By substituting the values of the charges in the equation for

the electric energy

W=l[e1
V
1 + ... + erV... + enVnl (20)

we obtain an expression for the energy in terms of the potentials

^=*<ZnJ? +^7^+1^17
+ qnViK + q2,Vz Vz+\q3,V3

2 + 8cc. (21)

A coefficient in which the two suffixes are the same is called

the Electric Capacity of the conductor to which it belongs.

Definition. The Capacity of a conductor is its charge when its

own potential is unity, and that of all the other conductors is

zero.

This is the proper definition of the capacity of a conductor when
no further specification is made. But it is sometimes convenient

to specify the condition of some or all of the other conductors in

a different manner, as for instance to suppose that the charge of

certain of them is zero, and we may then define the capacity of

the conductor under these conditions as its charge when its

potential is unity.

The other coefficients are called coefficients of induction. Any
one of them, as qrs , denotes the charge of A r when A s

is raised to

potential unity, the potential of all the conductors except A
s

being zero.

The mathematical calculation of the coefficients of potential

and of capacity is in general difficult. We shall afterwards

prove that they have always determinate values, and in certain

special cases we shall calculate these values. We shall also

show how they may be determined by experiment.

When the capacity of a conductor is spoken of without

specifying the form and position of any other conductor in the

same system, it is to be interpreted as the capacity of the con-

ductor when no other conductor or electrified body is within a

finite distance of the conductor referred to.

It is sometimes convenient, when we are dealing with capacities

and coefficients ofinduction only, to write them in the form [-4.-/
J
]

,

this symbol being understood to denote the charge on A when
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P is raised to unit potential {the other conductors being all at

zero potential}.

In like manner [(A + B) . (P + Q)~\ would denote the charge on

A +B when P and Q are both raised to potential 1 ; and it is

manifest that since

[(A + B).(P + Q)]=[A.P] + [A.Q] + [B.P] + [B.Q]

= [(P + Q).(A+B)l

the compound symbols may be combined by addition and multi-

plication as if they were symbols of quantity.

The symbol [A . A] denotes the charge on A when the potential

of A is 1, that is to say, the capacity of A.

In like manner [(A +B) . (A + Q)] denotes the sum of the

charges on A and B when A and Q are raised to potential 1, the

potential of all the conductors except A and Q being zero.

It may be decomposed into

[A.A] + [A.B] + [A.Q] + [B.Q].

The coefficients of potential cannot be dealt with in this way.

The coefficients of induction represent charges, and these charges

can be combined by addition, but the coefficients of potential

represent potentials, and if the potential of A is V
x
and that of

B is I£, the sum If + 1£ nas no physical meaning bearing on the

phenomena, though Vx— V2 represents the electromotive force

from A to B.

The coefficients of induction between two conductors may be

expressed in terms of the capacities of the conductors and that

of the two conductors together, thus :

[A . B] = 1 [(A + B) . (A+JB)]-* [il.il]-* [B.B].

Dimensions of the coefficients.

e

88.] Since the potential of a charge e at a distance r is - >

the dimensions of a charge of electricity are equal to those of

the product of a potential into a line.

The coefficients of capacity and induction have therefore the

same dimensions as a line, and each of them may be represented

by a straight line, the length of which is independent of the

system of units which we employ.

For the same reason, any coefficient of potential may be

represented as the reciprocal of a line.
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On certain conditions which the coefficients must satisfy.

89 a.] In the first place, since the electric energy of a system

is an essentially positive quantity, its expression as a quadratic

function of the charges or of the potentials must he positive,

whatever values, positive or negative, are given to the charges

or the potentials.

Now the conditions that a homogeneous quadratic function

of n variables shall be always positive are n in number, and

may be written

Pn > °>

PivPu
Pzi j P22

> 0,

(22)

PlV'Pln
> 0.

Pnl •
' 'Pnn

These n conditions are necessary and sufficient to ensure that

We shall be essentially positive *.

But since in equation (16) we may arrange the conductors in

any order, every determinant must be positive which is formed

symmetrically from the coefficients belonging to any combin-

ation of the n conductors, and the number of these combinations

is 2"— 1.

Only n, however, of the conditions so found can be inde-

pendent.

The coefficients of capacity and induction are subject to con-

ditions of the same form.

89 6.] The coefficients of potential are all positive, but none

of the coefficients pr8 is greater than prr or pts .

For let a charge unity be communicated to A ri the other con-

ductors being uncharged. A system of equipotential surfaces

will be formed. Of these one will be the surface of A r , and its

potential will be prr . If A
s
is placed in a hollow excavated in

A,, so as to be completely enclosed by it, then the potential of

A
t
will also be^)rr .

If, however, A s
is outside of A r its potential prt will lie between

prr and zero.

* See Williamson's Differential Calculus, 3rd edition, p. 407.
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For consider the lines of force issuing from the charged con-

ductor Ar . The charge is measured by the excess of the number

of lines which issue from it over those which terminate in it.

Hence, if the conductor has no charge, the number of lines

which enter the conductor must be equal to the number which

issue from it. The lines which enter the conductor come from

places of greater potential, and those which issue from it go to

places of less potential. Hence the potential of an uncharged

conductor must be intermediate between the highest and lowest

potentials in the field, and therefore the highest and lowest

potentials cannot belong to any of the uncharged bodies.

The highest potential must therefore heprr , that of the charged

body A r , the lowest must be that of space at an infinite distance,

which is zero, and all the other potentials such as pra must lie

between prr and zero.

If A
t
completely surrounds A

t , then^rg = prt .

89 c] None of the coefficients of induction are positive, and the

sum of all those belonging to a single conductor is not

numerically greater than the coefficient of capacity of that

conductor, which is always positive.

For let A r be maintained at potential unity while all the other

conductors are kept at potential zero, then the charge on i f

is qrr , and that on any other conductor A s
is qrg .

The number of lines of force which issue from A,, is qrr . Of

these some terminate in the other conductors, and some may

proceed to infinity, but no lines of force can pass between any

of the other conductors or from them to infinity, because they

are all at potential zero.

No line of force can issue from any of the other conductors

such as A
s , because no part of the field has a lower potential

than A
s

. IfA t
is completely cut off from A r by the closed surface

of one of the conductors, then qrs is zero. If A s
is not thus cut

off, qrs is a negative quantity.

If one of the conductors A
t
completely surrounds A r ,

then all

the lines of force from A r fall on A
t
and the conductors within

it, and the sum of the coefficients of induction of these con-

ductors with respect to A r
will be equal to qrr with its sign

changed. Eut if A r is not completely surrounded by a conductor
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the arithmetical sum of the coefficients of induction qrs , &c. will

be less than qrr .

We have deduced these two theorems independently by means

of electrical considerations. We may leave it to the mathe-

matical student to determine whether one is a mathematical

consequence of the other.

89 d.] When there is only one conductor in the field its

coefficient of potential on itself is the reciprocal of its capacity.

The centre of mass of the electricity when there are no ex-

ternal forces is called the electric centre of the conductor. If

the conductor is symmetrical about a centre of figure, this

point is the electric centre. If the dimensions of the conductor

are small compared with the distances considered, the position

of the electric centre may be estimated sufficiently nearly by

conjecture.

The potential at a distance c from the electric centre must be

between „ „

where e is the charge, and a is the greatest distance of any part

of the surface of the body from the electric centre.

For if the charge be concentrated in two points at distances

a on opposite sides of the electric centre, the first of these

expressions is the potential at a point in the line joining the

charges, and the second at a point in a line perpendicular to the

line joining the charges. For all other distributions within the

sphere whose radius is a the potential is intermediate between

those values.

If there are two conductors in the field, their mutual coefficient

of potential is — » where c' cannot differ from c, the distance

ft *4- ri

between the electric centres, by more than ; a and b being
V

the greatest distances of any part of the surfaces of the bodies

from their respective electric centres.

* [For let p be the density of the electricity at any point, then if we take the line

joining the electric centre to P as the axis of z, the potential at P is

///" -///' I

;

+h^$±j2
' •••

I
***

where c is the distance of P from the electric centre. The first term equals e/c, the
second vanishes since the origin is the electric centre, and the greatest value of the
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89 e.] If a new conductor is brought into the field the

coefficient of potential of any one of the others on itself is

diminished.

For let the new body, B, be supposed at first to be a non-

conductor {having the same specific inductive capacity as air}

free from charge in any part, then when one of the conductors,

A lt receives a charge e
x , the distribution of the electricity on the

conductors of the system will not be disturbed by B, as B is still

without charge in any part, and the electric energy of the system

will be simply
i e, If=K2

i>n-

Now let B become a conductor. Electricity will flow from

places of higher to places of lower potential, and in so doing will

diminish the electric energy of the system, so that the quantity

\ e
1

2
pn must diminish.

But e
x
remains constant, therefore pn must diminish.

Also if B increases by another body b being placed in contact

with it, pn will be further diminished.

For let us first suppose that there is no electric communication

between B and b ; the introduction of the new body b will

diminish pn . Now let a communication be opened between B
and b. If any electricity flows through it, it flows from a place

of higher to a place of lower potential, and therefore, as we have

shewn, still further diminishes pn .

third is when the electricity is concentrated at the points for which the third term
inside the bracket has its greatest value, which is a8/es , thus the greatest value of the

third term is ea*/c3
; the least value of this term is when the electricity is concen-

trated at the points for which the third term inside the bracket has its greatest nega-

tive value which is —\ar/c%
; thus the least value of the third term is — \ea?/c*.

The result at the end of Art. 89 d may be deduced as follows. Suppose the charge

is on the first conductor, then the potential due to the electricity on this conductor

by the above is less than
e ecp
22

+ £*'

where 22 is the distance of the point from the electric centre of the first conductor

;

in the second term if we are only proceeding as far as c
-3

, we may put 22 = c for any
point on the second conductor. The first term represents the potential to which the

second conductor is raised by a charge e at the electric centre of the first, but by
Art. 86, this is the same as the potential at the electric centre of the first due to a

charge e on the second conductor, but we have just seen that this must be less than

e eh1

thus the potential of the second conductor due to a charge e on the first must be less

than
e e(a2 + fc

a
)f—S

This however is not in general a very close approximation to the mutual potential

of two conductors.

}
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Hence the diminution of pn by the body B is greater than

that which would be produced by any conductor the surface of

which can be inscribed in B, and less than that produced by any
conductor the surface of which can be described about B.

We shall shew in Chapter XI, that a sphere of diameter & at a

distance r, great compared with b, diminishes the value of pu
bz

by a quantity which is approximately £ -^ *.

Hence if the body B is of any other figure> and if b is its

greatest diameter, the diminution of the value ofpn must be less

than i — .

Hence if the greatest diameter of B is so small compared with
its distance from A

x
that we may neglect quantities of the order

b3

| -j , we may consider the reciprocal of the capacity of A
x
when

alone in the field as a sufficient approximation to p11 .

90 a.] Let us therefore suppose that the capacity of A
x
when

alone in the field is KJt and that of A2 , K2 , and let the mean
distance between A x

and A 2 be r, where r is very great compared

with the greatest dimensions of A
x
and A 2 , then we may write

_ 1 _1 _ 1
Pn ~ j£

9 Pn — r
' P22 — 1£ i

% = e
1
r- 1 +e2Kf\

Hence qn = K^l-K^r^)-1
,

q^= K
i
(l-K

1
K

t
r-«)rK

Of these coefficients qn and q22 are the capacities of A x and A2

when, instead of being each alone at an infinite distance from
any other body, they are brought so as to be at a distance r from

each other.

90 6.] When two conductors are placed so near together that

their coefficient of mutual induction is large, the combination is

called a Condenser.

Let A and B be the two conductors or electrodes of a con-

denser.

* {See equation (43), Art. 146.}



116 SYSTEM OP CONDUCTORS. [90 b.

Let L be the capacity of A, JV that of B, and M the coefficient

of mutual induction. (We must remember that M is essentially

negative, so that the numerical values of L +M and M+N are

less than L and N.)

Let us suppose that a and b are the electrodes of another con-

denser at a distance R from the first, R being very great com-

pared with the dimensions of either condenser, and let the

coefficients of capacity and induction of the condenser a b when

alone be I, n, m. Let us calculate the effect of one of the

condensers on the coefficients of the other.

Let D = LN-M2
, and d = ln-m2

;

then the coefficients of potential for each condenser by itself are

Paa- D'W, Paa= d~ l n,

Pab= -D-^M, pab = -d~ lm,

Vbb- D~xL, pbh - d~ l
l.

The values of these coefficients will not be sensibly altered

when the two condensers are at a distance R.

The coefficient of potential of any two conductors at distance

R is R' 1
, so that

PAa = PAb = PBa = PBb = R' 1
-

The equations of potential are therefore

VA = D-^NeA-D-'MeB + R^ea +R-^
VB =-D~ :lMeA + D-'LeB + R-'l

ea + R- 1
eb ,

Va = R~ 1 eA + R~'i

eB + d- 1nea -d~ 1meb ,

Vb = R-'i eA + R~ leB— d~1mea + d~ 1 le h .

Solving these equations for the charges, we find

(L +Mf (l + 2m+ n)

qAA = L' = L + R*-(L + 2M + N)(l + 2m + n)
i

qAB-M -m + Rz__(L + 2M+N)ii + 2m +nY
R(L + M)(l + m)

qAa R*-(L + 2M+N)(l + 2m + n)'

R(L + M)(m + n)
Uh ~ ~ Rz- (L + 2 M + N)(l + 2.m +ny

where L', M\ W are what L, M, JV become when the second con-

denser is brought into the field.



91.] APPROXIMATE VALUES OF THE COEFFICIENTS. 117

If only one conductor, a, is brought into the field,m = n = and

a -L'-L I-
(L +M? 1

qAA - L - L +
R*-l(L + 2M+N)'

a 4R-M'-M+ {L + M){M+ N)l
qAB-M -M+____,

Rl(L + M)
R*-l{L+2M+N)

If there are only the two simple conductors, A and a,

M=N—m = n = 0,

and ^ =Z+__, ^ =___.
expressions which agree with those found in Art. 90 a.

The quantity L + 2M+N is the total charge of the condenser
when its electrodes are at potential 1. It cannot exceed half

the greatest diameter of the condenser *.

i +M is the charge of the first electrode, and M+JST that of the

second when both are at potential 1. These quantities must be
each of them positive and less than the capacity of the electrode

by itself. Hence the corrections to be applied to the coefficients

of capacity of a condenser are much smaller than those for a

simple conductor of equal capacity.

Approximations of this kind are often useful in estimating the

capacities of conductors of irregular form placed at. a consider-

able distance from other conductors.

91.] When a round conductor, A
3 , of small size compared with

the distances between the conductors, is brought into the field,

the coefficient of potential of A
l
on A 2 will be increased when A 3

is inside and diminished when A3 is outside of a sphere whose
diameter is the straight line A

1
A 2 .

For if A
}
receives a unit positive charge there will be a distri-

bution of electricity onA
3 , + e being on the side furthest from A

x ,

and — e on the side nearest A x . The potential at A 2 due to this

distribution on A
3 will be positive or negative as +e or— e is

nearest to A 2 , and if the form of A 3 is not very elongated this

will depend on whether the angle A x Az A 2
is obtuse or acute,

and therefore on whether A3 is inside or outside the sphere

described on A x A2
as diameter.

* {For we may prove, as in Art. 89 e, that the capacity of a condenser all of whose
parts are at the same potential is less than that of the sphere circumscribing it, and
the capacity of the sphere is equal to its radius.

}
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IfA 3
is of an elongated form it is easy to see that if it is placed

with its longest axis in the direction of the tangent to the circle

drawn through the points A lt A3 , A 2
it may increase the

potential of A2 , even when it is entirely outside the sphere, and

that if it is placed with its longest axis in the direction of the

radius of the sphere, it may diminish the potential of A2
even

when entirely within the sphere. But this proposition is only

intended for forming a rough estimate of the phenomena to be

expected in a given arrangement of apparatus.

92.] If a new conductor, A3 , is introduced into the field, the

capacities of all the conductors already there are increased, and

the numerical values of the coefficients of induction between

every pair of them are diminished.

Let us suppose that A
x
is at potential unity and all the rest at

potential zero. Since the charge of the new conductor is negative

it will induce a positive charge on every other conductor, and

will therefore increase the positive charge of A x
and diminish

the negative charge of each of the other conductors.

93 a.] Work done by the electric forces during the displacement

of a system of insulated charged conductors.

Since the conductors are insulated, their charges remain

constant during the displacement. Let their potentials be Vlt

V^ ... X before and T£', V2 ', ... V^ after the displacement. The

electric energy is W= \ 2 (e V)

before the displacement, and

Wf = iS(eF)
after the displacement.

The work done by the electric forces during the displacement is

the excess of the initial energy W over the final energy W\ or

TT-IP=42[>(F--P)]-
This expression gives the work done during any displacement,

small or large, of an insulated system.

To find the force tending to produce a particular kind of dis-

placement, let <j> be the variable whose variation corresponds to

the kind of displacement, and let 4> be the corresponding force,

reckoned positive when the electric force tends to increase <p,

then <frd<f>= —dWe ,

dW
e
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where W
e
denotes the expression for the electric energy as a

quadratic function of the charges.

93 &.] To prove that ^1+^ = 0.J r
d(p d<t>

We have three different expressions for the energy of the system,

(1)
^

W=h2(eV),
a definite function of the n charges and n potentials,

(
2
) W

e
= l22(er esP>.

8 ),

where r and s may be the same or different, and both ?'s and sr

are to be included in the summation.

This is a function of the n charges and of the variables which
define the configuration. Let <£ be one of these.

(3)
^
Wr =\22(Vr V.qn),

where the summation is to be taken as before. This is a function

of the n potentials and of the variables which define the con-

figuration of which # is one.

Since W = We
= Wv,

W
e
+Wv-2W=0.

Now let the n charges, the n potentials, and <j> vary in any
consistent manner, and we must have

„[,dWe -v. "I ^V,dWv . _-i ,dWm dWr,«

Now the n charges, the n potentials, and <\> are not all inde-

pendent of each other, for in fact only n + 1 of them can be

independent. But we have already proved that

der
~ y"

so that the first sum of terms vanishes identically, and it follows

from this, even if we had not already proved it, that

dWr_
dVs

~ e"

and that lastly, ^W dWv
d(f> d<f>

Work done by the electric forces during the displacement of a

system whose potentials are maintained constant.

93 c] It follows from the last equation that the force <i> = -j— >

and if the system is displaced under the condition that all the
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potentials remain constant, the. work done by the electric forces is

/ Qd<p — jo

or the work done by the electric forces in this case is equal to the

increment of the electric energy.

Here, then, we have an increase of energy together with a

quantity of work done by the system. The system must therefore

be supplied with energy from some external source, such as a

voltaic battery, in order to maintain the potentials constant

during the displacement.

The work done by the battery is therefore equal to the sum of

the work done by the system and the increment of energy, or,

since these are equal, the work done by the battery is twice the

work done by the system of conductors during the displacement.

On the comparison of similar electrified systems.

94.] If two electrified systems are similar in a geometrical sense,

so that the lengths of corresponding lines in the two systems are

as L to L\ then if the dielectric which separates the conducting

bodies is the same in both systems, the coefficients of induction

and of capacity will be in the proportion of L to L'. For if we

consider corresponding portions, A and A', of the two systems, and

suppose the quantity of electricity on A to be e, and that on A'

to be e', then the potentials V and V at corresponding points

B and J5', due to this electrification, will be

V=~, and V'=AB ~ A'B'

But AB is to A'B' as L to 2/, so that we must have

e:e'::LV:L'V.

But if the inductive capacity of the dielectric is different in the

two systems, beingK in the first and K' in the second, then if the

potential at any point of the first system is to that at the cor-

responding point of the second as V to V, and if the quantities

of electricity on corresponding parts are as e and e\ we shall have

e:e'::LVK:L'VK'.
By this proportion we may find the relation between the total

charges of corresponding parts of two systems, which are in the

first place geometrically similar, in the second place composed

of dielectric media of which the specific inductive capacities at

corresponding points are in the proportion ofK to K', and in the
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third place so electrified that the potentials of corresponding

points are as V to V.
From this it appears that if q be any coefficient of capacity or

induction in the first system, and q' the corresponding one in the

second, q-.q'.'.LK.L'K';

and if p and p' denote corresponding coefficients of potential in

the two systems,
1 j

p:p::LK :

L'K
,m

If one of the bodies be displaced in the first system, and the

corresponding body in the second system receives a similar dis-

placement, then these displacements are in the proportion of L
to L\ and if the forces acting on the two bodies are as F to F',

then the work done in the two systems will be as FL to FL'.

But the total electric energy is half the sum of the charges

of electricity multiplied each by the potential of the charged
body, so that in the similar systems, if W and W be the total

electric energies in the two systems respectively,

W:W'::eV:efV'
t

and the differences of energy after similar displacements in the

two systems will be in the same proportion. Hence, since FL
is proportional to the electrical work done during the displace-

men*> FL:FfL'::eV:JV.

Combining these proportions, we find that the ratio of the

resultant force on any body of the first system to that on the

corresponding body of the second system is

F:F::V2K:V'2K',

or F-F'--—- 6
'2

.
• 'L2K'L'2K'

The first of these proportions shews that in similar systems the

force is proportional to the square of the electromotive force and
to the inductive capacity of the dielectric, but is independent of

the actual dimensions of the system.

Hence two conductors placed in a liquid whose inductive

capacity is greater than that of air, and electrified to given

potentials, will attract each other more than if they had been

electrified to the same potentials in air.

The second proportion shews that if the quantity of electricity

on each body is given, the forces are proportional to the squares
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of the charges and inversely to the squares of the distances, and

also inversely to the inductive capacities of the media.

Hence, if two conductors with given charges are placed in a

liquid whose inductive capacity is greater than that of air, they

will attract each other less than if they had been surrounded by

air and charged with the same quantities of electricity*.

* {It follows from the preceding investigation that the force between two electri-

fied bodies surrounded by a medium whose specific inductive capacity is K is ee'/Kr2
,

where e and e' are the charges on the bodies and r is the distance between them.

}



CHAPTER IV.

GENERAL THEOREMS.

95 a.] In the second chapter we have calculated the potential

function and investigated some of its properties on the hypo-
thesis that there is a direct action at a distance between electri-

fied bodies, which is the resultant of the direct actions between
the various electrified parts of the bodies.

If we call this the direct method of investigation, the invert e

method will consist in assuming that the potential is a function

characterised by properties the same as those which we have
already established, and investigating the form of the function.

In the direct method the potential is calculated from the dis-

tribution of electricity by a process of integration, and is found
to satisfy certain partial differential equations. In the inverse

method the partial differential equations are supposed given, and
we have to find the potential and the distribution of electricity.

It is only in problems in which the distribution of electricity

is given that the direct method can be used. When we have to

find the distribution on a conductor we must make use of the
inverse method.

We have now to shew that the inverse method leads in every
case to a determinate result, and to establish certain general

theorems deduced from Poisson's partial differential equation,

d2V d2V d*V
d^ + dy + H^ + ^P = '

The mathematical ideas expressed by this equation are of a
different kind from those expressed by the definite integral

/ /
^dx'dy'dz'.

CO J— 00 J— GO '

In the differential equation we express that the sum of the

second derivatives of V in the neighbourhood of any point is
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related to the density at that point in a certain manner, and no

relation is expressed between the value of V at that point and

the value of p at any point at a finite distance from it.

In the definite integral, on the other hand, the distance of

the point {x\ y', z'), at which p exists, from the point (x, y, z), at

which V exists, is denoted by r, and is distinctly recognised in

the expression to be integrated.

The integral, therefore, is the appropriate mathematical ex-

pression for a theory of action between particles at a distance,

whereas the differential equation is the appropriate expression

for a theory of action exerted between contiguous parts of a

medium.

We have seen that the result of the integration satisfies the

differential equation. We have now to shew that it is the only

solution of that equation satisfying certain conditions.

We shall in this way not only establish the mathematical

equivalence of the two expressions, but prepare our minds to

pass from the theory of direct action at a distance to that of

action between contiguous parts of a medium.

95 b.] The theorems considered in this chapter relate to the

properties of certain voluine-integrals taken throughout a finite

region of space which we may refer to as the electric field.

The element of these integrals, that is to say, the quantity

under the integral sign, is either the square of a certain vector

quantity whose direction and magnitude vary from point to

point in the field, or the product of one vector into the resolved

part of another in its own direction.

Of the different modes in which a vector quantity may be dis-

tributed in space, two are of special importance.

The first is that in which the vector may be represented

as the space-variation [Art. 17] of a scalar function called the

Potential.

Such a distribution may be called an Irrotational distribution.

The resultant force arising from the attraction or repulsion of

any combination of centres of force, the law of each being any

given function of the distance, is distributed irrotationally.

The second mode of distribution is that in which the converg-

ence [Art. 25] is zero at every point. Such a distribution may

be called a Solenoidal distribution. The velocity of an incom-

pressible fluid is distributed in a solenoidal manner.
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When the central forces which, as we have said, give rise to

an irrotational distribution of the resultant force, vary according
to the inverse square of the distance, then, if these centres are

outside the field, the distribution within the field will be sole-

noidal as well as irrotational.

When the motion of an incompressible fluid which, as we have
said, is solenoidal, arises from the action of central forces de-

pending on the distance, or of surface pressures, on a frictionless

fluid originally at rest, the distribution of velocity is irrotational

as well as solenoidal.

When we have to specify a distribution which is at once irrota-

tional and solenoidal, we shall call it a Laplacian distribution
;

Laplace having pointed out some of the most important pro-

perties of such a distribution.

The volume integrals discussed in this chapter are, as we shall

see, expressions for the energy of the electric field. In the first

group of theorems, beginning with Green's Theorem, the energy
is expressed in terms of the electromotive intensity, a vector

which is distributed irrotationally in all cases of electric equi-

librium. It is shewn that if the surface-potentials be given, then

of all irrotational distributions, that which is also solenoidal has
the least energy ; whence it also follows that there can be
only one Laplacian distribution consistent with the surface

potentials.

In the second group of theorems, including Thomson's Theorem,
the energy is expressed in terms of the electric displacement, a
vector of which the distribution is solenoidal. It is shewn that

if the surface-charges are given, then of all solenoidal distribu-

tions that has least energy which is also irrotational, whence it

also follows that there can be only one Laplacian distribution

consistent with the given surface-charges.

The demonstration of all these theorems is conducted in the
same way. In order to avoid the repetition in every case of the

steps of a surface integration conducted with reference to rect-

angular axes, we make use in each case of the result of Theorem
III, Art. 21*, where the relation between a volume-integral and
the corresponding surface-integral is fully worked out. All that

* This theorem seems to have been first given by Ostrogradsky in a paper read in
1828, but published in 1831 in the Mim. de I'Acad, de St. Pitersbourg, T. I. p. 39. It
may be regarded, however, as a form of the equation of continuity.
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we have to do, therefore, is to substitute for X, Y, and Z in that

Theorem the components of the vector on which the particular

theorem depends.

In the first edition of this book the statement of each theorem

was cumbered with a multitude of alternative conditions which

were intended to shew the generality of the theorem and the

variety of cases to which it might be applied, but which tended

rather to confuse in the mind of the reader what was assumed

with what was to be proved.

In the present edition each theorem is at first stated in a more

definite, if more restricted, form, and it is afterwards shewn what

further degree of generality the theorem admits of.

We have hitherto used the symbol V for the potential, and we

shall continue to do so whenever we are dealing with electrostatics

only. In this chapter, however, and in those parts of the second

volume in which the electric potential occurs in electro-magnetic

investigations, we shall use * as a special symbol for the electric

potential.

Green's Theorem.

96 a.] The following important theorem was given by George

Green, in his ' Essay on the Application of Mathematics to Elec-

tricity and Magnetism.'

The theorem relates to the space bounded by the closed surface

s. We may refer to this finite space as the Field. Let v be a

normal drawn from the surface s into the field, and let I, m, n be

the direction cosines of this normal, then

d<H d^ d$> _dV , v

dx dy dz dv

will be the rate of variation of the function * in passing along

d^
the normal v. Let it be understood that the value of -^~ is to be

dv
taken at the surface itself, where v — 0.

Let us also write, as in Arts. 26 and 77,

dH> #* d2*
dx2 + dy2 +

dz2 ' w
and when there are two functions, * and <J>, let us write

d*<l* d*d* d*d^_ = __SVyV^ (3)
dx dx dy dy dz dz
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The reader who is not acquainted with the method of Quater-
nions may, if it pleases him, regard the expressions V2* and
&V#V<£ as mere conventional abbreviations for the quantities to

which they are equated above, and as in what follows we shall

employ ordinary Cartesian methods, it will not be necessary to

remember the Quaternion interpretation of these expressions.

The reason, however, why we use as our abbreviations these ex-
pressions and not single letters arbitrarily chosen, is, that in the
language of Quaternions they represent fully the quantities to

which they are equated. The operator V applied to the scalar

functiou ¥ gives the space-variation of that function, and the

expression —^.V+V^ is the scalar part of the product of two
space-variations, or the product of either space-variation into the
resolved part of the other in its own direction. The expression

-j- is usually written in Quaternions 8. UvV% Uv being a unit-

vector in the direction of the normal. There does not seem
much advantage in using this notation here, but we shall find

the advantage of doing so when we come to deal with anisotropic

{non-isotropic} media.

Statement of Green's Theorem.

Let ¥ and 4> be two functions of x, y, z, which, with their first

derivatives, are finite and continuous within the acyclic region ?,

bounded by the closed surface s, then

//* <T
ds~ [[I**

2*d s = fffs.V*V<i>

d

s

=ff*^ ds
~fff*

V2*ds
'> <4)

where the double integrals are to be extended over the whole
closed surface s, and the triple integrals throughout the field, s,

enclosed by that surface.

To prove this, let us write, in Art. 21, Theorem III,

dx dy dz v '

then it cos e = — ¥ U j—I- m -^

—

\- n^~)
v dx dy dz J

t d<$> ...
=-*57' by( 1)i (

6
)
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J dX dY dZ
T
,,d2

<J> d2
<t> d2

<t>,

&nd
dx~

+ dj + Tz^^^dx2 +
dtf

+ d^>
dVd<t> d<l>d<& d*d<b

dx dx dy dy dz dz

- -yv2<t>-S.V*V<t>, by (2) and (3). (7)

But by Theorem III

jJR cos e <fe
=ffl(g +^ + ^-)ds ;

or by (6) and (7)

[fy^ds- /77W2<i>ds ^fffs.VVV&ds. (8)

Since in the second member of this equation * and 4> may

be interchanged, we may do so in the first, and we thus

obtain the complete statement of Green's Theorem, as given in

equation (4).

96 6.] We have next to shew that Green's Theorem is true

when one of the functions, say *, is a many-valued one, provided

that its first derivatives are single-valued, and do not become

infinite within the acyclic region s.

Since V* and V4> are single-valued, the second member of

equation (4) is single-valued ; but since * is many-valued, any

one element of the first member, as *V2
4>, is many-valued. If,

however, we select one of the many values of *, 'as *
,
at the

point A within the region 9, then the value of * at any other

point, P, will be definite. For, since the selected value of * is

continuous within the region, the value of ^ at P must be that

which is arrived at by continuous variation along any path from

A to P, beginning with the value % at A. If the value at P
were different for two paths between A and P, then these two

paths must embrace between them a closed curve at which the

first derivatives of * become infinite *. Now this is contrary to

the specification, for since the first derivatives do not become

infinite within the region ?, the closed curve must be entirely

without the region ; and since the region is acyclic, two paths

within the region cannot embrace anything outside the region.

*
] I l-j-dx + -j-dy + -r- dz) is the same for all reconcileable paths, and

since the region is acyclic all paths are reconcileable.^
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Hence, if * is given as the value of * at the point A, the
value at P is definite.

If any other value of #, say % + n k, had been chosen as the

value at A, then the value at P would have been ¥+ n k. But
the value of the first member of equation (4) would be the same as

before, for the change amounts to increasing the first member by

and this, by Theorem III, Art. 21, is zero.

96 c] If the region s is doubly or multiply connected, we may
reduce it to an acyclic region by closing .each of its circuits with
a diaphragm, {we can then apply the theorem to the region

bounded by the surface of s and the positive and negative sides

of the diaphragm}.

Let s
x be one of these diaphragms, and k

x the corresponding
cyclic constant, that is to say, the increment of * in going once
round the circuit in the positive direction. Since the region $ lies

on both sides of the diaphragm sv every element of s
x
will occur

twice in the surface integral.

If we suppose the normal v
x
drawn towards the positive side

of dsx , and v
x drawn towards the negative side,

d<t> _ d<P

dv{ ~ dv
x

and *
1'=*i + (*i)

so that the element of the surface-integral arising from dsx will be,

since dv
x is the element of the inward normal for the positive

surface,
d<s>

¥ ,d* d<P _m -j- dsx + */ -J-7- dsx
= — k, -j— dsx .

dvx
x x dv\ 1 dvx

x

Hence if the region s is multiply connected, the first term of

equation (4) must be written

where d v is an element of the inward normal to the bounding
surface and where the first surface-integral is to be taken over

the bounding surface, and the others over the different diaphragms,

each element of surface of a diaphragm being taken once only, and
the normal being drawn in the positive direction of the circuit.

This modification of the theorem in the case of multiply-
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connected regions was first shewn to be necessary by Helmholtz*,

and was first applied to the theorem by Thomson f

.

96 c?.] Let us now suppose, with Green, that one of the

functions, say 4>, does not satisfy the condition that it and its

first derivatives do not become infinite within the given region,

but that it becomes infinite at the point P, and at that point

only, in that region, and that very near to P the value of * is

<i> + e/rt, where % is a finite and continuous quantity, and r is

the distance from P. This will be the case if <J> is the potential

of a quantity of electricity e concentrated at the point P, together

with any distribution of electricity the volume density of which

is nowhere infinite within the region considered.

Let us now suppose a very small sphere whose radius is a to

be described about P as centre ; then since in the region outside

this sphere, but within the surface s, 4> presents no singularity,

we may apply Green's Theorem to this region, remembering that

the surface of the small sphere is to be taken account of in

forming the surface-integral.

In forming the volume-integrals we have to subtract from the

volume-integral arising from the whole region that arising from

the small sphere.

Now [I <PV 2ydxdydz for the sphere cannot be numerically

greater than (v^ffUdxdydz,

or (V 2*),{27rea2 + £Tra3 <J> },

where the suffix,
g , attached to any quantity, indicates that the

greatest numerical value of that quantity within the sphere is to

be taken.

This volume-integral, therefore, is of the order a2
, and may be

neglected when a diminishes and ultimately vanishes.

The other volume-integral

///'W 2 <t>dxdydz

we shall suppose taken through the region between the small

sphere and the surface S, so that the region of integration does

not include the point at which (p becomes infinite.

* ' Ueber Integrate der hydrodynamischen Gleichungen welche den Wirbelbewe-

gungen entsprechen,' Crelle, 1858. Translated by Prof. Tait, Phil. Mag., 1867 (I),

t ' On Vortex Motion,' Trans. B. S. Edin. xxv. part. i. p. 241 (1867).

X The mark / separates the numerator from the denominator of a fraction.
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The surface-integral / / * -=- ds' for the sphere cannot be nu-

merically greater than &
g

/ / — ds'.

Now by Theorem III, Art. 21,

If%*—Iff*"***>
since dv is here measured outwards from the sphere, and this

cannot be numerically greater than (V2*)^ ira3, and Q?
g
at the

. e rr d^
surface is approximately- » so that / / 4> -y- ds cannot be numeri-

cally greater than ^a2e (y*^
and is therefore of the order a2

, and may be neglected when a
vanishes.

But the surface-integral for the sphere on the other side of

the equation, namely, rr ^<j>

JJ* It"'
does not vanish, for / / ^—ds' = — 4 -n e ;

dv being measured outwards from the sphere, and if ^ be the

value of * at the point P,

If^-T-ds
= — 4ire* .

dv

Equation (4) therefore becomes in this case

If* K*-fffi*'**-*"*.-ff*T.
d-fff**9d s* (4l)

97 a.] We may illustrate this case of Green's Theorem by em-

ploying it as Green does to determine the surface-density of a

distribution which will produce a potential whose values inside

and outside a given closed surface are given. These values must

coincide at the surface, also within the surface V2* = 0, and

outside V2*' = where \jr and \// denote the potentials inside and

outside the surface.

Green begins with the direct process, that is to say, the distri-

* {in this equation dv is drawn to the inside of the surface and J"ff ipv9<f>dxdydz

is not taken through the space occupied by a small Bphere whose centre is the point at

which <p becomes infinite.

}
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bution of the surface density, <r, being given, the potentials at an

internal point P and an external point Pf
are found by integrat-

ing the expressions

*' =ff*
d8

'

*V =
ff?

dS
; (9)

where r and r
f
are measured from the points P and P' respect-

ively.

Now let <I> = 1/r, then applying Green's Theorem to the space

within the surface, and remembering that V2
<f> = and V 2* =

throughout the limits of integration we find

d
1-

where Vp is the value of at P.

Again, if we apply the theorem to the space between the

surface s and a surface surrounding it at an infinite distance a,

the part of the surface-integral belonging to the latter surface

will be of the order 1/a and may be neglected, and we have

Now at the surface, * = *', and since the normals v and v are

drawn in opposite directions,

d- d-
— — —
dv

+ dv'~ '

Hence on adding equations (10) and (11), the left-hand mem-

bers destroy each other, and we have

97 b.] Green also proves that if the value of the potential *
at every point of a closed surface s be given arbitrarily, the

potential at any point inside or outside the surface may be

determined, provided V 2* = inside or outside the surface.

For this purpose he supposes the function 4> to be such that

near the point P its value is sensibly 1/r, while at the surface

s its value is zero, and at every point within the surface

V24> = 0.

* {In equations 10 and 11 dv' is drawn to the inside of the surface and dv to the

outside.}
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That such a function must exist, Green proves from the

physical consideration that if s is a conducting surface connected

to the earth, and if a unit of electricity is placed at the point P,
the potential within s must satisfy the above conditions. For
since s is connected to the earth the potential must be zero at
every point of s, and since the potential arises from the electricity

at P and the electricity induced on s, V24> = at every point

within the surface.

Applying Green's Theorem to this case, we find

*.*,=//* |U, (13)

where, in the surface-integral, * is the given value of the potential

at the element of surface ds ; and since, if <rP is the density of the

electricity induced on s by unit of electricity at P,

4.,,+ gy-O, (H)

we may write equation (13)

yP = - ff*<rds*y (15)

where o- is the surface-density of the electricity induced on ds by
a charge equal to unity at the point P.

Hence if the value of o- is known at every point of the surface

for a particular position of P, then we can calculate by ordinary

integration the potential at the point P, supposing the potential

at every point of the surface to be given, and the potential

within the surface to be subject to the condition

v*
2
<*> = 0.

We shall afterwards prove that if we have obtained a value of

* which satisfies these conditions, it is the only value of * which

satisfies them.

Green's Function.

98.] Let a closed surface s be maintained at potential zero.

Let P and Q be two points on the positive side of the surface s

(we may suppose either the inside or the outside positive), and

let a small body charged with unit of electricity be placed at P

;

the potential at the point Q will consist of two parts, of which

one is due to the direct action of the electricity at P, while the

* {This is the same as equation (14), p. 107.}
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other is due to the action of the electricity induced on 8 by P.

The latter part of the potential is called Green's Function, and is

denoted by Gpq .

This quantity is a function of the positions of the two points

P and Q, the form of the function depending on the surface s.

It has been calculated for the case in which s is a sphere, and for

a very few other cases. It denotes the potential at Q due to the

electricity induced on s by unit of electricity at P.

The actual potential at any point Q due to the electricity at P
and to the electricity induced on s is l/rpq + Gpq , where rpq denotes

the distance between P and Q.

At the surface s, and at all points on the negative side of s, the

potential is zero, therefore

GP* = - — » (!)
'pa

where the suffix indicates that a point A on the surface s is

taken instead of Q.

Let (rpa> denote the surface-density induced by P at a point A'

of the surface s, then, since Opq is the potential at Q due to the

superficial distribution,

G» =ff% ds'' (2)

where ds' is an element of the surface s at A\ and the integration

is to be extended over the whole surface s.

But if unit of electricity had been placed at Q, we should have

had by equation (l),

^ =-<?,.- (3)

=
-II"f,

d8 ' w
<J *J ' aa

where <jqa is the density at A of the electricity induced by Q, ds

is an element of surface, and raa> is the distance between A and

A'. Substituting this value of l/rqa> in the expression for Gpq ,

we find rr rra- a ,

6»-ffff\7 ded°'-

_

(5)

Since this expression is not altered by changing p
into , and

, into p , we find that Gpg = G^ . (6)

a result which we have already shewn to be necessary in Art. 86,
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but which we now see fco be deducible from the mathematical
process by which Green's function may be calculated.

If we assume any distribution of electricity whatever, and
place in the field a point charged with unit of electricity, and if

the surface of potential zero completely separates the point from
the assumed distribution, then if we take this surface for the

surface s, and the point for P, Green's function, for any point on
the same side of the surface as P, will be the potential of the

assumed distribution on the other side of the surface. In this

way we may construct any number of cases in which Green's

function can be found for a particular position of P. To find

the form of the function when the form of the surface is given

and the position of P is arbitrary, is a problem of far greater

difficulty, though, as we have proved, it is mathematically possible.

Let us suppose the problem solved, and that the point P is

taken within the surface. Then for all external points the

potential of the superficial distribution is equal and opposite to

that of P. The superficial distribution is therefore centrobaric *,

and its action on all external points is the same as that of a
unit of negative electricity placed at P.

99 a.] If in Green's Theorem we make * = <t>, we find

//* %**-!!!****• =JJfe*?d *- (
i8

>

If * is the potential of a distribution of electricity in space

with a volume-density p and on conductors whose surfaces are

s
1 , s2 , &c, and whose potentials are %, *2 , &c, with surface-

densities o-j, (T
2 , &c, then

V2* = 4tt /3, (17)

dV , x^ =-""•
(
18

>

since dv is drawn outwards from the conductor, and

^-d^=-±Ttex , (19)

where e
x
is the charge of the surface s

x .

Dividing (16) by — 8ir, we find

//;

^ (*!*! + %e2 + &c.) + -ffC^pdxdydz

Thomson and Tait's Natural Philosophy, § 526.
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The first term is the electric energy of the system arising

from the surface-distributions, and the second is that arising

from the distribution of electricity through the field, if such a

distribution exists.

Hence the second member of the equation expresses the whole

electric energy of the system*, the potential * being a given

function of x, y, z.

As we shall often have occasion to employ this volume-integral,

we shall denote it by the abbreviation W^ so that

If the only charges are those on the surfaces of the conductors,

p — 0, and the second term of the first member of equation (20)

disappears.

The first term is the expression for the energy of the charged

system expressed, as in Art. 84, in terms of the charges and the

potentials of the conductors, and this expression for the energy

we denote by W.

99 &.] Let *be a function of x, y, z, subject to the condition

that its value at the closed surface s is 4>, a known quantity for

every point of the surface. The value of * at points not on the

surface s is perfectly arbitrary.

Let us also write

the integration being extended throughout the space within the

surface ; then we shall prove that if % is a particular form of *
which satisfies the surface condition and also satisfies Laplace's

Equation V2*
x
= (23)

at every point within the surface, then Wv the value of W
corresponding to *15 is less than that corresponding to any func-

tion which differs from ^ at any point within the surface.

For let * be any function coinciding with *x
at the surface

but not at every point within it, and let us write

* = *! + *„; (24)

then *
2

is a function which is zero at every point of the

surface.

* {The expression on the right-hand side of (20) does not represent the energy where

the conductors are surrounded by any dielectric other than air.

}
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The value of Wfor * will be evidently

txt -ur , w 1 rffrd%dVa
d%d<i>

2
d%d%s, , , . .W=W1+ W^-JJJ^^ +^^+^^yxdydz. (25)

By Green's Theorem the last term may be written

Ljf/*,**& - yj% *&*. (26)

The volume-integral vanishes because v2
*i = within the

surface, and the surface-integral vanishes because at the surface

+
2
= 0. Hence equation (25) is reduced to the form

W=W
1
+W

2 . (27)

Now the elements of the integral W2 being sums of three

squares, are incapable of negative values, so that the integral

itself can only be positive or zero. Hence if W2 is not zero it

must be positive, and therefore W greater than W
t

. But if W
2

is zero, every one of its elements must be zero, and therefore

d% A d% n d*2= o = =
dx ' dy ' dz

at every point within the surface, and *P2 must be a constant

within the surface. But at the surface *P
2
= 0, therefore *2

=
at every point within the surface, and * = Vv so that if W is

not greater than W
x , * must be identical with *

x
at every point

within the surface.

It follows from this that ^ is the only function of x, y, z

which becomes equal to * at the surface, and which satisfies

Laplace's Equation at every point within the surface.

For if these conditions are satisfied by any other function^
then W3 must be less than any other value of W. But we have

already proved that W
x
is less than any other value, and therefore

than Ws . Hence no function different from ^ can satisfy the

conditions.

The case which we shall find most useful is that in which the

field is bounded by one exterior surface, s, and any number of

interior surfaces, s1} s2 , &c, and when the conditions are that the

value of * shall be zero at s, *x at s1} *2
at s2 , and so on, where

*19 V
2 , &c. are constant for each surface, as in a system of

conductors, the potentials of which are given.

Of all values of * satisfying these conditions, that gives the

minimum value of Wj, for which V2* = at every point in the

field.
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Thomson's Theorem.

Lemma.

100 a.] Let * be any function of x, y, z which is finite and

continuous within the closed surface s, and which at certain

closed surfaces, s
1 , s2 , ... , sp , &c.,has the values *ls *2 , ... , *,, &c.

constant for each surface.

Let u, v, w be functions of x, y, z, which we may consider as

the components of a vector (£ subject to the solenoidal condition

_&*« = *?+*+*?<>, (28)
ax ay az v

and let us put in Theorem III

X = *u, Y=*v, Z = *w, (29)

we find as the result of these substitutions

+Ifhu%+vdi+w
Tz)

dxd*de - °- (30)

the surface-integrals being extended over the different surfaces

and the volume-integrals being taken throughout the whole

field, and where Zp , mp , np are the direction cosines of the normal

to sp drawn from the surface into the field. Now the first

volume-integral vanishes in virtue of the solenoidal condition

for u, v, w, and the surface-integrals vanish in the following

cases :

—

(1) When at every point of the surface * = 0.

(2) When at every point of the surface lu +mv+nw — 0.

(3) WThen the surface is entirely made up of parts which

satisfy either (1) or (2).

(4) When * is constant over each of the closed surfaces, and

//<(lu +mv + nw) ds = Q.

Hence in these four cases the volume-integral

*=///(*a^*S+ "£>***

-

-

(31)

1006.] Now consider a field bounded by the external closed

surface s, and the internal closed surfaces s1} s2 , &c.



iooc] Thomson's theorem. 139

Let * be a function of x, y, z, which within the field is finite

and continuous and satisfies Laplace's Equation

V2* = 0, (32)

and has the constant, but not given, values ylt ^2 , &c. at the

surfaces slt s2 , &c. respectively, and is zero at the external

surface s.

The charge of any of the conducting surfaces, as slt is given

by the surface integral

the normal v
x
being drawn from the surface s1 into the electric

field.

100 c] Now let /, g, h be functions of x, y, z, which we may
consider as the components of a vector 3), subject only to the

conditions that at every point of the field they must satisfy the

solenoidal equation

df dg dh _ . .

dx dy ' dz~ '
* '

and that at any one of the internal closed surfaces, as sly the

surface-integral

ff(
lif+mi9 +M) ds = e

x , (35)

where l
x , m^ n

x
are the direction cosines of the normal v

x
drawn

outwards from the surface s
x into the electric field, and e

x
is the

same quantity as in equation (33), being, in fact, the electric

charge of the conductor whose surface is sr
We have to consider the value of the volume-integral

W*> = 2 *fff(f
2 + g

2 + h2
) dxdydz, (36)

extended throughout the whole of the field within s and without

Sj, s2 , &c, and to compare it with

the limits of integration being the same.

Let us write

. 1 d<f 1 d<i> , 1 d<i> . .

4tt dx u lirdy 4tt dz y J

and Ws = 2ttJ FF(u2 + v2 + w2
) dxdydz

; (39)
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then since

1 r d^ WT WT
2tt[_ dx

dV dy d<i>

dy dz _

W»=Wt+ % -fff(u§ + .J + „**)*,**. (40)

Now in the first place, u, v, w satisfy the solenoidal condition

at every point of the field, for by equations (38)

— + — +^ = ^ + ^ + ^ _ L V 2* (41)
dx~*~ dy^ dz dx dy dz 4tt

' v J

and by the conditions expressed in equations (34) and (32), both

parts of the second member of (41) are zero.

In the second place, the surface-integral

/ / (^iu +mi
v +%w) d8t

=
JJ(

lJ + m
*9 + n^ dSl + hffl^ dSu (42)

but by (35) the first term of the second member is eu and by (33)

the second term is — e
x , so that

(l
1
u+m

1
v + nl

w)ds1
= 0. (43)//(

Hence, since % is constant, the fourth condition of Art. 100 a

is satisfied, and the last term of equation (40) is zero, so that the

equation is reduced to the form

W^=Wif+W^ (44)

Now since the element of the integral T^ is the sum of three

squares, u2 + v2 +w2
, it must be either positive or zero. If at any

point within the field u, v, and w are not each of them equal to

zero, the integral W& must have a positive value, and Tf© must

therefore be greater than W*. But the values u = v = w=0at
every point satisfy the conditions.

Hence, if at every point

then W* = W*, (46)

and the value of W^ corresponding to these values of /, g, h, is

less than the value corresponding to any values of /, g, h,

differing from these.
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Hence the problem of determining the displacement and

potential, at every point of the field, when the charge on each

conductor is given, has one and only one solution.

This theorem in one of its more general forms was first stated

by Sir W. Thomson *. We shall afterwards show of what gene-

ralization it is capable.

100 d.] This theorem may be modified by supposing that the

vector 2), instead of satisfying the solenoidal condition at every

point of the field, satisfies the condition

df dq dh ,, ,

s + 4 + s^' ^
where p is a finite quantity, whose value is given at every point

in the field, and which may be positive or negative, continuous

or discontinuous, its volume-integral within a finite region

being, however, finite.

We may also suppose that at certain surfaces in the field

lf+7ng + nh + Vf + m'gf +n'h* = <r, (48)

where I, m, n and l\ m', n' are the direction cosines of the normals

drawn from a point of the surface towards those regions in which

the components of the displacement are /, g, h and/', g', h! re-

spectively, and o- is a quantity given at all points of the surface,

the surface-integral of which, over a finite surface, is finite.

100 e.] We may also alter the condition at the bounding sur-

faces by supposing that at every point of these surfaces

lf+mg + nh = <r, (49)

where cr is given for every point.

(In the original statement we supposed only the value of the

integral of a- over each of the surfaces to be given. Here we
suppose its value given for every element of surface, which
comes to the same thing as if, in the original statement, we had
considered every element as a separate surface.)

None of these modifications will affect the truth of the theorem
provided we remember that * must satisfy the corresponding

conditions, namely, the general condition,

d2* d2* d2*
, ,

d^ + d^ +^ + ^p = ' <
5 °)

and the surface condition

•j- + j-7- + 4tt(t = 0. (51)dv dv v

* Cambridge and Dublin Mathematical Journal, February, 1848.
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For if, as before

, ,
1 d* 1 d* 1 d*

then u, v, w will satisfy the general solenoidal condition

du dv . dw _
dx dy dz ~ '

and the surface condition

lu + mv + nw + Vn! +mV + n'w' = 0,

and at the bounding surface

lu +mv+nw — 0,

whence we find as before that

M=jjhu fx + ^i
+wd

^) dxdydz:=^

and that U£> = T^+T^.

Hence as before it is shewn that W® is a unique minimum
when Tfg = 0, which implies that u2 + v2 +w2

is everywhere zero,

and therefore

J ~ lirdx' lirdy' ~ 4ir dz
'

101 a.] In our statement of these theorems we have hitherto

confined ourselves to that theory of electricity which assumes

that the properties of an electric system depend on the form and

relative position of the conductors, and on their charges, but

takes no account of the nature of the dielectric medium between

the conductors.

According to that theory, for example, there is an invariable

relation between the surface density of a conductor and the

electromotive intensity just outside it, as expressed in the law

of Coulomb ii = 47ro-.

But this is true only in the standard medium, which we may
take to be air. In other media the relation is different, as was

proved experimentally, though not published, by Cavendish, and

afterwards rediscovered independently by Faraday.

In order to express the phenomenon completely, we find it

necessary to consider two vector quantities, the relation between

which is different in different media. One of these is the electro-

motive intensity, the other is the electric displacement. The

electromotive intensity is connected by equations of invariable
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form with the potential, and the electric displacement is con-

nected by equations of invariable form with the distribution of

electricity, but the relation between the electromotive intensity

and the electric displacement depends on the nature of the

dielectric medium, and must be expressed by equations, the most

general form of which is as yet not fully determined, and can be

determined only by experiments on dielectrics.

101 &.] The electromotive intensity is a vector defined in

Art. 68, as the mechanical force on a small quantity e of elec-

tricity divided by e. We shall denote its components by tho

letters P, Q, R, and the vector itself by @.

In electrostatics, the line integral of @ is always independent

of the path of integration, or in other words (S is the space-

variation of a potential. Hence

P _ ^* n — ^*
7? — ^*

~ dx' dy dz

or more briefly, in the language of Quaternions

@ = -V*.
101 c] The electric displacement in any direction is defined

in Art. 60, as the quantity of electricity carried through a small

area A, the plane of which is normal to that direction, divided

by A. We shall denote the rectangular components of the

electric displacement by the letters /, g, h, and the vector itself

by®.
The volume-density at any point is determined by the equation

_ df dg dh

dx dy dz'

or in the language of Quaternions

The surface-density at any point of a charged surface is deter-

mined by the equation

<r = lf+mg + nh + Vf + m'tf + n'h\

where /, g, h are the components of the displacement on one side

of the surface, the direction cosines of the normal drawn from

the surface on that side being I, m, n, and f, g\ h' and V, m', n'

are the components of the displacements, and the direction cosines

of the normal on the other side.

This is expressed in Quaternions by the equation
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where Uv, TJv are unit normals on the two sides of the surface,

and S indicates that the scalar part of the product is to be taken.

When the surface is that of a conductor, v being the normal

drawn outwards, then since/", g\ h' and 2)' are zero, the equation

is reduced to the form
o- = lf+ mg + nh ;

The whole charge of the conductor is therefore

e = / / (If+mg + nh) ds ;

= - ffs.Uv^ds.

101 d.~\ The electric energy of the system is, as was shewn in

Art. 84, half the sum of the products of the charges into their

respective potentials. Calling this energy W,

= -^ffjp^dxdydz + -JJ<r^ds,

+ - /Y* (lf+ mg + nh) ds

;

where the volume-integral is to be taken throughout the electric

field, and the surface-integral over the surfaces of the con-

ductors.

Writing in Theorem III, Art. 21,

X = */, Y=*g, Z=*h,
we find, if I, m, n are the direction cosines of the normal facing

the surface into the field,

//WW*) ds =
-fff* (I + I + f) dvdyd,,

-ffft1s +9^ +h
ii')

dxdyde-

Substituting this value for the surface-integral in Wwe find

w=
-lfff(f^ +9^ +h(

Tz)
dxdydz >

or W= IfffifP+gQ + hR) dxdydz.

101 e.] We now come to the relation between 2) and (£.

The unit of electricity is usually defined with reference to
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experiments conducted in air. We now know from the ex-

periments of Boltzmann that the dielectric constant of air is

somewhat greater than that of a vacuum, and that it varies

with the density. Hence, strictly speaking, all measurements of

electric quantity require to be corrected to reduce them either

to air of standard pressure and temperature, or, what would be

more scientific, to a vacuum, just as indices of refraction

measured in air require a similar correction, the correction in

both cases being so small that it is sensible only in measure-

ments of extreme accuracy.

In the standard medium

4w2> = (5,

or 4tt/=P, 4ir#=Q, 4-nh — R.

In an isotropic medium whose dielectric constant is K
4tt2> = K(B,

4 irf = KP, 4vg = KQ, 4 irA = KR.

There are some media, however, of which glass has been the

most carefully investigated, in which the relation between 3) and

(5 is more complicated, and involves the time variation of one

or both of these quantities, so that the relation must be of the

form

f{% @, i>, £,$, a, &c.) = o.

We shall not attempt to discuss relations of this more general

kind at present, but shall confine ourselves to the case in which
2) is a linear and vector function of ($.

The most general form of such a relation may be written

4ir2> = £(@),

where <j> during the present investigation always denotes a linear

and vector function. The components of 2) are therefore homo-
geneous linear functions of those of @, and may be written in

the form 4w/ = KxxP +Kxy Q +KxzR,

4*g = KyxP +Kyy Q +Ky
,R,

where the first suffix of each coefficient K indicates the direction

of the displacement, and the second that of the electromotive
intensity.

The most general form of a linear and vector function involves
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nine independent coefficients. When the coefficients which have

the same pair of suffixes are equal, the function is said to be

self-conjugate.

If we express Gs in terms of 2) we shall have

<g = 47r0-1
(2>),

or P = 4 7r (kxxf+ kyx g + kiX h),

Q = 4n(kxyf+kpv g + kzy h),

R = 4n(kxz f+kyz g + kzz h).

101/.] The work done by the electromotive intensity whose

components are P, Q, R, in producing a displacement whose com-

ponents are df, dg, and dh, in unit of volume of the medium, is

dW=Pdf+Qdg + Rdh.

Since a dielectric {in a steady state} under electric displace-

ment is a conservative system, W must be a function of/, g, h,

and since /, g, h may vary independently, we have

z>
dW n- dW n-. dWr=: 'W v~W dh

'

Hence
dP _d2 W _d2W ^dQ
dg ~ dgdf ~ dfdg ~ df

dP
But -T- = 4 Trkvx , the coefficient of g in the expression for P,

and
-J-

= 4irkxy , the coefficient of/ in the expression for Q.

Hence if a dielectric is a conservative system (and we know that

it is so, because it can retain its energy for an indefinite time),

h — h

and _1
is a self-conjugate function.

Hence it follows that <£ also is self-conjugate, and Kxy = Kyx .

101 g.] The expression for the energy may therefore be written

in either of the forms

W
*
=
lxffft

K**P2 +K">Q* +K**R2 +2K^QR

or + 2K^RP+ 2KxyPQ] dx dy dz,

W* = 2*[[[[kxxf + kyy g
2 + kzz h

2 + 2kyz gh
JJJ + 2kzx hf+2kxyfg]dxdydz,

where the suffix denotes the vector in terms of which Wis to be

expressed. When there is no suffix, the energy is understood to

be expressed in terms of both vectors.
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We have thus, in all, six different expressions for the energy

of the electric field. Three of these involve the charges and

potentials of the surfaces of conductors, and are given in Art. 87.

The other three are volume-integrals taken throughout the

electric field, and involve the components of electromotive in-

tensity or of electric displacement, or of both.

The first three therefore belong to the theory of action at a

distance, and the last three to the theory of action by means of

the intervening medium.

These three expressions for IP"may be written,

101 A.] To extend Green's Theorem to the case of a hetero-

geneous anisotropic {non-isotropic} medium, we have only to

write in Theorem III, Art. 21,

v T
[~
T, d$

. T, d$> Tr eZ4>"|

tt T r rr d$ Tr d<P
, Tr d4>~|

and we obtain, if I, m, n are the direction cosines of the outward

normal to the surface -(remembering that the order of the suffixes

of the coefficients is indifferent),

JJ*
[(Kxx l +Kyxm + K^n) ^| + (KJ +Kyym +Kxyn)^

+ (K„l+Kyzm +Kzzn)-^ ds

JJJ * Lite^- di+ K*«ty
+K

*'irZ )

d ,j~ d$> „. d<i> j. d<$>\
+
d^y vx di

+ Kvv
ty

+ v*dz~)

+
dz y

K
-!Tx

+ K
°« tiy

+ K" dz)\
dxdyd*
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-fill
v d$>d<$> v d$d<P v d$d<$>

xx dx~dx
+ vv dydy + zz di~di

+
*'\dy dz~

+ dz~dy)
+

"{~dz dx + dx~dz)

+ K"(Sd^ + d^Tx)\
dxdydz

=jj <*> \{Kxx l +Kvxm +Kzxn) -^ + {Kxv l +Kvvm +Kzvn)^
d*l .

ds+ {K*l +Kyzm +Kzzn) -^

rrr^rd/ T7. d$> Tr d$ rr d$>.

+
ty\

vx
dx~
+vv

ty
+ K

«*dz~)

d , Tr d^ Tr dV „ <24\~| 7 , ,

+
dz (

K
°*dx-

+ K
°«-dj

+ K» dz-)\
dxdy dz -

Using quaternion notation, the result may be written more

briefly,

/*/*£. Uv<f>(V<Z>)ds- fff<i>S.{V<l>(V*)}d<r

= -f[fs.V<l>${V<$>)d<?=-[[[s.V<S><t>(V<i>)d<?

= f[<t>S.Uvct>(V*)ds-fff$S.{V<l>(V*)}d<?.

Limits between which the electric capacity of a conductor

'must lie.

102 a.] The capacity of a conductor or system of conductors

has been already defined as the charge of that conductor or system

of conductors when raised to potential unity, all the other con-

ductors in the field being at potential zero.

The following method of determining limiting values between

which the capacity must lie, was suggested by a paper ' On the

Theory of Resonance/ by the Hon. J. W. Strutt, Phil. Trans. 1871.

See Art. 306.

Let s
x denote the surface of the conductor, or system of con-

ductors, whose capacity is to be determined, and s the surface of

all other conductors. Let the potential of s
x
be 4^, and that of

s , \P . Let the charge of s
2
be e

x
. That of s will be — e

x
.
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Then if q is the capacity of s
z ,

and if Wis the energy of the system with its actual distribution

of electricity W= I e1 (%- %), (2)

a 2W e* .

and q = (^%j^2W' (3)

To find an upper limit of the value of the capacity : assume

any value of * which is equal to 1 at sx and equal to zero at s
,

and calculate the value of the volume-integral

extended over the whole field.

Then as we have proved (Art. 99 b) that W cannot be greater

than If*, the capacity, q, cannot be greater than 2W*.

To find a lower limit of the value of the capacity : assume

any system of values of/, g, h, which satisfies the equation

dx + dy + dz~ '
K '

and let it make / / (l
xf+mx g+ n^h) dsx

= e
l

. (6)

Calculate the value of the volume-integral

W* = 2Trf[f(f
2 + g

2 + k2)dxdydz
> (7)

extended over the whole field ; then as we have proved (Art. 100t:)

that W cannot be greater than W® , the capacity, q, cannot be less

than e
a

_ri- . (8)

The simplest method of obtaining a system of values of/, g, h,

which will satisfy the solenoidal condition, is to assume a distribu-

tion of electricity on the surface of slf and another on s ,
the sum

of the charges being zero, then to calculate the potential, *, due

to this distribution, and the electric energy of the system thus

arranged.

If we then make

1 d* _ Id* r__JL^*J~~ 4^r~dx' g ~~~4^rdy' ~ 4tt dz
'

these values off, g, h will satisfy the solenoidal condition.
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But in this case we can determine W& without going through

the process of finding the volume-integral. For since this solu-

tion makes V 2* = at all points in the field, we can obtain W®
in the form of the surface-integrals,

W
»
=
Iff*"1 *8

*
+
Iff*"

*80 ' (9)

where the first integral is extended over the surface s
t
and the

second over the surface s .

If the surface s is at an infinite distance from Sj , the potential

at s is zero and the second term vanishes.

102 6.] An approximation to the solution of any problem of

the distribution of electricity on conductors whose potentials are

given may be made in the following manner :

—

Let Sj be the surface of a conductor or system of conductors

maintained at potential l,and let s be the surface of all the other

conductors, including the hollow conductor which surrounds the

rest, which last, however, may in certain cases be at an infinite

distance from the others.

Begin by drawing a set of lines, straight or curved, from

Sj to s .

Along each of these lines, assume * so that it is equal to 1 at

«19 and equal to at s . Then if P is a point on one of these

lines {Sj ands the points where the line cuts the surfaces} we may
Ps

take *, = —- as a first approximation.
1

»i«o

We shall thus obtain a first approximation to * which satisfies

the condition of being equal to unity at sx and equal to zero at s .

The value of Jf£ calculated from ^ would be greater than W.
Let us next assume as a second approximation to the lines of

force

, d% d% , d%

The vector whose components &ref,g, h is normal to the surfaces

for which <S*
t

is constant. Let us determine p so as to make
/, g, h satisfy the solenoidal condition. We thus get

(

d?% #*,i,^*iU dpd*
x dpd% dpd%_

^W +
dtf

+
dz*> + dx dx +

dlj~ty
+ dz~dJ~°' (11)

Ifwe draw a line from 81 to s whose direction is always normal
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to the surfaces for which 4/
1

is constant, and if we denote the

length of this line measured from s by s, then

ndx _ d$>
x T>dy _ d% T>dz _ d^

x

ds dx '

ds dy
'

ds
~~

dz
'

d^
where R is the resultant intensity = j^, so that

dpd% dpd^
x

dpd%_ dp
dx dx dy dy dz dz ~ ds'

(12)

= R*^-, (13)

and equation (11) becomes

pw =*..*,
(14)

whence p=Cexp. ~m^d^lf (15)

the integral being a line integral taken along the line s.

Let us next assume that along the line s,

d% _ dx dy dz

ds
~J'ds

+ 9
d~s

+
ds'

d%

then % = C^ (exp.J^d^) d*lt (17)

the integration being always understood to be performed along
the line s.

The constant C is now to be determined from the condition

that SP
2 = 1 at sx when also ^ = 1, so that

tfW'W**' 1, (i8)

This gives a second approximation to *, and the process may
be repeated.

The results obtained from calculating J^, TJ£>
2 , T^

2 , &c, give

capacities alternately above and below the true capacity and
continually approximating thereto.

The process as indicated above involves the calculation of the

form of the line s and integration along this line, operations

which are in general too difficult for practical purposes.
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In certain cases however we may obtain an approximation by

a simpler process.

102 c] As an illustration of this method, let us apply it to

obtain successive approximations to the equipotential surfaces

and lines of induction in the electric field between two surfaces

which are nearly but not exactly plane and parallel, one of

which is maintained at potential zero, and the other at potential

unity.

Let the equations of the two surfaces be

«i =/i («» 30 = a (19)

for the surface whose potential is zero, and

s2 =/2 (*,2/) = & (20)

for the surface whose potential is unity, a and b being- given

functions of x and y, of which b is always greater than a. The

first derivatives of a and 6 with respect to x and y are small

quantities of which we may neglect powers and products of more

than two dimensions.

We shall begin by supposing that the lines of induction are

parallel to the axis of z, in which case

/=0, 9=0, g=0. (21)

Hence h is constant along each individual line of induction,

and * = -4T:f
Z

hdz = -4:Tth(z-a). (22)
Ja

When = 6,*= 1, hence

h = -T-7j; \» (
23

)

and * = r=^. (
24

)
b— a

which gives a first approximation to the potential, and indicates

a series of equipotential surfaces the intervals between which,

measured parallel to 2, are equal.

To obtain a second approximation to the lines of induction,

let us assume that they are everywhere normal to the equi-

potential surfaces as given by equation (24).

This is equivalent to the conditions

4ir/ = A-T-, 4ng=X-=-> 47r«. = A-T-, (25)J dx y dy dz* v J
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where A is to be determined so that at every point of the field

dh . .

(26)dx dy dz '

and also so that the line-integral

.dx dy
. Ct -dx dy 7 dz. ,
4^H + o^ + h

dJ ds
- (27)

taken along any line of induction from the surface a to the

surface b, shall be equal to —1.

Let us assume

A = l+A + B(z-a)+G(z-a)2
, (28)

and let us neglect powers and products of A, B, C, and at this

stage of our work powers and products of the first derivatives of

a and b.

The solenoidal condition then gives

B=-V2
a, = _ i

Y^=±),
o—a (29)

(30)
^dx2 ^ dy2

If instead of taking the line-integral along the new line of

induction, we take it along the old line of induction, parallel to

z, the second condition gives

1 = l+A + lB(b-a) + kC(b-a)\
Hence A = \{b-a) V2 (2a + 6), (31)

and

\=l + i(b-a)V^2a+ b)-(z-a)V2a-\^^V*(b-a). (32)

We thus find for the second approximation to the components
of displacement,

k Vda d(b—a)z—a~\
\-4*f= b—a\_dx +

dx

z—a\
b^aY

_ A Vda d(b—a)z— a]

b—a\_dy dy b— aj

4ir/i
b~a

(33)

and for the second approximation to the potential,

* z—a^ +\V2 {2a + b){z-a)-\V2a^^
-iV2 (b-a)

(z-af
{b-af

(34)
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If <r„ and <rh are the surface-densities and *a and $>
b the poten-

tials of the surfaces a and b respectively,

* { This investigation is not very rigorous, and the expressions for the surface density

do not agree with the results obtained by rigorous methods for the cases of two
spheres, two cylinders, a sphere and plane, or a cylinder and plane placed close

together. We can obtain an expression for the surface density as follows. Let us'

assume that the axis of z is an axis of symmetry, then the axis will cut all the equi-

potential surfaces at right angles, and if V is the potential, B
1
B2 the principal radii

of curvature of an equipotential surface where it is cut by the axis ofz, the solenoidal

condition along the axis of z may easily be shown to be

dz*
+ \R

1
B 2

) dz

lfVA ,VB are the potentials of the two surfaces respectively, t the distance between

the surfaces along the axis of z,

or if BA , BA denote the principal radii of curvature of the first surfaces, substituting

r dW
far-r-j from the differential equation, we get

*-*-' Gar),!
1-*' is;

+ s^ }-'

but (
—

) = — 4 iroA\dzJA
when aA is the surface density where the axis of z cut the first surface, hence

similarly aB = — ^ B~ A
'-

\ 1 + £ t \ -=— + -5— \ > approximately,
in t

I
I £

Bi Kb
2

>
)

and these expressions agree in the cases before mentioned with those obtained by

rigorous methods.

}



CHAPTER V.

MECHANICAL ACTION BETWEEN TWO ELECTRICAL SYSTEMS.

103.] Let E
x
and E2 be two electrical systems the mutual

action between which we propose to investigate. Let the dis-

tribution of electricity in E
x
be defined by the volume-density,

px , of the element whose coordinates are xx ,yx , zx . Let p2 be the

volume-density of the element of E2 , whose coordinates are

*^2' 2/2> ^2*

Then the as-component of the force acting on the element of Ex

on account of the repulsion of the element of E2 will be

x — x
P1P2

'

r3

2 dx
x
dy

x
dz

x
dx2dy2

dz2 ,

where r2 = (x
x
- x2f + (yx- y2f + (z

x
- z2f,

and if A denotes the aj-component of the whole force acting onE
x

on account of the presence ofE2

A =
ffffff

i^^PlPzdXldyidZldx2dyidz2 ' W
where the integration with respect to xlt yx , z

x
is extended

throughout the region occupied by Ex , and the integration with

respect to x2,y2f z2 is extended throughout the region occupied

Since, however, px
is zero except in the systemE

x , and p2 is zero

except in the system E2 , the value of the integral will not be

altered by extending the limits of the integrations, so that we
may suppose the limits of every integration to be ± °°

.

This expression for the force is a literal translation into mathe-

matical symbols of the theory which supposes the electric force

to act directly between bodies at a distance, no attention being

bestowed on the intervening medium.

If we now define *
2 , the potential at the point a^, yx , z

x ,

arising from the presence of the system E2) by the equation

**=fffr *"*******' W
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*2 will vanish at an infinite distance, and will everywhere satisfy

the equation y2vj,
2
_ 4 _

p^ (3)

We may now express A in the form of a triple integral

A =
~JJjd^ PldXldyidZl ' ^

Here the potential ^2
is supposed to have a definite value at

every point of the field, and in terms of this, together with the

distribution, px , of electricity in the first system E
x , the force A is

expressed, no explicit mention being made of the distribution of

electricity in the second system E
2

.

Now let ^ be the potential arising from the first system,

expressed as a function of x, y, z, and defined by the equation

%=fff^dxx
dy

x
dz

x , (5)

<i>
x
will vanish at an infinite distance, and will everywhere satisfy

the equation V2^ _ 4irpi# (6)

We may now eliminate px
from A and obtain

A —hfff%**>d*>d**» (7)

in which the force is expressed in terms of the two potentials

only.

104.] In all the integrations hitherto considered^ it is in-

different what limits are prescribed, provided they include the

whole of the system E
x

. In what follows we shall suppose the

systems E
x
and E

2 to be such that a certain closed surface s

contains within it the whole of E
x
but no part of E

2
.

Let us also write

p = Pl + P2 , * = *
1
+ *2 , (8)

then within s, n _ ft n — nP% — u
> H — Hit

and without s,
Pl =o, p = p.r (9)

Now A xx
=
-fff

C

^ Pxdxx
dy

x
dz

x (10)

represents the resultant force, in the direction x, on the system

E
x
arising from the electricity in the system itself. But on the

theory of direct action this must be zero, for the action of any

particle P on another Q is equal and opposite to that of Q on P,

and since the components of both actions enter into the integral,

they will destroy each other.
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We may therefore write

where is the potential arising from both systems, the integration

being now limited to the space within the closed surface s, which

includes the whole of the system E
1
but none of E

2
.

105.] If the action of E
2
on E

l
is effected, not by direct action

at a distance, but by means of a distribution of stress in a medium
extending continuously from E

% to E
x , it is manifest that if we

know the stress at every point of any closed surface s which

completely separates E
x
from E2> we shall be able to determine

completely the mechanical action of E
2
on E

x
. For if the force

on E
x

is not completely accounted for by the stress through s,

there must be direct action between something outside of s and

something inside of s.

Hence if it is possible to account for the action of E2 on Ex
by

means of a distribution of stress in the intervening medium, it

must be possible to express this action in the form of a surface

-

integral extended over any surface s which completely separates

E2 from Ev
Let us therefore endeavour to express

^d<j> rd2* d2* d2*
dx \_dx2 dy2 dz2

.

in the form of a surface integral.

By Theorem III, Art. 21, we may do so if we can determine X,
Y and Z, so that

dV
{

dW <P* &*\_d^ dY dZ
dx ^ dx2 dy2 dz2 ' ~ dx dy dz ^ '

Taking the terms separately,

<PVd?V _ 1 d
(d*-f

dx dx2 ~ 2 dx ^ dx '
'

d<i>d2* _ jtf ,d*d*s _ d* d2*
dx dy2 ~ dy^dx dy' dy dxdy

_ d (d^d^\ _ 1 d /<^\ 2

dot V dxr. d,n ' 2 Her. \ dm )

IttJJJ
'(

dxdydz (12)

dy^dx dy' 2dx^dy-

s
. . d*d2

<i> _ d ,dVd*. 1 d M^
^ dx dz2 ~~ dz^dx dz ) 2dx^-dz'
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If, therefore, we write

^dy' \dz'' 8*Pxx, \

,d*s 2 ,c£4\ 2 .d^2
a

sdVv* ,d4\ 2 ,d<t>, 2
a

dy

d*d* „

^ Tz
=**pvz = ^pzv ,

\

d^d^
dz dx

d^d*
c?03 c?2/

— ^*

= 4TTpzx = 4!TTpx

(14)

= **Pvx'> I

then =///(
d[p«

+ ~J7T + ^f)dxdydz, (15)
dx dy ^ dz

the integration being extended throughout the space within s.

Transforming the volume-integral by Theorem III, Art. 21,

A =
jj (lPxx + mPyx+ Up^ ds

' (16)

where ds is an element of any closed surface including the whole

of E
1
but none of E

2 , and I, m, n are the direction cosines of the

normal drawn from ds outwards.

For the components of the force on E
x
in the directions of y

and z, we obtain in the same way

B
~Jj (

lp*v + mPvv + nPz^ ds
'

C =
JJ P̂zz + mPyz + nPzz^ d8 '

(17)

(18)

If the action of the system E
% on Ex

does in reality take place

by direct action at a distance, without the intervention of any

medium, we must consider the quantities pxx &c. as mere abbre-

viated forms for certain symbolical expressions, and as having

no physical significance.

But if we suppose that the mutual action between E.2 andEx
is

kept up by means of stress in the medium between them, then

since the equations (16), (17), (18) give the components of the re-

sultant force arising from the action, on the outside of the surface

s, of the stress whose six components are pxx &c, we must
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consider pxx &c. as the components of a stress actually existing

in the medium.

106.] To obtain a clearer view of the nature of this stress let

us alter the form of part of the surface s so that the element ds

may become part of an equipotential surface. (This alteration of

the surface is legitimate provided we do not thereby exclude any
part ofEx

or include any part of E2 .)

Let v be a normal to ds drawn outwards.

dty
Let R = — ~T— be the intensity of the electromotive intensity

in the direction of v, then

d* D7 d* p d*— = — Rl, -j- = —Rm, ~j- = —Rn.
dx dy dz

Hence the six components of the stress are

P" = ^R2 P
2~m2~ n2

)> Pv = TZR2™<n,

p„ = ^R*{m*-n*-l% pzx = ~R*nl,

pz%
= i-

JR2(7l2_ Z2_m2
)j pxv = -LRHm.

If a, b, c are the components of the force on ds per unit of area,

1

8^
a = lpxx+mpvx + np^ = — RH,

b = — R2m,
Bit

c = i- R2n.
87T

Hence the force exerted by the part of the medium outside ds

on the part of the medium inside ds is normal to the element

and directed outwards, that is to say, it is a tension like that of

a rope, and its value per unit of area is— R2
.

Let us next suppose that the element ds is at right angles

to the equipotential surfaces which cut it, in which case

7d# dy d^> . / 1Q x

dx dy dz

Now Svilp^ +mp^ + TipJ) = l\{fa) - V^j ~ Vfa) J

2m—— +2n—— • (20)
dx dy dx dz
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dV
Multiplying (19) by 2 -r- and subtracting from (20), we find

S^(lpxx +mpt/x
+npzx) = -l[(-^) +(^) +(^)J

= -lR\ (21)

Hence the components of the tension per unit of area of ds are

b = — — jR2m,
07T

c = — — R2 n.
8tt

Hence if the element ds is at right angles to an equipotential

surface, the force which acts on it is normal to the surface, and
its numerical value per unit of area is the same as in the former

case, but the direction of the force is different, for it is a pressure

instead of a tension.

We have thus completely determined the type of the stress at

any given point of the medium.

The direction of the electromotive intensity at the point is a

principal axis of stress, and the stress in this direction is a tension

whose numerical value is

P = ¥i
R*>

(
22

>

where R is the electromotive intensity.

Any direction at right angles to this is also a principal axis of

stress, and the stress along such an axis is a pressure whose
numerical magnitude is also p.

The stress as thus defined is not of the most general type, for

it has two of its principal stresses equal to each other, and the
third has the same value with the sign reversed.

These conditions reduce the number of independent variables

which determine the stress from six to three, accordingly it is

completely determined by the three components of the electro-

motive intensity

_d* d* d*
dx ' dy ' ~"dz

'
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The three relations between the six components of stress are

P\z = (Pzz+Pvv) (Pzz+Pxz), \

P
2
zx = (PVV +P*z) {Pzx+P„p)> > (23)

V\y = (Pzz +Pxx) (Pw +Pzz)- >

107.] Let us now examine whether the results we have obtained

will require modification when a finite quantity of electricity is

collected on a finite surface so that the volume-density becomes

infinite at the surface.

In this case, as we have shewn in Arts. 78 a, 78 6, the com-

ponents of the electromotive intensity are discontinuous at the

surface. Hence the components of stress will also be discon-

tinuous at the surface.

Let I, m, n be the direction cosines of the normal to ds. Let

P, Q, R be the components of the electromotive intensity on the

side on which the normal is drawn, and P/

, Q\ B! their values

on the other side.

Then by Arts. 78 a and 78 b, if <r is the surface-density

Q-Q' = 4,r<rm, t (24)

R~R' = 4ii<m. )

Let a be the ^-component of the resultant force acting on

the surface per unit of area, arising from the stress on both sides,

then

a = I (Pxx-p'xx) +m (pxv -p'xv)+n (p„-p'„),

= t-1 {(i*-P'2)-(Q2 -Q'2)-(£2-£'2
)}

o It

+ ~m(PQ-P'Q') + -L n{PR-P'R%
4lT 4.TT

= U {(P-P') (P+ P')-(Q-Q') (Q + Q')-(R-R>) (R + R>)}
OTt

+ ±m{(P-P')(Q + Q') + (P+P')(Q-Q')}
OTT

+ ±-n{{P-Pf){R+R')+{P +Pf

)
(R-R')},

o It

= h (T {l(P+ P')-m(Q + Q')-n(R + R')}

+ l-m<r{l(Q + Q')+m(P + P')}+ln<r{l(R + R') + n(P+ P')},
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Hence, assuming that the stress at any point is given by-

equations (14), we find that the resultant force in the direction

of a; on a charged surface per unit of volume is equal to the

surface-density multiplied into the arithmetical mean of the x-

components of the electromotive intensities on the two sides of the

surface.

This is the same result as we obtained in Art. 79 by a process

essentially similar.

Hence the hypothesis of stress in the surrounding medium is

applicable to the case in which a finite quantity of electricity is

collected on a finite surface.

The resultant force on an element of surface is usually deduced

from the theory of action at a distance by considering a portion

of the surface, the dimensions of which are very small compared

with the radii of curvature of the surface *.

On the normal to the middle point of this portion of the surface

take a point P whose distance from the surface is very small com-

pared with the dimensions of the portion of the surface. The

electromotive intensity at this point, due to the small portion of

the surface, will be approximately the same as if the surface had

been an infinite plane, that is to say 2 it a in the direction of the

normal drawn from the surface. For a point P' just on the other

side of the surface the intensity will be the same, but in the

opposite direction.

Now consider the part of the electromotive intensity arising

from the rest of the surface and from other electrified bodies at

a finite distance from the element of surface. Since the points

P and P' are infinitely near one another, the components of the

electromotive intensity arising from electricity at a finite distance

will be the same for both points.

Let PQ be the sc-component of the electromotive intensity on

A or A' arising from electricity at a finite distance, then the total

value of the ^-component for A will be

P = P + 2tt(tI,

and for A' P' = P -2tt<tI.

Hence P = l(P + P').

Now the resultant mechanical force on the element of surface

must arise entirelyfrom the action of electricity at a finite distance,

* This method is due to Laplace. See Poisson, ' Sur la Distribution de l'electricite"

&c.' Mem. de I'Institut, 1811, p. 30.
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since the action of the element on itself must have a resultant zero.

Hence the as-component of this force per unit of area must be

= \*{P + P').

108.] If we define the potential (as in equation (2)) in terms

of a distribution of electricity supposed to be given, then it follows

from the fact that the action and reaction between any pair of

electric particles are equal and opposite, that the ^-component of

the force arising from the action of a system on itself must be

zero, and we may write this in the form

But if we define * as a function of x, y, z which satisfies the

equation ^q> = q

at every point outside the closed surface s, and is zero at an infinite

distance, the fact, that the volume-integral extended throughout

any space including s is zero, would seem to require proof.

One method of proof is founded on the theorem (Art. 100 c), that

if V2* is given at every point, and * = at an infinite distance,

then the value of * at every point is determinate and equal to

*'= — fff- V
2* dxdydz, (27)

where r is the distance between the element dx dy dz at which the

concentration of * is given = V 2* and the point x', y' , z' at which
*' is to be found.

This reduces the theorem to what we deduced from the first

definition of *.

But when we consider ^ as the primary function of x, y, z, from
which the others are "derived, it is more appropriate to reduce (26)

to the form of a surface-integral,

A = ff (lP** +mP*» + nP**) dS> (
2 8)

and if we suppose the surface $ to be everywhere at a great

distance a from the surface s, which includes every point where
V2^ differs from zero, then we know that ^ cannot be numerically

greater than e/a, where 4 ire is the volume-integral of V 2*, and that

R cannot be greater than —d^/da or e/a2, and that the quantities

Pxxi pxyiPxz can none of them be greater than p, i.e. H2/8tt or

e i/8ira 4:
. Hence the surface-integral taken over a sphere whose
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radius is very great and equal to a cannot exceed e
2/2a2

, and

•when a is increased without limit, the surface-integral must be-

come ultimately zero.

But this surface-integral is equal to the volume-integral (26),

and the value of this volume-integral is the same whatever be

the size of the space enclosed within S, provided S encloses every

point at which V2* differs from zero. Hence, since the integral

is zero when a is infinite, it must also be zero when the limits of

integration are defined by any surface which includes every

point at which V2* differs from zero.

109.] The distribution of stress considered in this chapter is

precisely that to which Faraday was led in his investigation

of induction through dielectrics. He sums up in the following

words :

—

' (1297) The direct inductive force, which may be conceived to

be exerted in lines between the two limiting and charged con-

ducting surfaces, is accompanied by a lateral or transverse force

equivalent to a dilatation or repulsion of these representative

lines (1224); or the attractive force which exists amongst the

particles of the dielectric in the direction of the induction is

accompanied by a repulsive or a diverging force in the transverse

direction.

'(1298) Induction appears to consist in a certain polarized

state of the particles, into which they are thrown by the elec-

trified body sustaining the action, the particles assuming positive

and negative points or parts, which are symmetrically arranged

with respect to each other and the inducting surfaces or particles.

The state must be a forced one, for it is originated and sustained

only by force, and sinks to the normal or quiescent state when

that force is removed. It can be continued only in insulators

by the same portion of electricity, because they only can retain

this state of the particles.'

This is an exact account of the conclusions to which we have

been conducted by our mathematical investigation. At every

point of the medium there is a state of stress such that there is

tension along the lines of force and pressure in all directions

at right angles to these lines, the numerical magnitude of the

pressure being equal to that of the tension, and both varying as

the square of the resultant force at the point.

The expression ' electric tension ' has been used in various
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seDses by different writers. I shall always use it to denote the

tension along the lines of force, which, as we have seen, varies

from point to point, and is always proportional to the square of

the resultant force at the point.

1 10.] The hypothesis that a state of stress of this kind exists

in a fluid dielectric, such as air or turpentine, may at first sight

appear at variance with the established principle that at any
point in a fluid the pressures in all directions are equal. But
in the deduction of this principle from a consideration of the

mobility and equilibrium of the parts of the fluid it is taken for

granted that no action such as that which we here suppose to

take place along the lines of force exists in the fluid. The state

of stress which we have been studying is perfectly consistent

with the mobility and equilibrium of the fluid, for we have seen
that, if any portion of the fluid is devoid of electric charge, it

experiences no resultant force from the stresses on its surface,

however intense these may be. It is only when a portion of the

fluid becomes charged that its equilibrium is disturbed by the

stresses on its surface, and we know that in this case it actually

tends to move. Hence the supposed state of stress is not incon-

sistent with the equilibrium of a fluid dielectric.

The quantity W, which was investigated in Chapter IV,

Art. 99 a, may be interpreted as the energy in the medium due
to the distribution of stress. It appears from the theorems of

that chapter that the distribution of stress which satisfies the

conditions there given also makes W an absolute minimum.
Now when the energy is a minimum for any configuration, that

configuration is one of equilibrium, and the equilibrium is stable.

Hence the dielectric, when subjected to the inductive action of

electrified bodies, will of itself take up a state of stress distributed

in the way we have described *.

It must be carefully borne in mind that we have made only
one step in the theory of the action of the medium. We have
supposed it to be in a state of stress, but we have not in any
way accounted for this stress, or explained how it is maintained.

This step, however, seems to me to be an important one, as it

* {The subject of the stress in the medium, will be further considered in the Sup-
plementary Volume, it may however be noticed here that the problem of finding a
system of stresses which will produce the same forces as those existing in the electric
field is one which lias an infinite number of solutions. That adopted by Maxwell is
one that could not in general be produced by strains in an elastic solid.

}
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explains, by the action of the consecutive parts of the medium,

phenomena which were formerly supposed to be explicable only

by direct action at a distance.

111.] I have not been able to make the next step, namely, to

account by mechanical considerations for these stresses in the

dielectric. I therefore leave the theory at this point, merely

stating what are the other parts of the phenomenon of induction

in dielectrics.

I. Electric Displacement. When induction is transmitted

through a dielectric, there is in the first place a displacement of

electricity in the direction of the induction. For instance, in a

Leyden jar, of which the inner coating is charged positively and

the outer coating negatively, the direction of the displacement

of positive electricity in the substance of the glass is from within

outwards.

Any increase of this displacement is equivalent, during the

time of increase, to a current of positive electricity from within

outwards, and any diminution of the displacement is equivalent

to a current in the opposite direction.

The whole quantity of electricity displaced through any area

of a surface fixed in the dielectric is measured by the quantity

which we have already investigated (Art. 75) as the surface-

integral of induction through that area, multiplied by K/4tt,

where K is the specific inductive capacity of the dielectric.

II. Surface charge of the particles of the dielectric. Conceive

any portion of the dielectric, large or small, to be separated (in

imagination) from the rest by a closed surface, then we must

suppose that on every elementary portion of this surface there

is a charge measured by the total displacement of electricity

through that element of surface reckoned inwards.

In the case of the Leyden jar of which the inner coating is

charged positively, any portion of the glass will have its inner

side charged positively and its outer side negatively. If this

portion be entirely in the interior of the glass, its surface charge

will be neutralized by the opposite charge of the parts in contact

with it, but if it be in contact with a conducting body, which is

incapable of maintaining in itself the inductive state, the surface

charge will not be neutralized, but will constitute that apparent

charge which is commonly called the Charge of the Conductor.

The charge therefore at the bounding surface of a conductor
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and the surrounding dielectric, which on the old theory was
called the charge of the conductor, must be called in the theory

of induction the surface charge of the surrounding dielectric.

According to this theory, all charge is the residual effect of the

polarization of the dielectric. The polarization exists throughout

the interior of the substance, but it is there neutralized by the

juxtaposition of oppositely charged parts, so that it is only at

the surface of the dielectric that the effects of the charge become

apparent.

The theory completely accounts for the theorem of Art. 77,

that the total induction through a closed surface is equal to the

total quantity of electricity within the surface multiplied by 4 it.

For what we have called the induction through the surface is

simply the electric displacement multiplied by 4 it, and the total

displacement outwards is necessarily equal to the total charge

within the surface.

The theory also accounts for the impossibility of communi-
cating an ' absolute charge ' to matter. For every particle of the

dielectric has equal and opposite charges on its opposite sides,

if it would not be more correct to say that these charges are only

the manifestations of a single phenomenon, which we may call

Electric Polarization.

A dielectric medium, when thus polarized, is the seat of

electric energy, and the energy in unit of volume of the

medium is numerically equal to the electric tension on unit of

area, both quantities being equal to half the product of the

displacement and the resultant electromotive intensity, or

OTT si.

where p is the electric tension, 2) the displacement, (S the electro-

motive intensity, and K the specific inductive capacity.

If the medium is not a perfect insulator, the state of con-

straint, which we call electric polarization, is continually giving

way. The medium yields to the electromotive force, the electric

stress is relaxed, and the potential energy of the state of con-

straint is converted? into heat. The rate at which this decay of

the state of polarization takes place depends on the nature of the

medium. In some kinds of glass, days or years may elapse

before the polarization sinks to half its original value. In copper,

a similar change is effected in less than the billionth of a second.
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We have supposed the medium after being polarized to be

simply left to itself. In the phenomenon called the electric

current the constant passage of electricity through the medium

tends to restore the state of polarization as fast as the con-

ductivity of the medium allows it to d§cay. Thus the external

agency which maintains the current is always doing work in

restoring the polarization of the medium, which is continually

becoming relaxed, and the potential energy of this polarization

is continually becoming transformed into heat, so that the final

result of the energy expended in maintaining the current is to

gradually raise the temperature of the conductor, till as much

heat is lost by conduction and radiation from its surface as is

generated in the same time by the electric current.



CHAPTER VI.

ON POINTS AND LINES OF EQUILIBEIUM.

112.] If at any point of the electric field the resultant force is

zero, the point is called a Point of equilibrium.

If every point on a certain line is a point of equilibrium, the

line is called a Line of equilibrium.

The conditions that a point shall be a point of equilibrium are

that at that point

— -0 —-0 —-0
dx~~ ' dy ~ ' dz

~

At such a point, therefore, the value of V is a maximum, or

a minimum, or is stationary, with respect to variations of the

coordinates. The potential, however, can have a maximum or a

minimum value only at a point charged with positive or with

negative electricity, or throughout a finite space bounded by a

surface charged positively or negatively. If, therefore, a point

of equilibrium occurs in an uncharged part of the field the po-

tential must be stationary, and not a maximum or a minimum.
In fact, a condition for a maximum or minimum is that

drV <PV d2V
dx" dy*>

a
dz*

must be all negative or all positive, if they have finite values.

Now, by Laplace's equation, at a point where there is no

charge, the sum of these three quantities is zero, and therefore

this condition cannot be satisfied.

Instead of investigating the analytical conditions for the cases

in which the components of the force simultaneously vanish, we
shall give a general proof by means of the equipotential surfaces.

If at any point, P, there is a true maximum value of V, then,

at all other points in the immediate neighbourhood of P, the

value of V is less than at P. Hence P will be surrounded by a

series of closed equipotential surfaces, each outside the one before
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it, and at all points of any one of these surfaces the electrical

force will be directed outwards. But we have proved, in

Art. 76, that the surface-integral of the electromotive intensity

taken over any closed surface gives the total charge within that

surface multiplied by 47r. Now, in this case the force is every-

where outwards, so that the surface-integral is necessarily posi-

tive, and therefore there is a positive charge within the surface,

and, since we may take the surface as near to P as we please,

there is a positive charge at the point P.

In the same way we may prove that if V is a minimum at P,

then P is negatively charged.

Next, let P be a point of equilibrium in a region devoid of

charge, and let us describe a sphere of very small radius round

P, then, as we have seen, the potential- at this surface cannot be

everywhere greater or everywhere less than at P. It must

therefore be greater at some parts of the surface and less at

others. These portions of the surface are bounded by lines in

which the potential is equal to that at P. Along lines drawn

from P to points at which the potential is less than that at P
the electrical force is from P, and along lines drawn to points of

greater potential the force is towards P. Hence the point P is

a point of stable equilibrium for some displacements, and of

unstable equilibrium for other displacements.

113.] To determine the number of the points and lines of equi-

librium, let us consider the surface or surfaces for which the

potential is equal to C, a given quantity. Let us call the regions

in which the potential is less than C the negative regions, and

those in which it is greater than G the positive regions. Let

% be the lowest, and Vx the highest potential existing in the

electric field. If we make C = %, the negative region will in-

clude only the point or conductor of lowest potential, and this

is necessarily charged negatively. The positive region consists

of the rest of space, and since it surrounds the negative region

it is periphractic. See Art. 18.

If we now increase the value of C, the negative regioh. will

expand, and new negative regions will be formed round nega-

tively charged bodies. For every negative region thus formed

the surrounding positive region acquires one degree of peri-

phraxy.

As the different negative regions expand, two or more of them
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may meet in a point or a line. If n + 1 negative regions meet,

the positive region loses n degrees of periphraxy, and the point

or the line in which they meet is a point or line of equilibrium

of the nth. degree.

When G becomes equal to Yx the positive region is reduced to

the point or the conductor of highest potential, and has therefore

lost all its periphraxy. Hence, if each point or line of equilibrium

counts for one, two, or n, according to its degree, the number so

made up by the points or lines now considered will be less by

one than the number of negatively charged bodies.

There are other points or lines of equilibrium which occur

where the positive regions become separated from each other,

and the negative region acquires periphraxy. The number of

these, reckoned according to their degrees, is less by one than

the number of positively charged bodies.

If we call a point or line of equilibrium positive when it is the

meeting-place of two or more positive regions, and negative when
the regions which unite there are negative, then, if there are p
bodies positively and ?i bodies negatively charged, the sum of

the degrees of the positive points and lines of equilibrium will be

p— 1, and that of the negative ones n— 1. The surface which
surrounds the electrical system at an infinite distance from it is

to be reckoned as a body whose charge is equal and opposite to

the sum of the charges of the system.

But, besides this definite number of points and lines of equi-

librium arising from the junction of different regions, there may
be others, of which we can only affirm that their number must
be even. For if, as any one of the negative regions expands, it

meets itself, it becomes a cyclic region, and it may acquire, by
repeatedly meeting itself, any number of degrees of cyclosis, each

of which corresponds to the point or line of equilibrium at which
the cyclosis was established. As the negative region continues

to expand till it fills all space, it loses every degree of cyclosis

it has acquired, and becomes at last acyclic. Hence there is a

set of points or lines of equilibrium at which cyclosis is lost, and
these are equal in number of degrees to those at which it is

acquired.

If the form of the charged bodies or conductors is arbitrary,

we can only assert that the number of these additional points or

lines is even, but if they are charged points or spherical con-
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ductors, the number arising in this way cannot exceed

(n— 1) (n -5 2), where n is the number of bodies *.

1 14.] The potential close to any point P may be expanded in

the series y=V+H1 +H2 + &c.

;

where HXi H2 , &c. are homogeneous functions of x, y, z, whose

dimensions are 1 , 2, &c. respectively.

Since the first derivatives of V vanish at a point of equi-

librium, H
1
= 0, if P be a point of equilibrium.

Let Hn be the first function which does not vanish, then close

to the point P we may neglect all functions of higher degrees as

compared with Hn .

Now Hn =
is the equation of a cone of the degree n, and this cone is the

cone of closest contact with the equipotential surface at P.

It appears, therefore, that the equipotential surface passing

through P has, at that point, a conical point touched by a cone

of the second or of a higher degree. The intersection of this

cone with a sphere whose centre is the vertex is called the

Nodal line.

If the point P is not on a line of equilibrium the nodal line

does not intersect itself, but consists of n or some smaller number
of closed curves.

If the nodal line intersects itself, then the point P is on a line

of equilibrium, and the equipotential surface through P cuts

itself in that line.

If there are intersections of the nodal line not on opposite

points of the sphere, then P is at the intersection of three or

more lines of equilibrium. For the equipotential surface through

P must cut itself in each line of equilibrium.

115.] If n sheets of the same equipotential surface intersect,

they must intersect at angles each equal to ir/n.

For let the tangent to the line of intersection be taken as the

axis of z, then d2 V/dz2 = 0. Also let the axis of x be a tangent

to one of the sheets, then d 2 V/dx2 = 0. It follows from this, by
Laplace's equation, that d?V/dy2 = 0, or the axis of y is a tangent

to the other sheet.

This investigation assumes that H
2

is finite. If H2 vanishes,

let the tangent to the line of intersection be taken as the axis

* { I have not been able to find any place where this result is proved. I
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of z, and let x = r cos 0, and y = r sin 0, then, since

^!Z-0 ^T d2V
-o-

dz2 ' cte2 cfo/
2 '

d2 V ldV \d2V _
dr2 r dr ra

c£0 2
—

'

the solution of which equation in ascending powers of r is

F=^+^
1
rcos(^ + a

1 ) + ^ 2
r2cos(2^ + a2) + &c. + ^ hr"cos(u^ + an).

At a point of equilibrium A
x is zero. If the first term that does

not vanish is that in r* then

V— % = Anr
n cos (n + an ) + terms in higher powers of r.

This equation shews that n sheets of the equipotential surface

V = V intersect at angles each equal to n/n. This theorem was
given by Eankine *.

It is only under certain conditions that a line of equilibrium
can exist in free space, but there must be a line of equilibrium
on the surface of a conductor whenever the surface density of
the conductor is positive in one portion and negative in another.

In order that a conductor may be charged oppositely on
different portions of its surface, there must be in the field some
places where the potential is higher than that of the body and
others where it is lower.

Let us begin with two conductors electrified positively to the
same potential. There will be a point of equilibrium between
the two bodies. Let the potential of the first body be gradually
diminished. The point of equilibrium will approach it, and, at

a certain stage of the process, will coincide with a point on its

surface. During the next stage of the process, the equipotential

surface round the second body which has the same potential as

the first body will cut the surface of the second body at right

angles in a closed curve, which is a line of equilibrium. This

* ' Summary of the Properties of certain Stream Lines,' Phil. Mag., Oct. 1864.
See also, Thomson and Tait's Natural Philosophy. § 780 ; and Eankine and Stokes,
in the Proc. R. S., 1867, p. 468 ; also W. R. Smith, Proc. B. S. Edin. 1869-70, p. 79.

{This investigation is not satisfactory as tfV/dz1 only vanishes along the axis of z.
Rankine's original proof is rigid. Km may be written as

where un , un+ i... are homogeneous functions of x, y of degrees n, n + 1 respectively, the
axis of z is a singular line of degree ». Since Km satisfies V 2Km = 0, we must have

d?un d2 un _
dx*

+
dy< ~ '

or «„ = ^»cos (n9 + a) ; but w„ = is the equation of the tangent planes from the
axis of z to the cone Km = 0, that is of the n sheets of the equipotential surface, hence
these cut at angle v/n. \
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closed curve, after sweeping over the entire surface of the con-

ductor, will again contract to a point ; and then the point of

equilibrium will move off on the other side of the first body, and

will be at an infinite distance when the charges of the two

bodies are equal and opposite.

Earnshaivs Theorem.

116.] A charged body placed in a field of electric force cannot

be in stable equilibrium.

First, let us suppose the electricity of the moveable body A,

and also that of the system of surrounding bodies B, to be fixed

in those bodies.

Let V be the potential at any point of the moveable body due

to the action of the surrounding bodies B, and let e be the

electricity on a small portion of the moveable body A surround-

ing this point. Then the potential energy of A with respect to

-B will be M=2(Ve),

where the summation is to be extended to every charged portion

of A.

Let a, b, c be the coordinates of any charged part of A with

respect to axes fixed in A, and parallel to those of x, y, z. Let

the absolute coordinates of the origin of these axes be £ tj, £

Let us suppose for the present that the body A is constrained

to move parallel to itself, then the absolute coordinates of the

point a, b, c will be

x = £+ a, y = v + b, z = £+c.

The potential of the body A with respect to B may now be

expressed as the sum of a number of terms, in each of which V
is expressed in terms of a, b, c and £ »?, £ and the sum of these

terms is a function of the quantities a,b,c, which are constant

for each point of the body, and of £, tj, £ which vary when the

body is moved.

Since Laplace's equation is satisfied by each of these terms it

is satisfied by their sum, or

d2M d2M <PM _W +W + d£2 "
'

Now let a small displacement be given to A, so that

d£ = ldr, dr] = mdr, d(=ndr;
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and let dM be the increment of the potential ofA with respect to

the surrounding system B.

If this be positive, work will have to be done to increase r,

and there will be a force R = dM/dr tending to diminish r and

to restore A to its former position, and for this displacement

therefore the equilibrium will be stable. If, on the other hand,

this quantity is negative, the force will tend to increase r, and
the equilibrium will be unstable.

Now consider a sphere whose centre is the origin and whose
radius is r, and so small that when the point fixed in the body
lies within this sphere no part of the moveable body A can

coincide with any part of the external system B. Then, since

within the sphere V 2M = 0, the surface-integral

// dr

taken over the surface of the sphere, is zero.

Hence, if at any part of the surface of the sphere dM/dr is

positive, there must be some other part of the surface where it is

negative, and if the body A be displaced in a direction in which
dM/dr is negative, it will tend to move from its original position,

and its equilibrium is therefore necessarily unstable.

The body therefore is unstable even when constrained to move
parallel to itself, and a fortiori it is unstable when altogether

free.

Now let us suppose that the body A is a conductor. We
might treat this as a case of equilibrium of a system of bodies,

the moveable electricity being considered as part of that system,

and we might argue that as the system is unstable when
deprived of so many degrees of freedom by the fixture of its

electricity, it must d fortiori be unstable when this freedom is

restored to it.

But we may consider this case in a more particular way,
thus

—

First, let the electricity be fixed in A, and let A move parallel

to itse]f through the small distance dr. The increment of the

potential of A due to this cause has been already considered.

Next, let the electricity be allowed to move within A into its

position of equilibrium, which is always stable. During this

motion the potential will necessarily be diminished by a quantity

which we may call Cdr.
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Hence the total increment of the potential when the electricity

is free to move will be

and the force tending to bring A back towards its original

position will be dM
dr

where C is always positive.

Now we have shewn that dM/dr is negative for certain

directions of r, hence when the electricity is free to move the

instability in these directions will be increased.



CHAPTEK VII.

FORMS OF THE EQULPOTENTIAL SURFACES AND LINES OF

INDUCTION IN SIMPLE CASES.

117.] We have seen that the determination of the distribution

of electricity on the surface of conductors may be made to depend

on the solution of Laplace's equation

d2V d2V d2V =Q
dx2 dy2 dzl ~~

V being a function of x, y, and z, which is always finite and con-

tinuous, which vanishes at an infinite distance, and which has a

given constant value at the surface of each conductor.

It is not in general possible by known mathematical methods

to solve this equation so as to fulfil arbitrarily given conditions,

but it is easy to write down any number of expressions for the

function V which shall satisfy the equation, and to determine in

each case the forms of the conducting surfaces, so that the func-

tion V shall be the true solution.

It appears, therefore, that what we should naturally call the

inverse problem of determining the forms of the conductors when

the expression for the potential is given is more manageable than

the direct problem of determining the potential when the form of

the conductors is given.

In fact, every electrical problem of which we know the solu-

tion has been constructed by this inverse process. It is therefore

of groat importance to the electrician that he should know what

results have been obtained in this way, since the only method by

which he can expect to solve a new problem is by reducing it to

one of the cases in which a similar problem has been constructed

by the inverse process.

This historical knowledge of results can be turned to account

in two ways. If we are required to devise an instrument for

making electrical measurements with the greatest accuracy, we
may select those forms for the electrified surfaces which corre-
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spond to cases of which we know the accurate solution. If, on

the other hand, we are required to estimate what will be the

electrification of bodies whose forms are given, we may begin

with some case in which one of the equipotential surfaces takes

a form somewhat resembling the given form, and then by a

tentative method we may modify the problem till it more nearly

corresponds to the given case. This method is evidently very

imperfect considered from a mathematical point of view, but it

is the only one we have, and if we are not allowed to choose our

conditions, we can make only an approximate calculation of the

electrification. It appears, therefore, that what we want is a

knowledge of the forms of equipotential surfaces and lines of

induction in as many different cases as we can collect together

and remember. In certain classes of cases, such as those relating

to spheres, there are known mathematical methods by which we
may proceed. In other cases we cannot afford to despise the

humbler method of actually drawing tentative figures on paper,

and selecting that which appears least unlike the figure we
require.

This latter method I think may be of some use, even in cases

in which the exact solution has been obtained, for I find that an

eye-knowledge of the forms of the equipotential surfaces often

leads to a right selection of a mathematical method of solution.

I have therefore drawn several diagrams of systems of equi-

potential surfaces and lines of induction, so that the student may
make himself familiar with the forms of the lines. The methods

by which such diagrams may be drawn will be explained in

Art. 123.

118.] In the first figure at the end of this volume we have the

sections of the equipotential surfaces surrounding two points

charged with quantities of electricity of the same kind and in

the ratio of 20 to 5.

Here each point is surrounded by a system of equipotential

surfaces which become more nearly spheres as they become

smaller, though none of them are accurately spheres. If two of

these surfaces, one surrounding each point, be taken to represent

the surfaces of two conducting bodies, nearly but not quite

spherical, and if these bodies be charged with the same kind of

electricity, the charges being as 4 to 1, then the diagram will

represent the equipotential surfaces, provided we expunge all
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those which are drawn inside the two bodies. It appears from

the diagram that the action between the bodies will be the same

as that between two points having the same charges, these

points being not exactly in the middle of the axis of each body,

but each somewhat more remote than the middle point from the

other body.

The same diagram enables us to see what will be the distribu-

tion of electricity on one of the oval figures, larger at one end

than the other, which surround both centres. Such a body, if

charged with 25 units of electricity and free from external

influence, will have the surface-density greatest at the small end,

less at the large end, and least in a circle somewhat nearer the

smaller than the larger end *.

There is one equipotential surface, indicated by a dotted line,

which consists of two lobes meeting at the conical point P.

That point is a point of equilibrium, and the surface-density

on a body of the form of this surface would be zero at this

point.

The lines of force in this case form two distinct systems,

divided from one another by a surface of the sixth degree,

indicated by a dotted line, passing through the point of equi-

librium, and somewhat resembling one sheet of the hyperboloid

of two sheets.

This diagram may also be taken to represent the lines of force

and equipotential surfaces belonging to two spheres of gravitating

matter whose masses are as 4 to 1

.

119.] In the second figure we have again two points whose

charges are as 20 to 5, but the one positive and the other nega-

tive. In this case one of the equipotential surfaces, that, namely,

corresponding to potential zero, is a sphere. It is marked in the

diagram by the dotted circle Q. The importance of this spherical

surface will be seen when we come to the theory of Electrical

Images.

We may see from this diagram that if two round bodies are

charged with opposite kinds of electricity they will attract each

other as much as two points having the same charges but placed

somewhat nearer together than the middle points of the round

bodies.

* {This can be seen by comparing the distances between the equipotential surfaces
in various parts of the field. \
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Here, again, one of the equipotential surfaces, indicated by a

dotted line, has two lobes, an inner one surrounding the point

whose charge is 5 and an outer one surrounding both bodies,

the two lobes meeting in a conical point P which is a point of

equilibrium.

If the surface of a conductor is of the form of the outer lobe, a

roundish body having, like an apple, a conical dimple at one end

of its axis, then, if this conductor be electrified, we shall be able

to determine the surface-density at any point. That at the

bottom of the dimple will be zero.

Surrounding this surface we have others having a rounded

dimple which flattens and finally disappears in the equipotential

surface passing through the point marked M.

The lines of force in this diagram form two systems divided by
a surface which passes through the point of equilibrium.

If we consider points on the axis on the further side of the

point B, we find that the resultant force diminishes to the double

point P, where it vanishes. It then changes sign, and reaches a

maximum at M, after which it continually diminishes.

This maximum, however, is only a maximum relatively to

other points on the axis, for if we consider a surface through M
perpendicular to the axis, M is a point of minimum force rela-

tively to neighbouring points on that surface.

120.] Figure III represents the equipotential surfaces and

lines of induction due to a point whose charge is 10 placed at A,

and surrounded by a field of force, which, before the introduction

of the charged point, was uniform in direction and magnitude at

every part *.

The equipotential surfaces have each of them an asymptotic

plane. One of them, indicated by a dotted line, has a conical

point and a lobe surrounding the point A. Those below this

surface have one sheet with a depression near the axis. Those

above have a closed portion surrounding A and a separate sheet

with a slight depression near the axis.

If we take one of the surfaces below A as the surface of a

conductor, and another a long way below A as the surface of

another conductor at a different potential, the system of lines

* {Maxwell does not give the strength of the field. M. Cornu however has calcu-

lated the strength of the uniform field from the diagram of the lines of force, and finds

that its electromotive intensity before the introduction of the charged body was
L5.1
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and surfaces between the two conductors will indicate the distri-

bution of electric force. If the lower conductor is very far from

A its surface will be very nearly plane, so that we have here the

solution of the distribution of electricity on two surfaces, both of

them nearly plane and parallel to each other, except that the

upper one has a protuberance near its middle point, which is

more or less prominent according to the particular equipotential

surface we choose.

121.] Figure IV represents the equipotential surfaces and lines

of induction due to three points A, B and G, the charge of A
being 15 units of positive electricity, that of B 12 units of nega-

tive electricity, and that of C 20 units of positive electricity.

These points are placed in one straight line, so that

AB = 9, BG= 16, AC =25.
In this case, the surface for which the potential is zero consists

of two spheres whose centres are A and C and whose radii are 1

5

and 20. These spheres intersect in the circle which cuts the plane

of the paper at right angles in D and D', so that B is the centre of

this circle and its radius is 12. This circle is an example of a

line of equilibrium, for the resultant force vanishes at every

point of this line.

If we suppose the sphere whose centre is A to be a conductor

with a charge of 3 units of positive electricity, placed under

the influence of 20 units of positive electricity at C, the state of

the case will be represented by the diagram if we leave out all

the lines within the sphere A. The part of this spherical surface

below the small circle DD' will be negatively charged by the

influence of C. All the rest of the sphere will be positively

charged, and the small circle DD' itself will be a line of no

charge.

We may also consider the diagram to represent the sphere

whose centre is C, charged with 8 units of positive electricity,

and influenced by 15 units of positive electricity placed at A.

The diagram may also be taken to represent a conductor

whose surface consists of the larger segments of the two

spheres meeting in DD\ charged with 23 units of positive elec-

tricity.

We shall return to the consideration of this diagram as an

illustration of Thomson's Theory of Electrical Images. See

Art. 168.



182 EQUIPOTENTIAL SURFACES [l2 2.

122.] These diagrams should be studied as illustrations of the

language of Faraday in speaking of ' lines of force/ the ' forces of

an electrified body,' &c.

The word Force denotes a restricted aspect of that action

between two material bodies by which their motions are rendered

different from what they would have been in the absence of that

action. The whole phenomenon, when both bodies are contem-

plated at once, is called Stress, and may be described as a trans-

ference of momentum from one body to the other. When we
restrict our attention to the first of the two bodies, we call the

stress acting on it the Moving Force, or simply the Force on that

body, and it is measured by the momentum which that body is

receiving per unit of time.

The mechanical action between two charged bodies is a stress,

and that on one of them is a force. The force on a small

charged body is proportional to its own charge, and the force per

unit of charge is called the Intensity of the force.

The word Induction was employed by Faraday to denote the

mode in which the charges of electrified bodies are related to

each other, every unit of positive charge being connected with a

unit of negative charge by a line, the direction of which, in fluid

dielectrics, coincides at every part of its course with that of the

electric intensity. Such a line is often called a line of Force,

but it is more correct to call it a line of Induction.

Now the quantity of electricity in a body is measured, accord-

ing to Faraday's ideas, by the number of lines of force, or rather

of induction, which proceed from it. These lines of force must

all terminate somewhere, either on bodies in the neighbourhood,

or on the walls and roof of the room, or on the earth, or on the

heavenly bodies, and wherever they terminate there is a quantity

of electricity exactly equal and opposite to that on the part of

the body from which they proceeded. By examining the dia-

grams this will be seen to be the case. There is therefore no

contradiction between Faraday's views and the mathematical

results of the old theory, but, on the contrary, the idea of lines

of force throws great light on these results, and seems to afford

the means of rising by a continuous process from the somewhat

rigid conceptions of the old theory to notions which may be

capable of greater expansion, so as to provide room for the

increase of our knowledge by further researches.
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123.] These diagrams are constructed in the following manner:

—

First, take the case of a single centre of force, a small electrified

body with a charge e. The potential at a distance r is V = e/r
;

hence, if we make r = e/V, we shall find r, the radius of the sphere

for which the potential is V. If we now give to Fthe values

1, 2, 3, &c, and draw the corresponding spheres, we shall obtain

a series of equipotential surfaces, the potentials corresponding to

which are measured by the natural numbers. The sections of

these spheres by a plane passing through their common centre

will be circles, each of which we may mark with the number

denoting its potential. These are indicated by the dotted semi-

circles on the right hand of Fig. 6.

If there be another centre of force, we may in the same way
draw the equipotential surfaces belonging to it, and if we now
wish to find the form of the equipotential surfaces due to both

centres together, we must remember that if V[be the potential due

to one centre, and V2 that due to the other, the potential due to

both will be J^+ V1 = V. Hence, since at every intersection of

the equipotential surfaces belonging to the two series we know
both Vl and J£, we also know the value of V. If therefore we
draw a surface which passes through all those intersections for

which the value of V is the same, this surface will coincide with

a true equipotential surface at all these intersections, and if the

original systems of surfaces are drawn sufficiently close, the new
surface may be drawn with any required degree of accuracy.

The equipotential surfaces due to two' points whose charges are

equal and opposite are represented by the continuous lines on

the right hand side of Fig. 6.

This method may be applied to the drawing of any system

of equipotential surfaces when the potential is the sum of two

potentials, for which we have already drawn the equipotential

surfaces.

The lines of force due to a single centre of force are straight

lines radiating from that centre. If we wish to indicate by these

lines the intensity as well as the direction of the force at any

point, we must draw them so that they mark out on the equi-

potential surfaces portions over which the surface-integral of

induction has definite values. The best way of doing this is to

suppose our plane figure to be the section of a figure in space

formed by the revolution of the plane figure about an axis passing
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through the centre of force. Any straight line radiating from

the centre and making an angle with the axis will then trace

out a cone, and the surface-integral of the induction through that

part of any surface which is cut off by this cone on the side next

the positive direction of the axis is 2 ire (1 —cos 6).

If we further suppose this surface to be bounded by its inter-

section with two planes passing through the axis, and inclined

at the angle whose arc is equal to half the radius, then the

induction through the surface so bounded is

\ e (1 —cos 6) = <J>, say
;

and 8 = cos-1 (l-2 -).

If we now give to <t> a series of values 1, 2, 3...e, we shall find

a corresponding series of values of 6, and if e be an integer, the

number of corresponding lines of force, including the axis, will

be equal to e.

We have thus a method of drawing lines of force so that the

charge of any centre is indicated by the number of lines which

diverge from it, and the induction through any surface cut off in

the way described is measured by the number of lines of force

which pass through it. The dotted straight lines on the left-

hand side of Fig. 6 represent the lines of force due to each of

two electrified points whose charges are 10 and —10 respect-

ively.

If there are two centres of force on the axis of the figure we
may draw the lines of force for each axis corresponding to values

of ^ and <J>2 , and then, by drawing lines through the consecutive

intersections of these lines for which the value of 4>
x + 4>

2
is the

same, we may find the lines of force due to both centres, and in

the same way we may combine any two systems of lines of force

which are symmetrically situated about the same axis. The

continuous curves on the left-hand side of Fig. 6 represent the

lines of force due to the two charged points acting at once.

After the equipotential surfaces and lines of force have been

constructed by this method, the accuracy of the drawing may be

tested by observing whether the two systems of lines are every-

where orthogonal, and whether the distance between consecutive

equipotential surfaces is to the distance between consecutive lines

of force as half the mean distance from the axis is to the assumed

unit of length.
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In the case of any such system of finite dimensions the line of

force whose index number of <J> has an asymptote which passes

through the electric centre (Art. 89 d) of the system, and is in-

clined to the axis at an angle whose cosine is 1 — 2<J>/e, where e

is the total electrification of the system, provided <J> is less than e.

Lines of force whose index is greater than e are finite lines. If

e is zero, they are all finite.

The lines of force corresponding to a field of uniform force

parallel to the axis are lines parallel to the axis, the distances

from the axis being the square roots of an arithmetical series.

The theory of equipotential surfaces and lines of force in two

dimensions will be given when we come to the theory of con-

jugate functions *.

* See a paper ' On the Flow of Electricity in Conducting Surfaces,' by Prof. W. R.
Smith, Proc. E. S. JEdin., 1869-70, p. 79.



CHAPTER VIII.

SIMPLE CASES OF ELECTRIFICATION.

Two Parallel Planes.

124.] We shall consider, in the first place, two parallel plane

conducting surfaces of infinite extent, at a distance c from each

other, maintained respectively at potentials A and B.

It is manifest that in this case the potential V will be a

function of the distance z from the plane A, and will be the same

for all points of any parallel plane between A and B, except

near the boundaries of the electrified surfaces, which by the

supposition are at an infinitely great distance from the point

considered.

Hence, Laplace's equation becomes reduced to

d2V
d# ~ '

the integral of which is

V=C
1
+ Ca

z;

and since when z = 0, V = A, and when z = c, V — B,

V=A + (B-Af-.

For all points between the planes, the resultant intensity is

normal to the planes, and its magnitude is

c

In the substance of the conductors themselves, R = 0. Hence

the distribution of electricity on the first plane has a surface-

density <r, where

4710" = R=
c

On the other surface, where the potential is B, the surface-
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density a will be equal and opposite to a, and

4 TT(T = —R = .

c

let us next consider a portion of the first surface whose area
is S, taken so that no part of S is near the boundary of the

surface.

The quantity of electricity on this surface is e
1
= S<t, and, by

Art. 79, the force acting on every unit of electricity is JjB, so

that the whole force acting on the area S, and attracting it

towards the other plane, is

F= lRS<r=±-R*S= S_ (B~A)\
8tt 8tt c2

Here the attraction is expressed in terms of the area S, the

difference of potentials of the two surfaces (A — B), and the dis-

tance between them c. The attraction, expressed in terms of the

charge elt on the area S, is ^ 2i ,F =-$<*.

The electric energy due to the distribution of electricity on
the area S, and that on the corresponding area S' on the surface

B defined by projecting £ on the surface 5bya system of lines

of force, which in this case are normals to the plane, is

W=\{eiA + e2B\
, 8 (A~Bf— 2
~

»

4tt C

_ 277
2

= Fc.

The first of these expressions is the general expression of elec-

tric energy (Art. 84).

The second gives the energy in terms of the area, the distance,

and difference of potentials.

The third gives it in terms of the resultant force R, and the

volume Sc included between the areas S and $', and shews that

the energy in unit of volume is p where 8 ttp = R2
.

The attraction between the planes is £>$, or in other words,

there is an electrical tension (or negative pressure) equal to p on
every unit of area.
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The fourth expression gives the energy in terms of the charge.

The fifth shews that the electrical energy is equal to the work

which would be done by the electric force if the two surfaces

were to be brought together, moving parallel to themselves, with

their electric charges constant.

To express the charge in terms of the difference of potentials,

we have = ±^(A-B) = q(A-B).

The coefficient q represents the charge due to a difference of

potentials equal to unity. This coefficient is called the Capacity

of the surface S, due to its position relatively to the opposite

surface.

Let us now suppose that the medium between the two surfaces

is no longer air but some other dielectric substance whose specific

inductive capacity is K, then the charge due to a given difference

of potentials will be K times as great as when the dielectric is

air, or KS . . m

The total energy will be

W=~(A-B)2
,

8itc

2tt
2

KS611

The force between the surfaces will be

_ 2lT
2- K8 e

l •

Hence the force between two surfaces kept at given potentials

varies directly as K , the specific inductive capacity of the dielec-

tric, but the force between two surfaces charged with given

quantities of electricity varies inversely as K.

Two Concentric Spherical Surfaces.

125.] Let two concentric spherical surfaces of radii a and b, of

which b is the greater, be maintained at potentials A and B
respectively, then it is manifest that the potential V is a function

of r the distance from the centre. In this case, Laplace's equa-

tion becomes d2V 2 dV _
dr2 r dr

~~
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The solution of this is

and the conditions that V— A when r = a, and V=B when r = b,

give for the space between the spherical surfaces,

rr Aa-Bb A-B
a-b + a-i-b-' '

R= -*!= A ~B -•

c£r a-1— b~ l

If o-j, <r2 are the surface-densities on the opposed surfaces of a
solid sphere of radius a, and a spherical hollow of radius 6, then

1 A-B 1 B-A
0-1

4na2 a- I-6-i' <r2 ~4
1r62 a-l-6- 1

'

If 6j and e
2

are the whole charges of electricity on these

surfaces,

e = 4 7raV
l
= —-—=-= = -e

The capacity of the enclosed sphere is therefore
b—

a

If the outer surface of the shell is also spherical and of radius c,

then, if there are no other conductors in the neighbourhood, the

charge on the outer surface is

e3 = Be.

Hence the whole charge on the inner sphere is

and that on the outer shell

e2 + ei = ^(B-A) + Bc.

If we put b = oe, we have the case of a sphere in an infinite

space. The electric capacity of such a sphere is a, or it is

numerically equal to its radius.

The electric tension on the inner sphere per unit of area is

= ±b^(A~Bl
P ~ 8-na* (b~a) z '

The resultant of this tension over a hemisphere is na2p — F
normal to the base of the hemisphere, and if this is balanced by
a surface tension exerted across the circular boundary of the

hemisphere, the tension on unit of length being T, we have

F=2i;aT.
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_ b2 (A-Bf e*
Hence F = ^(b^aJ=^

b* {A-Bf
t

16ir<x {p-af

If a spherical soap bubble is electrified to a potential A, then,

if its radius is a, the charge will be Aa, and the surface-density

will be 1 j
~

4ir a

The resultant intensity just outside the surface will be 4 7r<r,

and inside the bubble it is zero, so that by Art. 79 the electric

force on unit of area of the surface will be 2-na 2
, acting outwards.

Hence the electrification will diminish the pressure of the air

within the bubble by 2 tto2, or

8tt a1 '

But it may be shewn that if T is the tension which the liquid

film exerts across a line of unit length, then the pressure from

within required to keep the bubble from collapsing is 2T /a. If

the electric force is just sufficient to keep the bubble in equi-

librium when the air within and without is at the same pressure,

A 2 = 16iraT .

Two Infinite Coaxal Cylindric Surfaces.

126.] Let the radius of the outer surface of a conducting

cylinder be a, and let the radius of an inner surface of a hollow

cylinder, having the same axis with the first, be b. Let their

potentials be A and B respectively. Then, since the potential V
is in this case a function only of r, the distance from the axis,

Laplace's equation becomes

d2V ldV__
dr2 r dr '

whence V =C
X + C2

log r.

Since V — A when r = a, and V = b when r = b,

b t
A log- + i?log-

v_ °r ^cb

1
b

log-b a
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If <r1} <r
2

are the surface-densities on the inner and outer
surfaces,

47TO-, = A-B 4tt(To =
B-A

2 ~ 6
a log - b log -

If ex and e.2 are the charges on the portions of the two cylinders
between two sections transverse to the axis at a distance I from
each other,

e
t = 2iral<r

1
= \

A ~B
l = -e.2 .

The capacity of a length I of the interior cylinder is therefore

*-V

If the space between the cylinders is occupied by a dielectric of
specific inductive capacity K instead of air, then the capacity of
a length I of the inner cylinder is

IK

l0g
a

The energy of the electrical distribution on the part of the
infinite cylinder which we have considered is

JK(A-Bf
*

, b '

B A

Kg- 5-

127.] Let there be two hollow cylindric conductors A and B,
Fig. 5, of indefinite length, having the axis of x for their common
axis, one on the positive and the other on the negative side of

the origin, and separated by a short interval near the origin

of coordinates.

Let a cylinder C of length 2 1 be placed with its middle point
at a distance x on the positive side of the origin, so as to extend
into both the hollow cylinders.

Let the potential of the hollow cylinder on the positive side be
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A, that of the one on the negative side B, and that of the internal

one G, and let us put a for the capacity per unit of length of G

with respect to A, and /3 for the same quantity with respect to B.

The surface-densities of the parts of the cylinders at fixed

points near the origin and at points at given small distances

from the ends of the inner cylinder will not be affected by the

value of x provided a considerable length of the inner cylinder

enters each of the hollow cylinders. Near the ends of the hollow

cylinders, and near the ends of the inner cylinder, there will be

distributions of electricity which we are not yet able to calculate,

but the distribution near the origin will not be altered by the

motion of the inner cylinder provided neither of its ends comes

near the origin, and the distributions at the ends of the inner

cylinder will move with it, so that the only effect of the motion

will be to increase or diminish the length of those parts of the

inner cylinder where the distribution is similar to that on an

infinite cylinder.

Hence the whole energy of the system will be, so far as it

depends on x,

Q = \a{l + x) (C-A)2 +lP(l-x) (0-5)2 + quantities

independent of x

;

and the resultant force parallel to the axis of the cylinders since the

energy is expressed in terms of the potentials will by Art. 93 6 be

X = dQ = \a{0-Ay-\p{C-Bf.

If the cylinders A and B are of equal section, a = p, and

X = a(B-A)(C-\(A + B)).

It appears, therefore, that there is a constant force acting on

the inner cylinder tending to draw it into that one of the outer

cylinders from which its potential differs most.

If C be numerically large and A +B comparatively small, then

the force is approximately x = a (B— A) C
;

so that the difference of the potentials of the two cylinders can

be measured if we can measure X, and the delicacy of the

measurement will be increased by raising C, the potential of the

inner cylinder.

This principle in a modified form is adopted in Thomson's

Quadrant Electrometer, Art. 219.

The same arrangement of three cylinders may be used as a

measure of capacity by connecting B and C. If the potential of
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A is zero, and that of B and C is V, then the quantity of elec-

tricity on A will be w ,„ , ,,
, UTr

where qls is a quantity depending on the distribution of electricity

on the ends of the cylinder but not upon x, so that by moving G
to the right till x becomes x + $ the capacity of the cylinder C
becomes increased by the definite quantity ag, where

1a= v
2 log

a

a and b being the radii of the opposed cylindric surfaces.



CHAPTEB IX.

SPHERICAL HARMONICS.

128.] The mathematical theory of spherical harmonics has

been made the subject of several special treatises. The Handbuch

der Kugelfunctionen of Dr. E. Heine, which is the most elaborate

work on the subject, has now (1878) reached a second edition in

two volumes, and Dr. F. Neumann has published his Beitrdge

zur Theorie der Kugelfunctionen (Leipzig, Teubner, 1878). The

treatment of the subject in Thomson and Tait's Natural Philo-

sophy is considerably improved in the second edition (1879), and

Mr. Todhunter's Elementary Treatise on Laplace s Functions,

Lames Functions, and BesseVs Functions, together with Mr.

Ferrers' Elementary Treatise on Spherical Harmonics and

subjects connected with them, have rendered it unnecessary to

devote much space in a book on electricity to the purely mathe-

matical development of the subject.

I have retained however the specification of a spherical

harmonic in terms of its poles.

On Singular Points at which the Potential becomes Infinite.

129 a.] If a charge, A , of electricity is uniformly spread over

the surface of a sphere the coordinates of whose centre are

(a, b, c), the potential at any point (x, y, z) outside the sphere is,

by Art. 125, y _^o n\
r

where r2 = (x-a)2 + (y-b)2 + {z-c)2
.

_

(2)

As the expression for V is independent of the radius of the

sphere, the form of the expression will be the same if we suppose

the radius infinitely small. The physical interpretation of the

expression would be that the charge A Q
is placed on the surface

of an infinitely small sphere, which is sensibly the same as a
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mathematical point. We have already (Arts. 55, 81) shewn that

there is a limit to the surface-density of electricity, so that it is

physically impossible to place a finite charge of electricity on a
sphere of less than a certain radius.

Nevertheless, as the equation (l) represents a possible distri-

bution of potential in the space surrounding a sphere, we may
for mathematical purposes treat it as if it arose from a charge A
condensed at the mathematical point (a, b, c), and we may call

the point a singular point of order zero.

There are other kinds of singular points, the properties of

which we shall presently investigate, but before doing so we must
define certain expressions which we shall find useful in dealing

with directions in space, and with the points on a sphere which

correspond to them.

129 &.] An axis is any definite direction in space. We may
suppose it defined by a mark made on the surface of a sphere at

the point where the radius drawn/rom the centre in the direction

of tho axis meets the surface. This point is called the Pole of

the axis. An axis has therefore one pole only, not two.

If n is the cosine of the angle between the axis h and any

vector r, and if p = nr, (3)

p is the resolved part of r in the direction of the axis h.

Different axes are distinguished by different suffixes, and the

cosine of the angle between two axes is denoted by Awn , where

m and n are the suffixes specifying the axis.

Differentiation with respect to an axis, h, whose direction

cosines are X, M, iV, is denoted by

dh ~ dx dy dz ^ '

From these definitions it is evident that

<-" Pm r r-\

a£-T = "" (6)

dpn x ^Pm / R \

dhm
- ^ _

dhn
' {b)

~dhn
~

r l ;

If we now suppose that the potential at the point (x, y, z) due

to a singular point of any order placed at the origin is

4f(x> y> 4
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then if such a point be placed at the extremity of the axis h,

the potential at (x, y, z) will be

Af[(x-Lh), (y-Mh), (z-Nh)],

and if a point in all respects the same, except that the sign of A
is reversed, be placed at the origin, the potential due to the pair

of points will be

V=Af[(x-Lh), (y-Mh), (z-Nh)]-Af(*,y>z)>

d= —Ah-r;f(x, y, z) + terms containing h2
.

€tfb

If we now diminish h and increase A without limit, their pro-

duct continuing finite and equal to A', the ultimate value of the

potential of the pair of points will be

7'= -*&<* * «)• <
8
>

If/ (x, y, z) satisfies Laplace's equation, then, since this equation

is linear, V, which is the difference of two functions, each of

which separately satisfies the equation, must itself satisfy it.

129 c] Now the potential due to a singular point of order zero,

%=A 1
-, (9)

satisfies Laplace's equation, therefore every function formed from

this by differentiation with respect to any number of axes in

succession must also satisfy that equation.

A point of the first order may be formed by taking two points

of order zero, having equal and opposite charges —A and A ,

and placing the first at the origin and the second at the extremity

of the axis h
x

. The value of k
x

is then diminished and that of

A increased indefinitely, but so that the product A kt is always

equal to Av The ultimate result of this process, when the two

points coincide, is a point of the first order whose moment is A t

and whose axis is 7^ . A point of the first order is therefore a

double point. Its potential is

= A*d- (10>

By placing a point of the fiist order at the origin, whose

moment is —A lt and another at the extremity of the axis h
z
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whose moment is Au and then diminishing h2 and increasing A
x ,

sothat A
1
h2 = \A it (11)

we obtain a point of the second order, whose potential is

rfV— —h-—V

" 4^ ~
6 (12)

We may call a point of the second order a quadruple point

because it is constructed by making four points of order zero

approach each other. It has two axes h
x
and h

2
and a moment

A2 . The directions of these axes and the magnitude of the

moment completely define the nature of the point.

By differentiating with respect to n axes in succession we
obtain the potential due to a point of the nth order. It will be
the product of three factors, a constant, a certain combination of

cosines, and r~(n+1). It is convenient, for reasons which will

appear as we go on, to make the numerical value of the constant
such that when all the axes coincide with the vector, the co-

efficient of the moment is r~("+1 ). We therefore divide by n
when we differentiate with respect to hn .

In this way we obtain a definite numerical value for a par-

ticular potential, to which we restrict the name of The Solid

Harmonic of degree — (n+l), namely

V=(-l)» L__A.A...A.I. /iox
n v ; 1.2.Z...ndh

x
dh2 dhn r

{L6)

If this quantity is multiplied by a constant it is still the

potential due to a certain point of the nih order.

129 d.] The result of the operation (13) is of the form

Vn=Yn r-^\ (14)

where Yn is a function of the n cosines /v ••/*»> of the angles

between r and the n axes, and of the \ n (n— 1 ) cosines A
12 , &c.

of the angles between pairs of the axes.

If we consider the directions of r and the n axes as determined

by points on a spherical surface, we may regard Yn as a quantity

varying from point to point on that surface, being a function of the

\n (n + 1 ) distances between the n poles of the axes and the pole

of the vector. We therefore call Yn The Surface Harmonic of

order n.

130 a.] We have next to shew that to every surface-harmonic
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of order n there corresponds not only a solid harmonic of degree

— (n + 1) but another of degree n, or that

Hn= Yn rn =Vn r^ +l (15)

satisfies Laplace's equation.
jtt fly

For 2£? =
(
2 n + 1) r2"-1 «T£+ r2«+1^

,

^ = (2^1+1) [{2n-l)x2 + rqr2n-*Vn + 2{2n+l)r*n-1 x-^

Hence

<^Hn
+

^flj, ^3 = ,2%+ 1 )( 27l + 2)r2"-1K
/ ^ o„ i / c£l£ <^K ^ln\

+ 2(a» + i
)
^-(»

3
_- + »

;^ + ,-
!

_-)

^(0;5 + g). (I .,

Now, since Yn is a homogeneous function of se, y, and 2, of

negative degree n+1,

The first two terms therefore of the right-hand member of

equation (16) destroy each other, and, since Vn satisfies Laplace's

equation, the third term is zero, so that Hn also satisfies Laplace's

equation, and is therefore a solid harmonic of degree n.

This is a particular case of the more general theorem of

electrical inversion, which asserts that if F (x, y, z) js a function

of x, y, and z which satisfies Laplace's equation, then there exists

another function, a ,a2x a?y a?z^
tV* \ /Y*% m& /y\2 J

which also satisfies Laplace's equation. See Art. 162.

130 6.] The surface harmonic Yn contains 2n arbitrary vari-

ables, for it is defined by the positions of its n poles on the

sphere, and each of these is defined by two coordinates.

Hence the solid harmonics Vn and Hn also contain 2n arbitrary

variables. Each of these quantities, however, when multiplied

by a constant, will satisfy Laplace's equation.

To prove that AHn is the most general rational homogeneous

function of degree n which can satisfy Laplace's equation, we
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observe that K, the general rational homogeneous function of

degree n, contains \(n+ 1) (n + 2) terms. But V2K is a homo-

geneous function of degree n— 2, and therefore contains \ n (n— 1)

terms, and the condition V2K = requires that each of these

must vanish. There are therefore \n{n— 1) equations between

the coefficients of the \ (n + 1 )
(n + 2) terms of the function K,

leaving 2n + 1 independent constants in the most general form

of the homogeneous function of degree n which satisfies Laplace's

equation. But Hn , when multiplied by an arbitrary constant,

satisfies the required conditions, and has 2n+l arbitrary con-

stants. It is therefore of the most general form.

131 a.] We are now able to form a distribution of potential

such that neither the potential itself nor its first derivatives

become infinite at any point.

The function Vn = l£r
_

(
n+1

) satisfies the condition of vanishing

at infinity, but becomes infinite at the origin.

The function Hn = Yn rw is finite and continuous at finite dis-

tances from the origin, but does not vanish at an infinite distance.

But if we make anYn r~(n+v) the potential at all points outside

a sphere whose centre is the origin, and whose radius is a, and

a-(n+1)J£r" the potential at all points within the sphere, and if

on the sphere itself we suppose electricity spread with a surface

density o- such that

47ro-a2 = (2n+l)Yn , (18)

then all the conditions will be satisfied for the potential due to

a shell charged in this manner.

For the potential is everywhere finite and continuous, and

vanishes at an infinite distance ; its first derivatives are every-

where finite and are continuous except at the charged surface,

where they satisfy the equation

-j- +— +47TO-=0, (19)
dv dv

and Laplace's equation is satisfied at all points both inside and

outside of the sphere.

This, therefore, is a distribution of potential which satisfies

the conditions, and by Art. 100 c it is the only distribution which

can satisfy them.

131 6.] The potential due to a sphere of radius a whose surface-

density is given by the equation

4ira2 <r = (2n+l)Yn , (20)
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is, at all points external to the sphere, identical with that due to

the corresponding singular point of order n.

Let us now suppose that there is an electrical system which

we may call E, external to the sphere, and that * is the potential

due to this system, and let us find the value of 2 (Ve) for the

singular point. This is the part of the electric energy depending

on the action of the external system on the singular point.

If AQ
is the charge of a singular point of order zero, then the

potential energy in question is

W = A,*. (21)

If there are two such points, a negative one at the origin

and a positive one of equal numerical value at the extremity of

the axis h
x , then the potential energy will be

and when A increases and h
x
diminishes indefinitely, but so that

A
Q
h

l
= A

x , the value of the potential energy for a point of the

first order will be

* = ^asr <
22

>

Similarly for a point of order n the potential energy will be

W — 1
A

^"^
* /oq\

Wn ~ l.2...n *dh
1
...dhn

' K }

131 c] If we suppose the charge of the external system to

be made up of parts, any one of which is denoted by dE, and

that of the singular point of order n to be made up of parts

any one of which is de, then

* = 2(idff). (24)

But if Vn is the potential due to the singular point,

l£=2(;<fo), (25)

and the potential energy due to the action of E on e is

Wn = 2 (*de) = 22 (-dEde) = 2 (VndE), (26)

the last expression being the potential energy due to the action

of e on E.

* We shall find it convenient, in what follows, to denote the product of the posi-

tive integral numbers 1.2.3. ..» by »!
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Similarly, if ads is the charge on an element ds of the shell,

since the potential due to the shell at the external system E
is 1£, we have

Wn= 2 (Vn dE) = 22 (-dESde) = 2 (*ads). (27)

The last term contains a summation to be extended over the

surface of the sphere. Equating it to the first expression for Wn ,

we have r r
*<rds='2(*de)

-1 A
d'*

(2S)~ n\ ndhv ..dhn
K }

If we remember that 4iro-a2 = (2 n + 1) Yn , and that An = a", this

becomes
d

//*«*- ^5MT)«"
+i

as^at-
(29)

This equation reduces the operation of taking the surface

integral of *!£ ds over every element of the surface of a sphere of

radius a, to that of differentiating ^ with respect to the n axes

of the harmonic and taking the value of the differential coeffi-

cient at the centre of the sphere, provided that * satisfies

Laplace's equation at all points within the sphere, and Yn is a

surface harmonic of order n.

132.] Let us now suppose that * is a solid harmonic of positive

degree m of the form ^ = a-mym r» (30)

At the spherical surface, r = a, and ^ = Ym , so that equation

(29) becomes in this case

w^Wrr^SS' (")

where the value of the differential coefficient is to be taken at

the centre of the sphere.

When n is less than m, the result of the differentiation is a

homogeneous function of x, y, and z of degree m— n, the value of

which at the centre of the sphere is zero. If n is equal to m the

result of the differentiation is a constant, the value of which we
shall determine in Art. 134. If the differentiation is carried

further, the result is zero. Hence the surface-integral / / YmYnds
vanishes whenever m and n are different.

The steps by which we have arrived at this result are all of

//
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them purely mathematical, for though we have made use of terms

having a physical meaning, such as electrical energy, each of

these terms is regarded not as a physical phenomenon to be

investigated, but as a definite mathematical expression. A
mathematician has as much right to make use of these as of any

other mathematical functions which he may find useful, and a

physicist, when he has to follow a mathematical calculation, will

understand it all the better if each of the steps of the calculation

admits of a physical interpretation.

133.] We shall now determine the form of the surface har-

monic Yn as a function of the position of a point P on the sphere

with respect to the n poles of the harmonic.

We have

Y
z = | Ml^3 — ^ 0*1 A23 + ^2 A

31 +M3
A
12)>

'

and so on.

Every term of 3^ therefore consists of products of cosines,

those of the form ju, with a single suffix, being cosines of the

angles between P and the different poles, and those of the form

A, with double suffixes, being cosines of the angles between the

poles.

Since each axis is introduced by one of the n differentiations,

the symbol of that axis must occur once and only once among

the suffixes of the cosines of each term.

Hence if in any term there are s cosines with double suffixes,

there must be n — 2 s cosines with single suffixes.

Let the sum of all products of cosines in which s of them have

double suffixes be written in the abbreviated form

2(^n~2s A*).

In every one of the products all the suffixes occur once, and

none is repeated.

If we wish to express that a particular suffix, m, occurs among

the ixs only or among the A's only, we write it as a suffix to the

ix or the A. Thus the equation

2 (,*-*•*•) = 2 0C
2
' A') + 2 (m""

2^) (33)

expresses that the whole set of products may be divided into two

parts, in one of which the suffix m occurs among the direction

cosines of the variable point P, and in the other among the

cosines of the angles between the poles.



1 33.] TRIGONOMETRICAL EXPRESSION. 203

Let us now assume that for a particular value of n

Yn = An .
2 (f) + A %ml2 (m-» A») + &c.

+ ^ B . g2(M
»- 28 A*) + &c., (34)

where the A'b are numerical coefficients. We may write the

series in the abbreviated form

7n = S[An^(^^\% (35)

where S indicates a summation in which all values of s, including

zero, not greater than \n, are to be taken.

To obtain the corresponding solid harmonic of negative degree

(n + 1) and order n, we multiply by r
-^"*" 1

), and obtain

Vn = S [^...r*- 2 "-1 2 (p
n-2

«\°)l (36)

putting r^=p, as in equation (3).

If we differentiate T£ with respect to a new axis hm we obtain

— (n + 1) T£+1 , and therefore

(n+l)Vn+l = S[An . s (271+1 -2s) r2- 2 »- 3 S(p728+V)

-A,.^- 2 "- 1^-2*-^ 1

)]. (37)

If we wish to obtain the terms containing s cosines with

double suffixes, we must diminish s by unity in the last term,

and we find

(n+ 1) Vn+1 = fl|>*-*- 8 {An . s
(2n-2s+ 1) 2QC

2 ' +V)

-A...-i*(p
n-*' +1

K)s~\- (
38

)

Now the two classes of products are not distinguished from

each other in any way except that the suffix m occurs among

the p'a in one and among the A's in the other. Hence their

coefficients must be the same, and since we ought to be able to

obtain the same result by putting n+\ for n in the expression

for \ and multiplying by n + 1, we obtain the following equa-

tions, (n+l)An+1 . s
= (2n-2s+l)A n . g ^-An . s .1 . (39)

If we put s = 0, we obtain

(n+l) An+1 .
= (271+1) A n . Q ; (40)

and therefore, since A^q = 1,

2n\
2" (n !)

and from this we obtain the general value of the coefficient

(2M-2 8)1
(42)

••• v 1 2 n~g n\(n-s) ' v }

and finally the trigonometrical expression for the surface har-

^"•°~2»f<».!V* ; ^



204 SPHERICAL HARMONICS. [134.

monic, as (2n-2sY
Y
» = S K'^nKn-s)! 2 &"*'»)] * (43 >

This expression gives the value of the surface harmonic at any

point P of the spherical surface in terms of the cosines of the

distances of P from the different poles and of the distances of

the poles from each other.

It is easy to see that if any one of the poles be removed to

the opposite point of the spherical surface, the value of the har-

monic will have its sign reversed. For any cosine involving the

index of this pole will have its sign reversed, and in each term

of the harmonic the index of the pole occurs once and only once.

Hence if two or any even number of poles are removed to the

points respectively opposite to them, the value of the harmonic

will be unaltered.

Professor Sylvester has shewn (Phil. Mag., Oct. 1876) that,

when the harmonic is given, the problem of finding the n lines

which coincide with the axes has one and only one solution,

though, as we have just seen, the directions to be reckoned

positive along these axes may be reversed in pairs.

134.] We are now able to determine the value of the surface

integral / / Ym Yn ds when the order of the two surface harmonics

is the same, though the directions of their axes may be in general

different.

For this purpose we have to form the solid harmonic Ymrm and
to differentiate it with respect to each of the n axes of Yn .

Any term of im r
m of the form r"Vm~- s A* may be written

7,21
P™~ *\*«m* Differentiating this n times in succession with

respect to the n axes of Yn , we find that in differentiating r2 *

* {We may deduce from this that

fjp fjq fjr \ (
_ 1 \n o n \ 732

+
(2^1) (2^3)^ U-^-V*'' + ,«4- a"**"**- + rc4 .aPffiz" + Pe2 sC2a*-y S'

(2«-1)(2m-3)(2»-5) p 6 3

+^ qc2xP~Y-2 *r + j.c4 S2aF-V *~* + Pc2 gc4 xp-2
t/q
-i zr + q

cirr2 xPy*-* z'-
3

+ pc2 rCi . xP-'yOzr-* + qc2 rc4 . xPy«-*zr
-1 + Pc2 qc2& a*-yf-a Zr-*) + •••}>

where n — p + q + r and B? = x2 + y* + z2
, and mc„ denotes the number of permutations

of m things n at a time divided by 2 2 \s/ ' •

}
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with respect to s of these axes we introduce s of the p„'s, and

the numerical factor

2s(2s— 2). ..2, or 2*s!.

In continuing the differentiation with respect to the next s axes,

the pn
'& become converted into A.„„'s, but no numerical factor is

introduced, and in differentiating with respect to the remaining

n — 2 s axes, the pm'a become converted into Awn's, so that the

result is ^sUJXJC28
.

We have therefore, by equation (3 1 ),

and by equation (43),

Yrm = s[(-1Y (
2m~ 2s)

[

s(r2^w"V )1 . (45)-*,»' — w ^v X
J 2m-8m! (m— s)l

m mm/
j * '

Hence, performing the differentiations and remembering that

m = n, we find

rr 47m2 r.
lXg (2^ -2s)!s! , , vn-2.v~| /aR x

7J
1- 1"^ = (2^+1)(%!)2 ^L( ~ } 2"- J"(w-8)!

i(A»* A»» A»* }
J' * '

135 a.] The expression (46) for the surface-integral of the pro-

duct of two surface-harmonics assumes a remarkable form if we

suppose all the axes of one of the harmonics, Ym , to coincide with

each other, so that Ym becomes what we shall afterwards define

as the zonal harmonic of order m, denoted by the symbol Pm .

In this case all the cosines of the form Xnm may be written fin ,

where ju„ denotes the cosine of the angle between the common

axis of Pm and one of the axes of Yn . The cosines of the form

Xmm will all become equal to unity, so that for 2A"nm we must

put the number of combinations of s symbols, each of which is

distinguished by two 'suffixes out of n, no suffix being repeated.

Hence ,
n\ * ,^ 7)

*
] We can see this if we consider how many permutations of the suffixes of one

term in the expression 2X^m we can form. The suffixes consist of s groups of two

numbers each, by altering the order of the groups we can form s ! arrangements, and

by interchanging the order of the numbers inside the groups we can form from any

one of these arrangements 2s other arrangements, so that from each of the groups of

suffixes we can get 2s « ! arrangements ; thus, ifN be the number of terms in the series

2 A* , N2S s ! arrangements of the n numbers taken 2 * at a time may be made, but the

whole number of arrangements thus made is evidently the number of permutations of

n ! n\
r

n
!

/ .

ra things taken 2 sat a time, or—Z^/> thuHN2Ssl = ^Z2^\> ovN
=
2°sl(n-2sy. )
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The number of permutations of the remaining n— 2 s indices of

the axes of Pm is {n— 2s) ! Hence

S(C") = («- 28)!
/*"-*'. W

Equation (46) therefore becomes, when all the axes of Ym
coincide with each other,

/AP-* =(!^ (49>

= ^Tl Ŷ hy e(luati011 (
43

)' (
5 °)

where Yn{m) denotes the value of Yn at the pole of Pm .

We may obtain the same result by the following shorter

process :

—

Let a system of rectangular coordinates be taken so that the

axis of z coincides with the axis of Pm , and let Ynrn be expanded

as a homogeneous function of x, y, z of degree n.

At the pole of Pm , x= y = and z — r, so that if Czn is the

term not involving x or y, G is the value of Yn at the pole of P,n .

Equation (31) becomes in this case

//
Vp 7 _ 47m2 ' ^

m
(V n\Y»F"ldS ~ 21T+1'n\ dz^ [ " r ^*

As m is equal to n, the result of differentiating Czn is n ! C, and

is zero for the other terms. Hence

//^ = 2^°'
C being the value of Yn at the pole of Pm .

135 b.] This result is a very important one in the theory of

spherical harmonics, as it shews how to determine a series of

spherical harmonics which expresses the value of a quantity

having any arbitrarily assigned finite and continuous value at

each point of a spherical surface.

For let F be the value of the quantity and ds the element of

surface at a point Q of the spherical surface, then if we multiply

Fds by Pn , the zonal harmonic whose pole is the point P of the

same surface, and integrate over the surface, the result, since

it depends on the position of the point P, may be considered as

a function of the position of P.

But since the value at P of the zonal harmonic whose pole is

Q is equal to the value at Q of the zonal harmonic of the same

order whose pole is P, we may suppose that for every element
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ds of the surface a zonal harmonic is constructed having its pole

at Q and having a coefficient Fds.

We shall thus have a system of zonal harmonics superposed

on each other with their poles at every point of the sphere where

F has a value. Since each of these is a multiple of a surface

harmonic of order n, their sum is a multiple of a surface har-

monic (not necessarily zonal) of order n.

The surface integral / / FPnds considered as a function of the

point P is therefore a multiple of a surface harmonic Yn ; so that

is also that particular surface harmonic of the nth order which

belongs to the series of harmonics which expresses F, provided

F can be so expressed.

For if F can be expressed in the form

F= A^ +A^+kc +A^ + kc,

then if we multiply by Pnds and take the surface integral over

the whole sphere, all terms involving products of harmonics of

different orders will vanish, leaving

//FPnds
= P^-

A

nYn .

Hence the only possible expansion of Fin spherical harmonics is

F = ^-2
f ffFPQds + &c. + (2n + 1

)ff
FP«ds + &c

-]
• (6 !)

Conjugate Harmonics.

136.] We have seen that the surface integral of the product of

two harmonics of different orders is always zero. But even

when the two harmonics are of the same order, the surface

integral of their product may be zero. The two harmonics are

then said to be conjugate to each other. The condition of two

harmonics of the same order being conjugate to each other is

expressed in terms of equation (46) by making its members equal

to zero.

If one of the harmonics is zonal, the condition of conjugacy is

that the value of the other harmonic at the pole of the zonal

harmonic must be zero.

If we begin with a given harmonic of the 71
th order, then, in
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order that a second harmonic may be conjugate to it, its 2 n
variables must satisfy one condition.

If a third harmonic is to be conjugate to both, its 2n variables

must satisfy two conditions. If we go on constructing harmonics,

each of which is conjugate to all those before it, the number of

conditions for each will be equal to the number of harmonics

already in existence, so that the (2n+l)th harmonic will have

2 n conditions to satisfy by means of its 2n variables, and will

therefore be completely determined.

Any multiple AYn of a surface harmonic of the nth order can

be expressed as the sum of multiples of any set of 2n+l con-

jugate harmonics of the same order, for the coefficients of the

2n+l conjugate harmonics are a set of disposable quantities

equal in number to the 2n variables of Yn and the coefficient A.

In order to find the coefficient of any one of the conjugate

harmonics, say Y* suppose that

AZ = A Y*n + toi. +Av 7l+ to.

Multiply by F* ds and find the surface integral over the sphere.

All the terms involving products of harmonics conjugate to each

other will vanish, leaving

aJJy^Js = ArJJiYJds, (52)

an equation which determines A a .

Hence if we suppose a set of 2n+l conjugate harmonics

given, any other harmonic of the nth order can be expressed in

terms of them, and this only in one way. Hence no other

harmonic can be conjugate to all of them.

137.] We have seen that if a complete system of 2n+l har-

monics of the nth order, all conjugate to each other, be given,

any other harmonic of that order can be expressed in terms of

these. In such a system of 2n + 1 harmonics there are 2n(2n+l)

variables connected by w(2%+l) equations, n(2n+l) of the

variables may therefore be regarded as arbitrary.

We might, as Thomson and Tait have suggested, select as a

system of conjugate harmonics one in which each harmonic has

its n poles distributed so that j of them coincide at the pole of the

axis of x, k at the pole of y, and I (== n—j— k) at the pole of z.

The n + 1 distributions for which 1 = and the n distributions

for which 1=1 being given, all the others may be expressed in

terms of these.
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The system which has been actually adopted by all mathe-

maticians (including Thomson and Tait) is that in which n— <r

of the poles are made to coincide at a point which we may call

the Positive Pole of the sphere, and the remaining 0- poles are

placed at equal distances round the equator when their number
is odd, or at equal distances round one half of the equator when
their number is even.

In this case nt , n2 , . . . fin.v are each of them equal to cos 0, which

we shall denote by fi. If we also write v for siad,ixn^ir+1 , ... [in

are of the form v cos (</>— /3), where j3 is the azimuth of one of the

poles on the equator.

Also the value of Xpq is unity if p and q are both less than

n— <r, zero when one is greater and the other less than this

number, and cos s ts/ct when both are greater, s being an integral

number less than 0-.

138.] When all the poles coincide at the pole of the sphere,

0- = 0, and the harmonic is called a Zonal harmonic. As the

zonal harmonic is of great importance we shall reserve for it the

symbol Pn .

We may obtain its value either from the trigonometrical

expression (43) or more directly by differentiation, thus

„»+i $Tn+1 fjn 1

p.=

nl dz

1 .3.5...(2tt-l)r n n(n—l)
[""-

1.2. 3. ..ft L 2.(2^-1);M
n-2

n(n-l)(n-2)(n-3) ^1
2.4.(2tt-l)(2ft-3) r

J

l
K } 2

npl(n-p)\(n-2p)\ F'

J
v

'

where we must give to p every integral value from zero to the

greatest integer which does not exceed \n.

It is sometimes convenient to express i;, as a homogeneous

function of cos 6 and sin 6, or, as we write them, m and v,

*. = ,._=££»),.«,. + "fr-^-'H*-'),^,.,,^

-^-Vv&nn-w "-"']- (55)

It is shewn in the mathematical treatises on this subject that
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Pn (fx) is the coefficient of hn in the expansion of (I - 2 ph + h2)~

*

1 dn

{and that it is also equal to ——- 7-r(/t*
2— l)

n
}«

The surface integral of the square of the zonal harmonic, or

Jj{Pnfds = 2*a?f
+

\PMfd» = ^j- • (56)

Hence J
+

_\pMfd» =^^ • (57)

139.] If we consider a zonal harmonic simply as a function

of ju,, and without any explicit reference to a spherical surface, it

may be called a Legendre's Coefficient.

If we consider the zonal harmonic as existing on a spherical

surface the points of which are defined by the coordinates 6 and
<f>,

and if we suppose the pole of the zonal harmonic to be at the point

(0', <//), then the value of the zonal harmonic at the point (0, <f>)

is a function of the four angles 0', 0', 6, </>, and because it is a

function of ju, the cosine of the arc joining the points (0, <£) and

(0', (£'), it will be unchanged in value if 8 and 8', and also <$> and </>',

are made to change places. The zonal harmonic so expressed has

been called Laplace's Coefficient. Thomson and Tait call it the

Biaxal Harmonic.

Any homogeneous function of x, y, z which satisfies Laplace's

equation may be called a Solid harmonic, and the value of a solid

harmonic at the surface of a sphere whose centre is the origin may
be called a Surface harmonic. In this book we have defined a

surface harmonic by means of its n poles, so that it has only 2n
variables. The more general surface harmonic, which has 2n+ 1

variables, is the more restricted surface harmonic multiplied by

an arbitrary constant. The more general surface harmonic, when
expressed in terms of 8 and <j), is called a Laplace's Function.

140 a.] To obtain the other harmonics of the symmetrical sys-

tem, we have to differentiate with respect to o- axes in the plane

of xy inclined to each other at angles equal to tt/v. This may
be most conveniently done by means of the system of imaginary

coordinates given in Thomson and Tait's Natural Philosophy,

vol. I, p. 148 (or p. 185 of 2nd edition).

If we write £=x + iy, rj = x—iy,

where i denotes \/— 1, the operation of differentiating with respect

to the a- axes if one of these axes makes an angle a with x may
be written when a is odd in the form
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( , d . d w i(a+
2-W

) d -i(a+^) d s , <(.+tr) d -*(«+ 4j d N

^5J +
^5i)(

tfV
d£

+ e
' V,)(

6V '*? + « ^ 'V"
This equals

co8™w + d^\
+8maa - im*-d^\' w

If o- is even we may prove that the operation of differentiating

may be written

(- 1) » | cos ora.i(^ - ^) - sin™^ + ^)| . (59)

m, ., .,d* d'y. nW d* ,
d* nWThus, if ^ ( -y— - -

7— ) = Ds, —— + -J— — DC,
\d£* drf' d? dif

we may express the operation of differentiating with respect to the

<"> (tr)
»

o- axes in terms of Ds, Dc. These are, of course, real operations,

and may be expressed without the use ofimaginary symbols, thus

:

„
<"> d*-1 d crier- l)(*-2)d*-* d3

Q , .

2 <r~1Ds = <r^ T
-= — '--! 3-7-5 + &c., (60)

dx*~x dy 1.2.3 dx<T
~ i dyi '

v ;

„ . J»> d* <r(<r- 1) dr-* d 2
_ /C1X2'-1Dc=-

7 \ rt S -3-, + &c. (61)
da0- 1.2 d#°~2 d?/

2 v '

We shall also write
jn-o- (a) (<t) /7»-«r (<r) (<r)d

Ds = i) S , and jL_Dc = Z)c; (62)
da"

-0- »' ^2n_a

(<0 (») .

so that Ds and Z>c denote the operations of differentiating with
n n

respect to u axes, n— <r of which coincide with the axis of s,

while the remaining o- make equal angles with each other in the
(ff) . . .

plane of xy, Ds being used when the axis of y coincides with
n (»)

one of the axes, and Dc when the axis of y bisects the angle
n

between two of the axes.-

The two tesseral surface harmonics of order n and type o- may

now be written m -i m i

Ys = (-l)n~rn+1Ds-, (63)

(<0 1 Wi
Fc = (-l)B— rn+1Dc-. (64)

Writing n = cos 0, v — sin 0, p
2 = x2 + y

2
, r2 = fr +s

a
,

so that z = fxr, p = vr, x — p cos $, y = p sin <j>,

we have Ds
1
- = (- 1)*^ i(v"-?)~> (65)
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to 1 (2 cA ' 1^; = (- 1)'P !̂

«-+'r)
r
-
5^i

> (66)

in which we may write

I(r-
£*) = P° sin <r

<f>,
- (£"+ 7)°) = P

° cos *$. (67)

We have now only to differentiate with respect to z
y
which we

may do so as to obtain the result either in terms of r and z, or as

a homogeneous function of z and p divided by a power of r,

d"-°- 1 . . (2n)l 2*0-! 1= ( 1 y*-«r i -L v
dzr-'T r2<7+1 ^

; 2 nnl (2o-)!r2w+1

L 2(2^—1) J
v

'

or = f_ 1V-0'-—'—— - v
dz*-' r2or+1 K

' (2o-)! r2n+l

r „ (n—(r)(n— (r—l) „ 00 o 1 /„~\
z
n-v - - -^ -r '- zn-'-Y + &c. . (69)

If we write

W =^Ln- <r_ (n-<r)(n-<r-l)

r 2(2w-l) M

fo,-o-)(n-a-l)(tt-a-2)(n-cr-3)
4 . 1 ,

+
2.4 (271-1) (2^-3)

M
^-J' ^

and

^w = ^L»-._ (*-*)(*-*-!) 2

fo-o-)(tt,-o-l)^-o-2)(^-o-3) I
+

4.8(<r+l)(<r+2) M "
&
M' {?1)

then (.)= 2"-^!(n + cr)! w
(2n)!<r! ^ ' V

'

so that these two functions differ only by a constant factor.

We may now write the expressions for the two tesseral har-

monics of order n and type cr in terms either of or 3",

i'UJW ©!;> 2 sin, = £+£> 3« 2 sin „* (73)

#= (»») 6y 2cos^= ir
+
r

)
', 3-y»«»'»t- (^„ 2

n+0
'rc.!<n!

n ^ 2^-tc,! o-!
n r

' v '

* { Equation (68) may easily be proved by noticing that the left-hand side is (n — o)\
(2o-+l)

times the coefficient of h-" in
\£T] + {z + hy\

> « J&& \
l + —^-\ > if

_ (2p-+l)

If/ h\ a A3
]

~2
write this as p^—.

L |(1 + fi - ) + * a -A and pick out the coefficient of h*-<r,

we get equation (69).}

t {This value must be halved when a = 0.}
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We must remember that when <t = 0, sin a<j> = and cos o-
(f>
= 1

.

For every value of a from 1 to n inclusive there is a pair of

(0) (0)

harmonics, but when a = 0, Ts — 0, and Yc = Pn , the zonal har-
n n

monic. The whole number of harmonics of order n is therefore

2n + 1 , as it ought to be.

140 &.] The numerical value of Y adopted in this treatise is

that which we find by differentiating r-1 with respect to the n
axes and dividing by n ! It is the product of four factors, the

sine or cosine of o-</>, j/
0-

, a function of /u (or of /x and v), and a

numerical coefficient.

The product of the second and third factors, that is to say, the

part depending on 6, has been expressed in terms of three different

symbols which differ from each other only by their numerical

factors. When it is expressed as the product of v° into a series

of descending powers of p, the first term being p*-*, it is the

function which we, following Thomson and Tait, denote by 0.

The function which Heine (Handbuch der Kugelfunctionen,

§47) denotes by P„
n
\ and calls eine zugeordnete Function erster

Art, or, as Todhunter translates it, an 'Associated Function of

the First Kind,' is related to 0^ by the equation

The series of descending powers of tx, beginning with n*-'t
is

expressed by Heine by the symbol ^\ and by Todhunter by the

symbol ^(a, n).

This series may also be expressed in two other forms,

_ 2
n (n— a) \n\ d"=

{2n)l dj?
1"' (76)

The last of these, in which the series is obtained by differentiating

the zonal harmonic with respect to m, seems to have suggested the

symbol I*** adopted by Ferrers, who defines it thus

ffW = „* h = ^> ! 0«

.

(77)
dp* n

2n (n-a)\n\ n v ;

When the same quantity is expressed as a homogeneous

function of /ot and v, and divided by the coefficient of /a"
-

"" v°, it

is what we have already denoted by ty'K
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140 c] The harmonics of the symmetrical system have been

classified by Thomson and Tait with reference to the form of the

spherical curves at which they become zero.

The value of the zonal harmonic at any point of the sphere is

a function of the cosine of the polar distance, which if equated

to zero gives an equation of the nth degree, all whose roots lie

between — 1 and + 1, and therefore correspond to n parallels of

latitude on the sphere.

The zones included between these parallels are alternately

positive and negative, the circle surrounding the pole being

always positive.

The zonal harmonic is therefore suitable for expressing a

function which becomes zero at certain parallels of latitude on

the sphere, or at certain conical surfaces in space.

The other harmonics of the symmetrical system occur in pairs,

one involving the cosine and the other the sine of o-<£. They

therefore become zero at a- meridian circles on the sphere and

also &t n— <r parallels of latitude, so that the spherical surface is

divided into 2<r{n — <r— 1) quadrilaterals or tesserae, together with

4 or triangles at the poles. They are therefore useful in investiga-

tions relating to quadrilaterals or tesserae on the sphere bounded

by meridian circles and parallels of latitude.

They are all called Tesseral harmonics except the last pair,

which becomes zero at n meridian circles only, which divide the

spherical surface into 2n sectors. This pair are therefore called

Sectorial harmonics.

141.] We have next to find the surface integral of the square of

any tesseral harmonic taken over the sphere. This we may do by

the method of Art. 134. We convert the surface harmonic F(ff)

n

into a solid harmonic of positive degree by multiplying it by rn
,

we differentiate this solid harmonic with respect to the n axes of

the harmonic itself, and then make x = y = z = 0, and we

multiply the result by —r-rz—r-rr *rj J ni(2n+l)

These operations are indicated in our notation by

Writing the solid harmonic in the form of a homogeneous

function of z and f and tj, viz.,
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we find that on performing the differentiations with respect

to z, all the terms of the series except the first disappear, and

the factor (n— cr) ! is introduced.

Continuing the differentiations with respect to £ and r\ we

get rid also of these variables and introduce the factor — 2i<rl, so

that the final result is

Rf^mfr+W*-')*. (80)»' 2w+l. 22,rnln\ v '

We shall denote the second member of this equation by the

abbreviated symbol \n, <r\.

This expression is correct for all values of o- from 1 to n inclu-

sive, but there is no harmonic in sin a cj> corresponding to a = 0.

In the same way we can shew that

&)Wi^ (
to+

o
:>

! ^7>' (8i)

m

//(
for all values of a- from 1 tow inclusive.

When o- = 0, the harmonic becomes the zonal harmonic, and

a result which may be obtained directly from equation (50) by

putting Yn = Pm and remembering that the value of the zonal

harmonic at its pole is unity.

142 a.] We can now apply the method of Art. 1 36 to determine

the coefficient of any given tesseral surface harmonic in the

expansion of any arbitrary function of the position of a point on

a sphere. For let F be the arbitrary function, and let A° be the

coefficient of Y^ in the expansion of this function in surface

harmonics of the symmetrical system, then

ffrr?* = A?ff(T<tfda = A? 0, ,]

,

(83)

where [n, a] is the abbreviation for the value of the surface in-

tegral given in equation (80).

142 &.] Let * be any function which satisfies Laplace's equa-

tion, and which has no singular values within a distance a of a

point 0, which we may take as the origin of coordinates. It

is always possible to expand such a function in a series of solid

harmonics of positive degree, having their origin at 0.
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One way of doing this is to describe a sphere about as centre

with a radius less than a, and to expand the value of the potential

at the surface of the sphere in a series of surface harmonics.

Multiplying each of these harmonics by r/a raised to a power

equal to the order of the surface harmonic, we obtain the solid

harmonics of which the given function is the sum.

But a more convenient method, and one which does not involve

integration, is by differentiation with respect to the axes of the

harmonics of the symmetrical system.

For instance, let us suppose that in the expansion of *, there is

to <»)

a term of the form Ac Tc rn .

n n

If we perform on ^ and on its expansion the operation

dn~'T ,d° d° s

dzn~^d^ +
ohf>'

and put x, y, z equal to zero after differentiating, all the terms
(<r)

of the expansion vanish except that containing Ac.
n

Expressing the operator on * in terms of differentiations with

respect to the real axes, we obtain the equation

dr-rd- *{„-i)d-* d* i

lz
n-° Idx" 1 . 2 dx"-* dy2

"Jdz*-° Ldx" 1 . 2 dx"-* dy
^Un + (r)\(n-cr)\ ..

from which we can determine the coefficient of any harmonic

of the series in terms of the differential coefficients of * with

respect to x, y, z at the origin.

143.] It appears from equation (50) that it is always possible

to express a harmonic as the sum of a system of zonal harmonics

of the same order, having their poles distributed over the surface

of the sphere. The simplification of this system, however, does

not appear easy. I have, however, for the sake of exhibiting to

the eye some of the features of spherical harmonics, calculated

the zonal harmonics of the third and fourth orders, and drawn, by
the method already described for the addition of functions, the

equipotential lines on the sphere for harmonics which are the

sums of two zonal harmonics. See Figures VI to IX at the end

of this volume.

Fig. VI represents the difference of two zonal harmonics of the

third order whose axes are inclined at 120° in the plane of the
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paper, and this difference is the harmonic of the second type in

which <r = 1 , the axis being perpendicular to the paper.

In Fig. VII the harmonic is also of the third order, but the

axes of the zonal harmonics of which it is the sum are inclined at

90°, and the result is not of any type of the symmetrical system.

One of the nodal lines is a great circle, but the other two which

are intersected by it are not circles.

Fig. VIII represents the difference of two zonal harmonics of

the fourth order whose axes are at right angles. The result is a

tesseral harmonic for which n = 4, o- = 2.

Fig. IX represents the sum of
1

the same zonal harmonics. The
result gives some notion of one type of the more general har-

monic of the fourth order. In this type the nodal line on the

sphere consists of six ovals not intersecting each other. Within

these ovals the harmonic is positive, and in the sextuply con-

nected part of the spherical surface which lies outside the ovals,

the harmonic is negative.

All these figures are orthogonal projections of the spherical

surface.

I have also drawn in Fig. V a plane section through the axis

of a sphere, to shew the equipotential surfaces and lines of force

due to a spherical surface electrified according to the values of a

spherical harmonic of the first order.

Within the sphere the equipotential surfaces are equidistant

planes, and the lines of force are straight lines parallel to the

axis, their distances from the axis being as the square roots of the

natural numbers. The lines outside the sphere may be taken as

a representation of those which would be due to the earth's mag-
netism if it were distributed according to the most simple type.

144 a.] We are now able to determine the distribution of

electricity on a spherical conductor under the action of electric

forces whose potential is given.

By the methods already given we expand *, the potential due

to the given forces, in a series of solid harmonics of positive

degree having their origin at the centre of the sphere.

Let Anr
nYn be one of these, then since within the conducting

sphere the potential is uniform, there must be a term —Anr
nYn

arising from the distribution of electricity on the surface of the

sphere, and therefore in the expansion of 4iro- there must be a

term 47ro-n = (2n+ \)an-x AnYn .
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In this way we can determine the coefficients of the harmonics

of all orders except zero in the expression for the surface density.

The coefficient corresponding to order zero depends on the charge,

e, of the sphere, and is given hy iira
Q
= a~ 2

e.

The potential of the sphere is

144 6.] Let us next suppose that the sphere is placed in the

neighbourhood of conductors connected with the earth, and that

Green's Function, G, has been determined in terms of x, y, z and

x\ y', z\ the coordinates of any two points in the region in which

the sphere is placed.

If the surface density on the sphere is expressed in a series

of spherical harmonics, then the electrical phenomena outside the

sphere, arising from this charge on the sphere, are identical with

those arising from an imaginary series of singular points all

at the centre of the sphere, the first of which is a single point

having a charge equal to that of the sphere and the others are

multiple points of different orders corresponding to the harmonics

which express the surface density.

Let Green's function be denoted by Gpp>, where p indicates the

point whose coordinates are x, y, z, and p' the point whose co-

ordinates are of, y\ zf.

If a charge A is placed at the point p', then, considering

x\ y', z' as constants, Gpp ' becomes a function of x,y,z\ and the

potential arising from the electricity induced on surrounding

bodies by A is * = A GPP>. (1)

If, instead of placing the charge A at the point p\ it were

distributed uniformly over a sphere of radius a having its centre

at p', the value of ^ at points outside the sphere would be the

same.

If the charge on the sphere is not uniformly distributed, let

its surface density be expressed, as it always can, in a series of

spherical harmonics, thus

47ra2o-i=^ + 3^ 1
F

1 + &c. + (2n+l)^„i;+.... (2)

The potential arising from any term of this distribution, say

±Tra2
(Tn = (2n+l)A nYn , (3)

will he-^A^ for points inside the sphere, and
TriTi

A nYn for

points outside the sphere.



144 b.~\ green's function. 219

Now the latter expression, by equations (13), (14), Arts. 129 c

and 129 d is equal to ,_*\» a a* ^"
* .

( } n n\dhv ..dhn r'

or the potential outside the sphere, due to the charge on the

surface of the sphere, is equivalent to that due to a certain

multiple point whose axes are hx ...hn and whose moment is

An a".

Hence the distribution of electricity on the surrounding con-

ductors and the potential due to this distribution is the same as

that which would be due to such a multiple point.

The potential, therefore, at the point p, or (x, y, z), due to the

induced electrification of surrounding bodies, is

" l
' **nld'h

1
...d'hn

' { '

where the accent over the d'a indicates that the differentiations

are to be performed with respect to x\ y' , z'. These coordinates are

afterwards to be made equal to those of the centre of the sphere.

It is convenient to suppose Yn broken up into its 2n + l con-

stituents of the symmetrical system. Let A^' Y^ be one of

these, then d,m _ tvM /c\

d'hv ..d'K~
n '

It is unnecessary here to supply the affix s or c, which indicates

whether sin<r<£ or cos 0-$ occurs in the harmonic.

We may now write the complete expression for ^, the potential

arising from induced electrification,

* = A Q G + 22 [(- 1)^^ V<* G] . (6)

But within the sphere the potential is constant, or

* + I A. + 22r^r ^ (<ri) ^(<ri)

l = constant. (7)

Now perform on this expression the operation D^\ where the

differentiations are to be with respect to x, y, z, and the values

of n
l
and o-j are independent of those of n and a. All the terms

of (7) will disappear except that in Y^\ and we find

= A D{<ri)G + ssft- I)*A'— D{°l)Df{,T)

G~\ . (8)

We thus obtain a set of equations, the first member of each of
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which contains one of the coefficients which we wish to deter-

mine. The first term of the second member contains A , the

charge of the sphere, and we may regard this as the principal

term.

Neglecting, for the present, the other terms, we obtain as a

first approximation

A™ =--

,

^^ A a* +1lfrt G. (9)

If the shortest distance from the centre of the sphere to the

nearest of the surrounding conductors is denoted by b,

If, therefore, b is large compared with a, the radius of the

sphere, the coefficients of the other spherical harmonics are very

small compared with A Q . The ratio of a term after the first on

the right-hand side of equation (8) to the first term will there-

fore be of an order of magnitude similar to
(
j-)

We may therefore neglect them in a first approximation, and

in a second approximation we may insert in these terms the

values of the coefficients obtained by the first approximation,

and so on till we arrive at the degree of approximation required.

Distribution of electricity on a nearly spherical conductor.

145 a.] Let the equation of the surface of the conductor be

r = a(l+F), (1)

where F is a function of the direction of r, that is to say of 6

and (f>, and is a quantity the square of which may be neglected

in this investigation.

Let F be expanded in the form of a series of surface harmonics

F =f +f1
Y

l +f2
Y2 + kc.+fn7n . (2)

Of these terms, the first depends on the excess of the mean
radius above a. If therefore we assume that a is the mean
radius, that is to say approximately the radius of a sphere whose

volume is equal to that of the given conductor, the coefficient f
will disappear.

The second term, that in /x , depends on the distance of the

centre of mass of the conductor, supposed of uniform density,
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from the origin; If therefore we take that centre for origin, the

coefficient/! will also disappear.

We shall begin by supposing that the conductor has a charge

A , and that no external electrical force acts on it. The potential

outside the conductor must therefore be of the form

V=A l+A l
Y
l

>±2+ kc. + A nYn'~ + ~, (3)

where the surface harmonics are not assumed to be of the same

types as in the expansion of F.

At the surface of the conductor the potential is that of the

conductor, namely, the constant quantity a.

Hence, expanding the powers of r in terms of a and F, and

neglecting the square and higher powers of F, we have

+ A.-±T:'(l-(n + l)F) + ....(4)

Since the coefficients A 1} &c. are evidently small compared

with A , we may begin by neglecting products of these co-

efficients into F.

If we then write for F in its first term its expansion in

spherical harmonics, and equate to zero the terms involving

harmonics of the same order, we find

a = A-» (
5
)

^'=^0/^=0, (6)

AnYn' = A a«fnYn . ^ (7)

It follows from these equations that the F"s must be of the

same type as the Y\ and therefore identical with them, and

that A
1
= and A n

= A anfn .

To determine the density at any point of the surface, we have

the equation , dV dV •
i. ^ / a \^ 4 7ro- = — -j- = — -r- cos e, approximately ; (8)

where v is the normal and e is the angle which the normal makes

with the radius. Since in this investigation we suppose F and

its first differential coefficients with respect to 6 and
<f>

to be

small, we may put cos e = 1, so that
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Expanding the powers of r in terms of a and F, and neglecting

products of F into A„, we find

i v* = AA(l-2F) + &o. + (n+l)A n -±ra Yn . (10)

Expanding F in spherical harmonics and giving A n its value

as already found, we obtain

*k<t = A
Q ±[l+f2 Y, + 2f3 Y,+ tkC. + (n-l)fnYHl (11)

Lb

Hence, if the surface differs from that of a sphere by a thin

stratum whose depth varies according to the values of a spherical

harmonic of order n, the ratio of the difference of the surface

densities at any two points to their sum will be n— 1 times

the ratio of the difference of the radii at the same two points to

their sum.

145 6.] If the nearly spherical conductor (1) is acted on by

external electric forces, let the potential, U, arising from these

forces be expanded in a series of spherical harmonics of positive

degree, having their origin at the centre of volume of the

conductor

U = B. + B.rY,' + B2 r
2 Y^ + ka. +Bnr

n Yn/ + ...

,

(12)

where the accent over Y indicates that this harmonic is not

necessarily of the same type as the harmonic of the same order

in the expansion of F.

If the conductor had been accurately spherical, the potential

arising from its surface charge at a point outside the conductor

would have been

F= 4>i -B^ YS-bc.-B^ £'-... . (13)

Let the actual potential arising from the surface charge be

V+ W, where

W=Cl±Yr + kc. + Cm^l
Ym>> + ...., (14)

the harmonics with a double accent being different from those

occurring either in F or in U, and the coefficients G being small

because Fis small.

The condition to be fulfilled is that, when r = a (l+F),

U+ V+ W = constant = A - +B ,

Qj

the potential of the conductor.
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Expanding the powers of r in terms of a and F, and retaining

the first power ofF when it is multiplied by A or B, but neglect-

ing it when it is multiplied by the small quantities C, we find

F[-A ^+BB
1
aY

l
'+5B

2
a*Y2 ' + &c. + (2n+l)Bna

nYn'+...~\

+ C
i
±Y

1
" + &c. + Cm -J^1

Y;a
" + ...=:0. (15)

To determine the coefficients C, we must perform the multipli-

cation indicated in the first line, and express the result in

a series of spherical harmonics. This series, with the signs

reversed, will be the series for W at the surface of the con-

ductor.

The product of two surface spherical harmonics of orders n
and m, is a rational function of degree n +m in x/r, y/r, and z/r,

and can therefore be expanded in a series of spherical harmonics

of orders not exceeding m + n. If, therefore, F can be expanded

in spherical harmonics of orders not exceeding m, and if the

potential due to external forces can be expanded in spherical

harmonics of orders not exceeding n, the potential arising from
the surface charge will involve spherical harmonics of orders

not exceeding m + n.

This surface density can then be found from the potential by
the approximate equation

47:a+~(U+V+W) = 0. (16)

145 c] A nearly spherical conductor enclosed in a nearly

spherical and nearly concentric conducting vessel.

Let the equation of the surface of the conductor be

r = a(l+F), (17)

where F= /, Yx
+ &c. +/<"> Y?. (1 8)

Let the equation of the inner surface of the vessel be

r = b(l + G), (19)

where G = gx
Y
x + &c. + g™ Y™, (

20
)

the /'s and g's being small compared with unity, and F„ being

the surface harmonic of order n and type <r.

Let the potential of the conductor be a, and that of the

vessel /3. Let the potential at any point between the conductor

and the vessel be expanded in spherical harmonics, thus
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* = Ji + h
1
Y
1
r + &c. + h(° )Y^rn + ...

+hl +^ + &c. + AfF,^ + .
• ., (21)

then we have to determine the constants of the forms h and k so

that when r = a (1 + F), * = a, and when r = b (1 + £), * = /3.

It is manifest, from our former investigation, that all the A's

and &'s except h and & will be small quantities, the products of

which into F may be neglected. We may, therefore, write

i3 = A + * |(l-G) + &o. + (AW6» +^) gl
i
)F

i

;'>+.... (23)

We have therefore 7 . 7 1 . .

a = h + k -, (24)

P = h + Kl> (25)

*o^} =^" +^^. (26)

whence we find for k , the charge of the inner conductor,

ko=(a-P)^~> (28)

and for the coefficients of the harmonics of order n

hi<r) ~ k 9n Jn (W\

frn+lA<r)_ an+ \ J?)

k
(a) = k anb» -jprr, 5—p- , (30)
n 7,2n+ l ,-,2n+l v '

where we must remember that the coefficients f^\ g^\ h(°\ k{^ are

those belonging to the same type as well as order.

The surface density on the inner conductor is given by the

equation

*TT<ra2 = k (l + ...+A nYn
{a)

+...)

t a fi
) {(n + 2)a^ + (n-l)b^}-g (

;
)(2n +l)an+ *b »

where An = ^»+i_ a^+i (
ol

)

146.] As an example of the application of zonal harmonics,

let us investigate the equilibrium of electricity on two spherical

conductors.
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Let a and b be the radii of the spheres, and c the distance

between their centres. We shall also, for the sake of brevity,

write a = ex, and b = cy, so that x and y are numerical quantities

less than unity.

Let the line joining the centres of the spheres be taken as

the axis of the zonal harmonics, and let the pole of the zonal

harmonics belonging to either sphere be the point of that sphere

nearest to the other.

Let r be the distance of any point from the centre of the first

sphere, and s the distance of the same point from that of the

second sphere.

Let the surface density, <rlt of the first sphere be given by the

equation

4:TT(T
1a

2 = A +A 1P1 + 3A2P2 + kc. + (2m+l)AmPm, (1)

so that A is the total charge of the sphere, and Aly &c. are the

coefficients of the zonal harmonics Plt &c.

The potential due to this distribution of charge may be repre-

sented by

U' = l[A +A 1PS- +A 2P2 ^ + &c. +AmP^] (2)

for points inside the sphere, and by

U = 1[a +A 1P«+A 2p£+ &c. + AJ>£] (3)

for points outside.

Similarly, if the surface density on the second sphere is given

by the equation

4:TT<T
2
b2 = B + B,P

1 + &G. + (27l+l)BnPn , (4)

the potential inside and outside this sphere due to this charge

may be represented by equations of the form

y' = \[* + Bi*il +^ + B.Pj£\, (5)

where the several harmonics are related to the second sphere.

The charges of the spheres are A and B respectively.

The potential at every point within the first sphere is constant

and equal to a, the potential of that sphere, so that within the

first sphere U'+V= a. (7)
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Similarly, if the potential of the second sphere is 0, for points

within that sphere, JJ+ y = £. (8)

For points outside both spheres the potential is *, where

U+V=^. (9)

On the axis, between the centres of the spheres,

r + s = c. (10)

Hence, differentiating with respect to r, and after differentiation

making. r= 0, and remembering that at the pole each of the

zonal harmonics is unity, we find

1 az ds '

2! d2V_
A

*a~*
+

ds*
_0

' (")

- ! +(_!)-£?= 0.Lm
am+1 '

v '' dsm ,

where, after differentiation, s is to be made equal to c.

If we perform the differentiations, and write a/c = x and

b/c = y, these equations become

= A
1 + Bx2 + 2B

1
x2y+3B2x

2
y
2 + kc. + (n+l)Bnx

2
y
n

,
\

= A
2 + Bx

3 + 3 B^x3y + 6 B2x
3
y
2 + &c. + \ {n + 1 )

(n + 2)Bnx
3
y
n

,

= Am + Bxn+1 + {m+\)B1
x™+1y + \{m+l){m + 2)B2x

m+x
y
2

[

(
12

)

(m + ri)l

+ &c + mlnl
-Bnx

m+1 y
n

.

By the corresponding operations for the second sphere we find,

= B
1
+ Ay2 + 2A

1
xy2 + 3A 2

x2
y
2 + &G. + (m+l)Amx

m
y
2
,

= B
2 + Ay3 + 3A 1xy

3 + 6A 2x
2
y
3 + kc. + l(m+l)(m + 2)Amx

m
y
3
,\

= Bn + Ayn+1 + (n+l)A 1
xyn+1 +h(n+l)(n + 2)A 2x

2
y
n+1 + &cc.

(m+ n)l . _ _.,
+ —^-J-Am x

n
y
n+l

.

mini m u

To determine the potentials, a and /3, of the two spheres we
have the equations (7) and (8), which we may now write

(13)

ca = A-+B + Biy + B2y
2 + &c. +Bny

n
, (14)

cB = B-+A +A,x + A 2x
2 + &c. + Amx

m
. (15)

y
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If, therefore, we confine our attention to the coefficients Ax to

Am and B
x
to Bn , we have m + n equations from which to deter-

mine these quantities in terms of A and B, the charges of the two

spheres, and by inserting the values of these coefficients in (14)

and (15) we may express the potentials of the spheres in terms

of their charges.

These operations may be expressed in the form of determinants,

but for purposes of calculation it is more convenient to proceed

as follows.

Inserting in equations (12) the values of B
1
...Bn from equa-

tions (13), we find

A
t = —Bx2 + A £c

2
2/
3
[2 . 1 + 3 . 1 J/

2 + 4 . 1 2/
4 + 5 .

1 2/
6 + 6 .

1 2/
8 + . .

.]

+ A
1
x3
y
3 [2.2 + 3.3y2 + 4Ay*+5.5y« + ...]

+ A2
x*y3 [2.3 + 3.6y2 + 4A0y* + ...]

+A 3x
5
y
3 [2A + 3A0y2 + ...]

+A4x«y
3 [2.5 + ...] (16)

+
A2
= -Bx3 + A ic

3
2/
3 [3.1+6.l2/2 +10.l2/4 +15.l2/6 + ...]

+ ^4
1 a;

4
2/
3 [3.2 + 6.32/

2 + 10.42/
4
+...]

+ ^2
*5

2/
3 [3.3 + 6.62/

2
+...]

+ A zx«y
3 [3A + ...] (17)

+

A 3 = -Bx* + A x4
y
3[±A + 10.l2/2 + 20.l2/4 + ...]

+ A 1afiy
i [4.2 + 10.3ya +...]

+ A 2x
6
y
3 [4.3+...] (18)

+ .......

A4
- -Bx5 + A £c

5
2/
3 [5.1 + 15.l2/2 + ...]

+A 1
x«y3 [5.2 + ...] (19)

+

By substituting in the second members of these equations the

approximate values of Aj &c, and repeating the process for

further approximations, we may carry the approximation to the

coefficient to any extent in ascending powers and products of x
and y. If we write A%sz PnA-qnB,

Bn = -rnA + snB,
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we find

pl
=zx2y*[2+ 3y2 + 42/

4 + 5y6 + 6y* + 7yl0 +8y12 + 9yli + &c]

+ x5
y
6 [8 + 30y2 + 75y*+154y6 + 280y* + kc]

+ x7
y
G [l8 + 902/

2 + 2882/*+ 735
£/
6 + &c]

+ x9 y6 [32 + 200y2 + 780y* + &c]

+ Xuy
G [50 + 375y2 + &c]

+ 03
13

2/
6 [72 + &c]

+ x8 y* [32 + 192y2 + &c]

+ x10
y

9[lU + &c]
(20)

q r
= x2

+ gc*y*[ 4 + 9y2 + 162/
4 + 25y«+ 36y* + 492/

10 + 642/
12 + &c]

+ x7
y
a

[ 6+18y2 + 402/
4 + 75y*+ 126y8 + 196y10 + &c]

+ x»y3
[ 8 + 302/

2 + 802/
4 +1752/6 + 3362/

8 + &c]

+ xxl
y
3 [l0 + 452/

2 +140y4 + 3502/6 + &c]

+ «13
2/

3 [12 + 632/
2 + 2242/

4 + &c]

+ «15
2/
3 [14 + 842/

2 + &c]

+ a;
1T

2/
3 [l6 + &c]

+ a;
8
2/
6

[ 16+ 722/2+ 2092/4 + 4882/
6 + &c]

+ iC
10

2/
6
[ 60+ 3422/2+ 12222/4 + &C.]

+ iC
12

2/
6 [150 +1050 2/

2 + &c]

+ a;
14

2/
6 [308 + &c.]

+ #1V[ 64 + &C.] (21)

+

It will be more convenient in subsequent operations to write

these coefficients in terms of a, b, and c, and to arrange the terms

according to their dimensions in c. This will make it easier to

differentiate with respect to c. We thus find

px
= 2a2 63 c- 5 + 3a2 65c-7 + 4a2 67c-9 + (5a2 69 + 8a6 6c)c-u

+ (6a2 6n+ 39a6 68 + 18a7 66)c~ 13

+ (7a2 613 + 75a5 610 + 90a7 68 + 32a9 66)c~15

+ (8a2 615 +154a5 612 + 288a7 610 + 32a8 69 + 200a9 68 + 50au 66)c- 17
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+ (9a2 617 + 280a5 6U + 735a7 612 + 192 a8 b11 + 780a9 610

+ 144a10 69 + 375au 68 + 72a13 66)<r19 + ... . (22)

qx
= a2c-2 + 4a5 63c-8 + (6a7 63 + 9a5 &5)c-10

+ (8a9 63 +18a7 65 +16a6 67)c-12

+ (10an 63 + 30a9 &5 +16a8 66 + 40a7 67 + 25a5 69)c-u

+ (12a13 63 + 45an 65 + 60a10 66 + 80a9 67

+ 72a8 68 + 75a7 69 + 36a5 6n)c- 16

+ (14a1563 +63a13 65 +150a12 66 + 140an 67 + 342a10 &8

+ 175a9
fe
9 + 209a8 610 +126a7 6n + 49a5 613)c- 18

+ (16a17 &3 + 84a15 &6 + 308a14 &6 + 224a13 67 +1050a12 &8

+ 414a11 69 +1222a10 610 + 336a9 611 + 488a8 612 +196a7 613

+ 64a5 615)c"20 +.... (23)

p2
= 3a3 63c-6 + 6a3 65c- 8 + 10a3 67c-10 +(12a6 66 +15a3 69)c-12

+ (27a8 66 + 54a6 68 + 21 a3 6n)c~u

+ (48a10 66 +162a8 68 +158a6 610 + 28a3 613)c-16

+ (75a12 66 + 360a10 b8 + 48a9 b9 + 606a8 b10

+ 372a6 612 + 36a3 615)c~18 + ... . (24)

g2 = a3c-3 + 6a6 63c-9 + (9a8 63 +18a6 65)c-u

+ (12a10 63 + 36a8 65+ 40a6 67)c-13

+ (15a12 63 + 60a10 65 +24a9 66 +100a8 &7 + 75a6 69)c-15

+ (18au 63 + 90a12 65 + 90an 66 + 200a10 67

+ 126a9 68 + 225a8 69 + 126a6 6n)c- 17

+ (21a16 b3 + 126a14 65 + 225a13 66 + 350a12 67 + 594 a11 b8

+ 525a1069 + 418a9 610 + 441 a8 bu + 196a6 613)c~19 + ... . (25)

p3
- 4a4 63c~7 + 10a4 65c~ 9 + 20a4 67c~n + (16a7 66 + 35a4 69)c~13

+ (36a9 66 + 84 a7 68 + 56a4 6n)c- 15

+ (64an 66 + 252a9 68 + 282a7 610 + 84a4 613)c-17 +.... (26)

qz
= a4 c~4 + 8a7 63 c- 10 + (12 a9 63 + 30a7 65)c-12

+ (16an 63 + 60a9 65 + 80a7 67)c-14

+ (20a13 63 +100an 66 + 32a10 66 + 200a9 67 +175a7 &9)c-16

+ (24a15 63 + 150a13 65 + 120a12 66 + 400an &7 + 192a10 &8

+ 525a9 69 + 336a7 &u)c-18 + .... (27)
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Pt= 5a5 b3 c~ 8 + 15a5 b5 c'10 + 35a5 67 c"12 + (20a8 66 + 70a5 &9)c" 14

+ (45a10 66 +120a8 68 +126a6 6n)c- 16 + .... (28)

g4
= a5c~ 6 + 10a8 63c-n + (15a10 63 + 45a8 65)<r 13

+ (20a12 &3 + 90a10 &5 +140a8 &7)<r 15

+ (25a14 63 +150a12 65 + 40au 66 + 350a10 67 +350a8 69)c- 17 +.... (29)

pb
- 6a6 63 c- 9 + 21a6 65 c-u + 56a6 67 c- 13

+ (24a9 66 + 126a6 69)c'15 +.... (30)

q r>
= a6 c~Q + 12 a9 b3 c~ 12 + {18 a11 b3 + 63 a9 b5)c~^

+ (24a13 63 +126au 65 + 224a9 67)c-
16 + .... (31)

^6
= 7a7 63 c- 10 + 28a7 65 c- 12 +84a7 67 c- 14 +.... (32)

58
= a7 c- 7 +14a10 63 c- 13 + (21a:i2 63 +84a10 66)c- 16 +... (33)

j97
= 8a8 63 c-n + 3Ga8 65 c- 13 +... . (34)

g7
= a8 c- 8 + 16an 63c-14 + .... (35)

^8
= 9a9 63 c-12 +.... (36)

g8
= a9 c- 9 + .... (37)

The values of the r's and s's may be written down by inter-

changing a and 6 in the a's and p's respectively.

If we now calculate the potentials of the two spheres in terms

of these coefficients in the form

a = IA +mB, (38)

= mA+nBi (39)

then I, m, n are the coefficients of potential (Art. 87), and of these

m = c
-1 +p1 ac~

2 +p2a
2 c~3 4- &c, (40)

n = b~ 1 — q1
ac~2— q2a

2 c~ 3 — &c, (41)

or, expanding in terms of a, b, c,

m = c- 1 + 2a3 b3c~7+3 a3 b3(a2 + b2)c~9 + a363 (4 a4 + 6a2 b2 + 4 b*)c~u

+ a3 b3 [5a6 + 10a*b2 + 8a3 b3 + 10a2 b* + 5b6]c~ 13

+ a3 &3 [6a8 + 15a6 62 + 30a5 63 + 20a4 64

+ 30a3 65 +15a2 66 + 668]c" 15

+ a3 63 [7a10 +21a8 62 + 75a7 63 + 35a6 64 +144a5 65

+ 35a4 66 + 75a3 67 + 21 a2 &8 + 7&10]c- 17

+ a363 [8a12 + 28a1062 +154a9 63 + 56a864 + 446a765 +102a6 66

+ 446a5 67 + 56a4 68 +154a3 69 + 28a2 ia0 + 8612]c- 19
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+ a3 &3[9a14 + 36a1262 + 280au &3 + 84a10 &4 +1107a9&6 +318a8&6

+ 1668a7 &7 + 318a6 &8 + 1107a5 &9 + 84a4 &10 + 280a3 &n

+ 36a2 612 + 96u]c- 21 + .... (42)

n = &_1—

a

3c
-4—

a

5 c
-6—

a

7 c
-8— (a3 + 4&3)a6 c-10

-(a5 +12a2 63 + 9&5)a6 c-12 -(a7 + 25a4 63 + 36a2 65 +1667)a6c-14

-(a9 + 44a6 &3 + 96a4 &5 +16a3 &6 + 80a2 67 + 25&9)a6<r 16

-(an + 70a8 &3 +210a6 &5 +84a5 66 + 260a4 &7

+ 72a3 68 + 150a2 69 + 36&u)a6 c- 18

-(a13 + 104a10 &3 + 406a8 65 +'272a7 66 + 680a6 b7 + 468a5 68

+ 575a4 69 + 209a3 610+ 252a2 6n + 49&13)a6 c-20

-(a15 +147a12 63 +720a10 65 + 693a9 66 +1548a867 +1836a7 68

+ 1814a6 &9 +1640a5 &10 +1113a4 &n + 488a3 &12

+ 392a2 613 + 64615)a6 c-22 + .... (43)

The value of I can be obtained from that of n by interchanging

a and b.

^he potential energy of the system is, by Art. 87,

W=\lA 2 +mAB + \nB*, (44)

and the repulsion between the two spheres is, by Art. 93 a,™=U.f + j.Bi£+iB>%. (45)
dc dc dc dc v '

The surface density at any point of either sphere is given by

equations (l) and (4) in terms of the coefficients A n and Bn .



CHAPTER X.

CONFOCAL QUADE1C SURFACES *

147.] Let the general equation of a confocal system be

^
. y

2

,

z* _ . m
tf-a? A2-62 + A2 -c2_ '

V '

where A is a variable parameter, which we shall distinguish by a

suffix for the species of quadric, viz. we shall take Aj for the

hyperboloids of two sheets, A2 for the hyperboloids of one sheet,

and A3 for the ellipsoids. The quantities

a, Aj, 6, A2 , c, A
3

are in ascending order of magnitude. The quantity a is intro-

duced for the sake of symmetry, but in our results we shall

always suppose a = 0.

If we consider the three surfaces whose parameters are

Aj, Ao, A3 , we find, by elimination between their equations, that

the value of x2 at their point of intersection satisfies the

equation

x2 (b2- a2
)
(c

2- a2
) = (A, 2- a2

)
(A2

2- a2
)
(A

3
2- a2

). (2

)

The values of y
2 and z2 may be found by transposing a, b, c

symmetrically.

Differentiating this equation with respect to A19 we find

ClX __ Aj . .

dx^ ~ xf^2
^ {)

If ds
1

is the length of the intercept of the curve of intersection

of A2 and A3 cut off between the surfaces X
1
and X

1 + dX1 , then

c?s,|
2_ dx

dAj|
~~

d\j
+ dK

2 dz^

dX,

_ X 2 (X 2-X 2)(X 2-X 2
)

(X 2-a2){X 2 -b2){X 2-c2
)

K }

* This investigation is chiefly borrowed from a very interesting work,

—

Lemons sur
les Fonctions Inverses des Transcendantes et les Surfaces Isothermes. Par G. Lame",

Paris, 1857.
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The denominator of this fraction is the product of the squares

of the semi-axes of the surface A
x .

If we put

A* = V-V. 2V = V-V> and A2 = V-\2
, (5)

and if we make a = 0, then

ds
x

D2Z>3

dA 1 Jtf-k* V<?-X* J

It is easy to see that D2 and D3 are the semi-axes of the

central section of X
x
which is conjugate to the diameter passing

through the given point, and that D3 is parallel to ds
2 , and

D2 to ds
z .

If we also substitute for the three parameters Als A2 , A
3 their

values in terms of three functions a, /3, y, defined by the equations

_ f xi cdX
x

a
~Jo -/(^-A^j^-A^)'

fi
= T ,

Cdk
* == , (7)

'f.

*s cdX

then ds
x
= -D

2
D

3 da, ds2
= -DzDx dfi, ds3

= -D
x
D

2dy. (8)
c c

148.] Now let V be the potential at any point, a, 8, y, then the

resultant force in the direction of dsx
is

R _ _dV _ __dVda_ _dV_c_^ ,

g
.

1 ds
x dads

x

~ da D.
Z
D

Z

Since ds
x , ds2 , and ds3 are at right angles to each other, the

surface-integral over the element of area ds
2
dsz

is

Rdsds - dV C MAA dBdyK
x
ds

2
dS, - -

da L^ — — dp dy

dV T) 2

= -^t^dfidy. (10)
da c

Now consider the element of volume intercepted between the

surface a, 0, y, and a + da, (3 + df3, y + dy. There will be eight

such elements, one in each octant of space.

We have found the surface-integral of the normal component

of the force (measured inwards) for the element of surface

intercepted from the surface a by the surfaces 8 and 8 + d8, y

and y + dy.
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The surface-integral for the corresponding element of the

surface a + da will be

dFD 2
, d*VD*

+ —7 ^dfidy+-1-K^-dadpdyda c dor c

since D
x
is independent of a. The surface-integral for the two

opposite faces of the element of volume will be the sum of these

quantities, or d 2VD 2

-t-^— dadBdy.
da? c

Similarly the surface-integrals for the other two pairs of faces

will be ^2-p D 2 d 2V D 2

-t-v -^-dadBdy and -j-
2
—— dadBdy.

dp2
c

' dyl
c

These six faces enclose an element whose volume is

D 2D 2D 2

ds^dsz = -1—|—- dadBdy,

and if p is the volume-density within that element, we find by

Art. 77 that the total surface-integral of the element, together

with the quantity of electricity within it multiplied by 4tt, is

zero, or, dividing by dadBdy,

da»
V

*
+
dB*

V
*
+

dy*
V

*
+ P

C
2 '

K J

which is the form of Poisson's extension of Laplace's equation

referred to ellipsoidal coordinates.

If p = the fourth term vanishes, and the equation is equi-

valent to that of Laplace.

For the general discussion of this equation the reader is

referred to the work of Lame' already mentioned.

149.] To determine the quantities a, B, y, we may put them in

the form of ordinary elliptic integrals by introducing the auxiliary

angles 6, <f>,
and y}/, where

A1==6sin^ (12)

A 2
= vVsin2

</> + &2 cos2
</>, (13)

A
3
= csec^. (14)

If we put 6 = kc, and k2 + k/!i = 1, we may call k and k' the

two complementary moduli of the confocal system, and we find

dd
(15)-f.

an elliptic integral of the first kind, which we may write ac-

cording to the usual notation F(k, 6).
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In the same way we find

ft = [*
d +

a

- = F(V) -F(V, </>), (16)
J V 1 — K £

COS"* (p

where F(kf

) is the complete function for modulus kf,

d * =F(k)-F(k,+). (17)

-JJo */ 1 — k* COS* \lf

Here a is represented as a function of the angle 6, which is

accordingly a function of the parameter A1} /3 as a function of </>

and thence of A
3 , and y as a function of ty and thence of A

3 .

But these angles and parameters may be considered as func-

tions of a, (3, y. The properties of such inverse functions, and of

those connected with them, are explained in the treatise of

M. Lame on this subject.

It is easy to see that since the parameters are periodic functions

of the auxiliary angles, they will be periodic functions of the

quantities a,ft,y: the periods of A
x
and A3 are ±F(k), and that

of A
2
is 2F(kf

).

Particular Solutions.

150.] If V is a linear function of a, 0, or y, the equation is

satisfied. Hence we may deduce from the equation the distri-

bution of electricity on any two confocal surfaces of the same

family maintained at given potentials, and the potential at any

point between them.

The Hyperboloids of Two Sheets.

When a is constant the corresponding surface is a hyperboloid

of two sheets. Let us make the sign of a the same as that of x

in the sheet under consideration. We shall thus be able to study

one of these sheets si; a time.

Let ctj, a2 be the values of a corresponding to two single sheets,

whether of different hyperboloids or of the same one, and let

Tf, I£, be the potentials at which they are maintained. Then, if

we make
y = a

1
V2 -o2

^+a(V
1-V2) (Jg)

a
1
— a2

the conditions will be satisfied at the two surfaces and throughout

the space between them. If we make V constant and equal to \
in the space beyond the surface al5 and constant and equal to

V
%
in the space beyond the surface a

2 , we shall have obtained

the complete solution of this particular case.
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The resultant force at any point of either sheet is

+jRi= _§E = _|E^ > (19)— * ds
l

da ds
t

or JJ, = £l5 « (20)

If p1
be the perpendicular from the centre on the tangent

plane at any point, and i^ the product of the semi-axes of the

surface, then px
D2
D

3
= Px .

Hence we find p _\—\ cTP\ (<>\\

or the force at any point of the surface is proportional to the

perpendicular from the centre on the tangent plane.

The surface-density o- may be found from the equation

4Tr<r = Rv (22)

The total quantity of electricity on a segment cut off by a plane

whose equation is x = d from one sheet of the hyperboloid is

The quantity on the whole infinite sheet is therefore infinite.

The limiting forms of the surface are :

—

(1) When a = F(k) the surface is the part of the plane of xz

on the positive side of the positive branch of the hyperbola

whose equation is xi zi . .

(2) When a = the surface is the plane of yz.

(3) When a = —F(k) the surface is the part of the plane of xz

on the negative side of the negative branch of the same hyperbola.

The Hyperboloid of One Sheet.

By making /3 constant we obtain the equation of the hyper-

boloid of one sheet. The two surfaces which form the boun-

daries of the electric field must therefore belong to two different

hyperboloids. The investigation will in other respects be the

same as for the hyperboloids of two sheets, and when the

difference of potentials is given the density at any point of the

surface will be proportional to the perpendicular from the centre

on the tangent plane, and the whole quantity on the infinite

sheet will be infinite.
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Limiting Forms.

(1) When ji = the surface is the part of the plane of xz

between the two branches of the hyperbola whose equation is

written above, (24).

(2) When ft = F(k') the surface is the part of the plane of xy
which is on the outside of the focal ellipse whose equation is

The Ellipsoids.

For any given ellipsoid y is constant. If two ellipsoids, yx
and y2 , be maintained at potentials T£ and T£, then, for any
point y in the space between them, we have

Y- yiV-yiX+yiX-W ,
26)

>i - y2

The surface-density at any point is

* = -- * *-£, (27)

where p3
is the perpendicular from the centre on the tangent

plane, and P
3
is the product of the semi-axes.

The whole charge of electricity on either surface is given by
V— V

Q2
= c^-^= -Qv (28)

, • „ .
7l
~

y2
and is finite.

When y = F(k) the surface of the ellipsoid is at an infinite

distance in all directions.

If we make J£= and y2 = F(k), we find for the quantity of

electricity on an ellipsoid y maintained at potential V in an
infinitely extended field, y

The limiting form of the ellipsoids occurs when y = 0, in which

case the surface is the part of the plane of xy within the focal

ellipse, whose equation is written above, (25).

The surface-density on either side of the elliptic plate whose
equation is (25), and whose eccentricity is k, is

V 1 1

4irJ&Z&F(k) / x*
y~*~~ ' ^

W c* c*-b*

y
and its charge is Q = c -^-y- • (31)
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Particular Cases.

151.] If c remains finite, while b and therefore k is diminished

till it becomes ultimately zero, the system of surfaces becomes

transformed in the following manner :

—

The real axis and one of the imaginary axes of each of the

hyperboloids of two sheets are indefinitely diminished, and the

surface ultimately coincides with two planes intersecting in the

axis of 0.

The quantity a becomes identical with 6, and the equation

of the system of meridional planes to which the first system is

reduced is x2
y
2

__
Q

,
32 ^

(sin a)
2 (cos a)"

As regards the quantity /3, if we take the definition given in

page 233, (7), we shall be led to an infinite value of the integral at

the lower limit. In order to avoid this we define /3 in this

particular case as the value of the integral

cd\„

jA2 A2vV— A 2*

If we now put X
2
= c sin <j>, /3 becomes

^
i. e. log cot \ <f>

;

f$ sin <j>

whence cos <j> = B
> (33)

2
and therefore sin

<fr
= • (34)

If we call the exponential quantity \(e^ + e~p ) the hyperbolic

cosine of 0, or more concisely the hypocosine of £, or cosh /3, and

if we call \(ep— e~p) the hyposine of /3, or sinh /3, and if in the

same way we employ functions of a similar character analogous

to the other simple trigonometrical ratios, then A
2 = c sech /3, and

the equation of the system of hyperboloids of one sheet is

x" + y
2

^!_=c*. (35)
(sech/i)2 (tanh/3)2 v '

The quantity y is reduced to \}/, so that A3 = c sec y, and the

equation of the system of ellipsoids is

*2
+ y

2

,

*2

^ C2_ (36)
(secy)2 (tany)2

Ellipsoids of this kind, which are figures of revolution about

their conjugate axes, are called planetary ellipsoids.
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The quantity of electricity on a planetary ellipsoid maintained

at potential V in an infinite field, is

Q = c^^, (37)
%-n— y

where c sec y is the equatorial radius, and c tan y is the polar

radius.

If y = 0, the figure is a circular disk of radius c, and

V
o- = 7=> (

38
)

2 71
2vV-r2

Q = c^- (39)

152.] Second Case. Let b = c, then & = 1 and k'- 0,

1
pa

a = log tan » -whence A
x
= ctanha, (40)

and the equation of the hyperboloids of revolution of two sheets

becomes x2 _ y
2 + z2 _ ^ ,

41
>

(tanha)2 (secha)2

The quantity /3 becomes reduced to <£, and each of the hyper-

boloids of one sheet is reduced to a pair of planes intersecting

in the axis of x whose equation is

y * = 0. (42)
(sin/3)

2 (cos/3)
2 v '

This is a system of meridional planes in which /3 is the longitude.

The quantity y as defined in page 233, (7), becomes in this case

infinite at the lower limit. To avoid this let us define it as the

value of the integral r°° cd\
?> ^

-'A, A3 — C

If we then put A3
= csec^, we find y=/ -;—r> whence

\3
= c coth y, and the equation of the family of ellipsoids is

x*

+ y" + z2 = c
2

. (43)
(cothy)2 (cosech>) 4 '

These ellipsoids, in which the transverse axis is the axis of

revolution, are called ovary ellipsoids.

The quantity of electricity on an ovary ellipsoid maintained

at potential V in an infinite field becomes in this case, by (29),

cV+PJi-, (44)

J+o sin V'

where c sec
yf/

is the polar radius.
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If we denote the polar radius by A and the equatorial by B, the

result just found becomes

V (45)

log 5
If the equatorial radius is very small compared to the polar

radius, as in a wire with rounded ends,

Q = \og2A-\ogB' <
46

>

When both b and c become zero, their ratio remaining finite,

the system of surfaces becomes two systems of confocal cones

and a system of spherical surfaces of which the radii are in-

versely proportional to y.

If the ratio of b to c is zero or unity, the system of surfaces

becomes one system of meridian planes, one system of right cones

having a common axis, and a system of concentric spherical

surfaces of which the radii are inversely proportional to y. This

is the ordinary system of spherical polar coordinates.

Cylindric Surfaces.

153.] When c is infinite the surfaces are cylindric, the generat-

ing lines being parallel to the axes of z. One system of cylinders

is hyperbolic, viz. that into which the hyperboloids of two sheets

degenerate. Since, when c is infinite, k is zero, and therefore

= a, it follows that the equation of this system is

-A 4" = &2
« (47)sura cos^a v '

The other system is elliptic, and since when k = 0, /3 becomes

> or A2
= b cosh ft,Ib VK2 -b*

the equation of this system is

— + Vl = b2 (48}
(cosh/3) 2 ^ (sinh/3)2 {

'

These two systems are represented in Fig. X at the end of this

volume.

Confocal Paraboloids.

154.] If in the general equations we transfer the origin of co-

ordinates to a point on the axis of x distant t from the centre of

the system, and if for x, A, b, and c we substitute t + x, t + A, t + b,



1 54-] CTLINDEES AND PARABOLOIDS. 241

and t + c respectively, and then make t increase indefinitely, we

obtain, in the limit, the equation of a system of paraboloids

whose foci are at the points x = b and x = c, viz. the equation is

4
(
a!_x)+i + ^- = 0. (49)

\_6 T \-c

If the variable parameter is \ for the first system of elliptic

paraboloids, n for the hyperbolic paraboloids, and v for the second

system of elliptic paraboloids, we have k, b, p, c, v in ascending

order of magnitude, and

x = K + n + v— c— 6,

(b-X)(y-b)(»-b)
y
- 4

c-b

, M
(c-\)(c-ti)(>—c)

(50)

In order to avoid infinite values in the integrals (7) the cor-

responding integrals in the paraboloidal system are taken

between different limits.

We write in this case

_ c
b dk

a
~Jx V{b-k){c-X)

'

V(fx-b)(c-ix)

f dv
y = I —===== •

Jo V{v—b)(v— c)

From these we find

K — \(c + b)— l(c-b)GOnh.a,

fj.= l(c + b)-\(c-b) cos/3,

v — \(c + b) + l(c-b)coshy,

x— \(c + b) + % (c-6)(coshy— cos/3— cosha)^

y= 2(c-6)sinh|sin|cosh|>

= 2 (c— 6) cosh^ cos - sinh - •

(51)

(52)

'2"~2 2

When b = c we have the case of paraboloids of revolution

about the axis of x, and {see foot note}

x = a{e2a-e2
y),

y= 2aea+vcosp, (53)

z— 2aea+Y sin/3.



242 CONFOCAL QTJADRIC SURFACES. [l54«

The surfaces for which /3 is constant are planes through the
axis, /3 being the angle which such a plane makes with a fixed

plane through the axis.

The surfaces for which a is constant are confocal paraboloids.

When a = — oo the paraboloid is reduced to a straight line

terminating at the origin.

We may also find the values of a, /3, y in terms of r, d, and
<f>,

the spherical polar coordinates referred to the focus as origin,

and the axis of the paraboloids as the axis of 0,

a — log (r% cos \ 6),

P = 4>, (54)

y — log (r* sin \ d).

We may compare the case in which the potential is equal to a,

with the zonal solid harmonic rl Q {
. Both satisfy Laplace's

equation, and are homogeneous functions of x, y, z, but in the

case derived from the paraboloid there is a discontinuity at the
axis {since a is altered by writing 6+ 2 it for 6}.

The surface-density on an electrified paraboloid in an infinite

field (including the case of a straight line infinite in one direction)

is inversely as the square root of the distance from the focus, or,

in the case of the line, from the extremity of the line *.

* {The results of Art. 154 can be deduced as follows. Changing the variables from
x, y, z to k, p, v, Laplace's equation becomes

dM(Ai-&)*(o-/*)*(v-&)*(»'-e)* d*J "" '

or (,_„) {fe-X}i {e-X}» jL
j

(& _A)* (fl_ X)lg j

+ (,-A){^-5}i{ c-p}i^.j(^_5
)
J (c_ /t)ig|

av { dv )

or if

dk (b-\)l(c -\)h

d/3 1

dH
=

(/x-b)i(c-(i)i'

d7 1

dv ~ (v-b)i(y- c)t'

Laplace's equation becomes

So that a linear function of a, 0, 7 satisfies Laplace's equation.
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When b ~ c, we may take

a = — / = >

r y dv

J2b v ~ l

\ = {bl-ea },

v = b{l + cY}.

From (51) (//- 6) = i(c-b) {l-cos^},

(c-/*)-i(c-6){l + cos^};
hence from (50),

x «= 6 + b(eV-ea),

«2 = 4bse>'+
a sin2 ^,

z*m 4bgeY+a cos2|.

If we take the origin at the focus x = I, and write 2j8' for /3, ae2 *' for b«V, a€2 £

for b«°, we get a: = e
2?'— e2

a'>

y = 2aea/+y'sin/3'

s= 2a«a'+V'co8/3'.

From which equations of the form (54) may easily be deduced.

Since from these equations the force along the radius varies as 1/r, the normal force,

1 r
and therefore the surface-density, will vary as — • - where p is the perpendicular

from the focus on the tangent plane, thus the surface-density varies as 1/p, and there-

fore inversely as the square root of r. ]•



CHAPTER XL

THEOET OF ELECTEIO IMAGES AND ELECTRIC INVERSION.

155.] We have already shewn that when a conducting sphere

is under the influence of a known distribution of electricity, the

distribution of electricity on the surface of the sphere can be

determined by the method of spherical harmonics.

For this purpose we require to expand the potential of the in-

fluenced system in a series of solid harmonics of positive degree,

having the centre of the sphere as origin, and we then find a

corresponding series of solid harmonics of negative degree, which

express the potential due to the electrification of the sphere.

By the use of this very powerful method of analysis, Poisson

determined the electrification of a sphere under the influence of

a given electrical system, and he also solved the more difficult

problem to determine the distribution of electricity on two con-

ducting spheres in presence of each other. These investigations

have been pursued at great length by Plana and others, who have

confirmed the accuracy of Poisson.

In applying this method to the most elementary case of a

sphere under the influence of a single electrified point, we require

to expand the potential due to the electrified point in a series

of solid harmonics, and to determine a second series of solid

harmonics which express the potential, due to the electrification

of the sphere, in the space outside.

It does not appear that any of these mathematicians observed

that this second series expresses the potential due to an imaginary

electrified point, which has no physical existence as an electrified

point, but which may be called an electrical image, because the

action of the surface on external points is the same as that which

would be produced by the imaginary electrified point if the

spherical surface was removed.
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This discovery seems to have been reserved for Sir W. Thomson,

who has developed it into a method of great power for the

solution of electrical problems, and at the same time capable of

being presented in an elementary geometrical form.

His original investigations, which are contained in the Cam-
bridge and Dublin Mathematical Journal, 1848, are expressed

in terms of the ordinary theory of attraction at a distance, and

make no use of the method of potentials and of the general

theorems of Chapter IV, though they were probably discovered

by these methods. Instead, however, of following the method of

the author, I shall make free use of the idea of the potential and

of equipotential surfaces, whenever the investigation can be

rendered more intelligible by such means.

Theoi^y of Electric Images.

156.] Let A and B, Figure 7, represent two points in a uniform

dielectric medium of infinite extent.

Let the charges of A and B be ex

and e2 respectively. Let P be any

point in space whose distances from

A and B are r
x and r2 respectively.

Then the value of the potential at P
will be Tr e, e„ .,,F=-l + -^- (1)

The equipotential surfaces due to

this distribution of electricity are represented in Fig. I (at the

end of this volume) when ex and e.2
are of the same sign, and in

Fig. II when they are of opposite signs. We have now to

consider that surface for which V — 0, which is the only

spherical surface in the system. When e
x
and e.2 are of the

same sign, this surface is entirely at an infinite distance, but

when they are of opposite signs there is a plane or spherical

surface at a finite distance over which the potential is zero.

The equation of this surface is

^ + ^ = 0. (2)
*i r2

Its centre is at a point C in AB, produced, such that

ACiBCi-.efief,

and the radius of the sphere is

AB _h*L_
e*-e*
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The two points A and B are inverse points with respect to this

sphere, that is to say, they lie in the same radius, and the radius

is a mean proportional between their distances from the centre.

Since this spherical surface is at potential zero, if we suppose

it constructed of thin metal and connected with the earth, there

will be no alteration of the potential at any point either outside

or inside, but the electrical action everywhere will remain that

due to the two electrified points A and B.

If we now keep the metallic shell in connection with the earth

and remove the point B, the potential within the sphere will

become everywhere zero, but outside it will remain the same as

before. For the surface of the sphere still remains at the same

potential, and no change has been made in the exterior electri-

fication.

Hence, if an electrified point A be placed outside a spherical

conductor which is at potential zero, the electrical action at all

points outside the sphere will be that due to the point A together

with another point B within the sphere, which we may call the

electrical image of A.

In the same way we may shew that if B is a point placed

inside the spherical shell, the electrical action within the sphere

is that due to B, together with its image A.

157.] Definition of an Electrical Image. An electrical image

is an electrified point or system of points on one side of a surface

which would produce on the other side of that surface the same

electrical action which the actual electrification of that surface

really does produce.

In Optics a point or system of points on one side of a mirror

or lens which if it existed would emit the system of rays which

actually exists on the other side of the mirror or lens, is called a

virtual image.

Electrical images correspond to virtual images in Optics in

being related to the space on the other side of the surface. They

do not correspond to them in actual position, or in the merely

approximate character of optical foci.

There are no real electrical images, that is, imaginary electrified

points which would produce, in the region on the same side of

the electrified surface, an effect equivalent to that of the electrified

surface.

For if the potential in any region of space is equal to that due
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to a cer.tain electrification in the same region it must be actually

produced by that electrification. In fact, the electrification at

any point may be found from the potential near that point by

the application of Poisson's equation.

Let a be the radius of the sphere.

Let / be the distance of the electrified point A from the

centre G.

Let e be the charge of this point.

Then the image of the point is at B, on the same radius of the

sphere at a distance -j, and the charge of the image is —&t'

We have shewn that this image

will produce the same effect on the

opposite side of the surface as the

actual electrification of the surface

does. We shall next determine the

surface-density ofthis electrification

at any point P of the spherical sur-

face, and for this purpose we shall Fi 7

make use of the theorem of Coulomb,

Art. 80, that if R is the resultant force at the surface of a con-

ductor, and <r the superficial density,

R = 4 WO",

R being measured away from the surface.

We may consider R as the resultant of two forces, a repul-

sion -J-™ acting along AP, and an attraction e -* p^ acting

along PB.
Kesolving these forces in the directions of AG and CP, we

find that the components of the repulsion are

^£3 along AG, and-^ along CP.

Those of the attraction are
1 2 1

- e
J B~p3

BG &lonS AG>
and - e

J BP*
al°Dg CPm

Now BP = ^ AP, and BG = ^ , so that the components of the

attraction may be written

~ efj[pz alons AG>
and ~ 6 "^IF3

along GP'
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The components of the attraction and the repulsion in the

direction of AG are equal and opposite, and therefore the

resultant force is entirely in the direction of the radius CP.

This only confirms what we have already proved, that the

sphere is an equipotential surface, and therefore a surface to

which the resultant force is everywhere perpendicular.

The resultant force measured along CP, the normal to the

surface in the direction towards the side on which A is placed, is

M - e
a AP* {3)

If A is taken inside the sphere / is less than a, and we must

measure R inwards. For this case therefore

a2 -/2
1

In all cases we may write

p AD.Ad 1 ,_.R = - e -Cp-AP*' (5)

where AD, Ad are the segments of any line through A cutting

the sphere, and their product is to be taken positive in all cases.

158.] From this it follows, by Coulomb's theorem, Art. 80,

that the surface-density at P is

AD.Ad 1 ,_*
a = - el^CPAP*- (6)

The density of the electricity at any point of the sphere varies

inversely as the cube of its distance from the point A.

The effect of this superficial distribution, together with that of

the point A, is to produce on the same side of the surface as the

point A a potential equivalent to that due to e at A, and its

Cb
image — e-> at B, and on the other side of the surface the poten-

tial is everywhere zero. Hence the effect of the superficial

distribution by itself is to produce a potential on the side of A

equivalent to that due to the image — e-* at B, and on the

opposite side a potential equal and opposite to that of e at A.

The whole charge on the surface of the sphere is evidently

Cb—
6f since it is equivalent to the image at B.

We have therefore arrived at the following theorems on the
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action of a distribution of electricity on a spherical surface, the

surface-density being inversely as the cube of the distance from

a point A either without or within the sphere.

Let the density be given by the equation

" =
-Jp*>

(
7
)

where G is some constant quantity, then by equation (6)

~ AD.Ad /rtXC=-e— (8)

The action of this superficial distribution on any point

separated from A by the surface is equal to that of a quantity

of electricity — e, or 1-naC

AD. Ad
concentrated at A.

Its action on any point on the same side of the surface with A
is equal to that of a quantity of electricity

4v Co?

f.AD.Ad
concentrated at B the image of A.
The whole quantity of electricity on the sphere is equal to the

first of these quantities if A is within the sphere, and to the

second if A is without the sphere.

These propositions were established by Sir W. Thomson in his

original geometrical investigations with reference to the distribu-

tion of electricity on spherical conductors, to which the student

ought to refer.

159.] If a system in which the distribution of electricity is

known is placed in the neighbourhood of a conducting sphere of

radius a, which is maintained at potential zero by connection

with the earth, then the electrifications due to the several parts

of the system will be superposed.

Let A
x , A 2 , &c. be the electrified points of the system, fv /2 , &c.

their distances from the centre of the sphere, e
x , e2 , &c. their

charges, then the images Blt B2 , &c. of these points will be in the

Qj CL

same radii as the points themselves, and at distances -r, -r, &c
/i J 2

from the centre of the sphere, and their charges will be

a a „

J\ J2

The potential on the outside of the sphere due to the superficial
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electrification will be the same as that which would be produced

by the system of images B
X
,B2 , &c. This system is therefore

called the electrical image of the system A
A

, A 2 , &c.

If the sphere instead of being at potential zero is at potential

V, we must superpose a distribution of electricity on its outer

surface having the uniform surface-density

_ _V_
~ 4-na

The effect of this at all points outside the sphere will be equal to

that of a quantity Va of electricity placed at its centre, and at

all points inside the sphere the potential will be simply increased

byF.
The whole charge on the sphere due to an external system of

influencing points, A
x , A 27 &c. is

E = Va-eA-e2 ^r- &c, (9)

from which either the charge E or the potential V may be cal-

culated when the other is given.

When the electrified system is within the spherical surface the

induced charge on the surface is equal and of opposite sign to the

inducing charge, as we have before proved it to be for every

closed surface, with respect to points within it.

*160.] The energy due to the mutual action between an elec-

trified point e, at a distance / from the centre of the sphere

* 1 The discussion in the text will perhaps be more easily understood if the problem

be regarded as an example of Art. 86. Let us then suppose that what is described

as an electrified point is really a small spherical conductor, the radius of which is b

and the potential v. We have thus a particular case of the problem of two spheres of

which one solution has already been given in Art. 146, and another will be given in

Art. 173. In the case before us however the radius b is so small that we may
consider the electricity of the small conductor to be uniformly distributed over its

surface and all the electric images except the first image of the small conductor to

be disregarded. Since the charge J? on the sphere is given, we must in addition to

the charge —ea/f&t the image have a charge ea/f at the centre of the sphere.

E e
We thus have V = — + ti

« /

E+e -.

t ea e
v — •

' --

The energy of the system is therefore, Art. 85,

E^ Ee e" /

1

as
\

2a
+
/

+
2 \b p{f*-a*)l

_

By means of the above equations we may also express the energy in terms of the

potentials : to the same order of approximation it is

aV ab^ 1/ ab2
v ,

-|
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greater than a the radius, and the electrification of the spherical

surface due to the influence of the electrified point and the

charge of the sphere, is

„, Ee 1 e
2a3

. .M=
7-*f(F^)' (10)

V is the potential, and E the charge of the sphere.

The repulsion between the electrified point and the sphere is

therefore, by Art. 92,

Hence the force between the point and the sphere is always
an attraction in the following: cases

—

(1) When the sphere is uninsulated.

(2) When the sphere has no charge.

(3) When the electrified point is very near the surface.

In order that the force may be repulsive, the potential of the

sphere must be positive and greater than e —~—— , and the
(/

~ a
)

charge of the sphere must be of the same sign as e and greater

At the point of equilibrium the equilibrium is unstable, the

force being an attraction when the bodies are nearer and a
repulsion when they are farther off.

When the electrified point is within the spherical surface the

force on the electrified point is always away from the centre of

the sphere, and is equal to

e
2af

(a'~f2f
The surface-density at the point of the sphere nearest to the

electrified point when it lies outside the sphere is

1 ( rr a(f+a))
°N = 5 < Va— e t-^—nr c

-i^r- e7(7^fr (12)

The surface-density at the point of the sphere farthest from

the electrified point is
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47ra2 r

4t7«/(

aJJ-a)}

a2(3/+a)

/(/+a) 2

When E, the charge of the sphere, lies between

(13)

c
"W-«) and

_,aW+«)
/(/-^) 2 /(/+«)»

the electrification will be negative next the electrified point and

positive on the opposite side. There will be a circular line of

division between the positively and the negatively electrified

parts of the surface, and this line will be a line of equilibrium.

the equipotential surface which cuts the sphere in the line of equi-

librium is a sphere whose centre is the electrified point and whose

radius is «/f
2—a2

.

The lines of force and equipotential surfaces belonging to a

case of this kind are given in Figure IV at the end of this

volume.

Images in an Infinite Plane Conducting Surface.

161.] If the two electrified points A and B in Art. 156 are

electrified with equal charges of electricity of opposite signs, the

surface of zero potential will be the

plane, every point of which is equidistant

from A and B.

Hence, if A be an electrified point

whose charge is e, and AD a perpen-

dicular on the plane, produce AD to

B so that DB = AD, and place at B a

charge equal to —e, then this charge

at B will be the image of A, and will

produce at all points on the same side

of the plane as A, an effect equal to

that of the actual electrification of the

plane. For the potential on the side of A due to A and B
fulfils the conditions that V2V = everywhere except at A, and

that V= at the plane, and there is only one form of V which

can fulfil these conditions.

To determine the resultant force at the point P of the plane, we

Fig. 8.
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observe that it is compounded of two forces each equal to
6

,

AP2

one acting along AP and the other along PB. Hence the
resultant of these forces is in a direction parallel to AB and
equal to e AB

AP2 'AP'
Hence R, the resultant force measured from the surface towards
the space in which A lies, is

t> 2eAD

and the density at the point P is

eAD

On Electrical Inversion.

162.] The method of electrical images leads directly to a method
of transformation by which we may derive from any electrical

problem of which we know the solution any number of other
problems with their solutions.

We have seen that the image of a poiut at a distance r from
the centre of a sphere of radius R is in the same radius and at a
distance r' such that rr' =R2

. Hence the image of a system of
points, lines, or surfaces is obtained from the original system by
the method known in pure geometry as the method of inversion,

and described by Chasles, Salmon, and other mathematicians.

If A and B are two points, A' and B' their images, being
the centre of inversion, and R the radius

of the sphere of inversion,

OA.OA' = R2 = OB.OB\
Hence the triangles OAB, OB'A' are similar,

and AB : A'B' : : OA :OB'::OA. OB : R\
If a quantity of electricity e be placed at

A , its potential at B will be V = —r-^ .AB
If e' be placed at A', its potential at B' will be

V — __£~ A'B?

In the theory of electrical images

e:e' '.: OA : R::R: OA'.

Hence V : V : : R : OB, (17)

or the potential at B due to the electricity at A is to the
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potential at the image of B due to the electrical image of A as R
is to OB.

Since this ratio depends only on OB and not on OA, the poten-

tial at B due to any system of electrified bodies is to that at B'

due to the image of the system as R is to OB.

If r be the distance of any point A from the centre, and r' that

of its image A', and if e be the electrification of A, and that of

A\ also if L, 8, K be linear, superficial, and solid element at A,

and V, 8', Kf
their images at A', and A, a; p, A', <r\ p the corre-

sponding line-surface and volume-densities of electricity at the

two points, V the potential at A due to the original system, and

V the potential at A' due to the inverse system, then

r' _Lf _R2 _r^ &_?L_r^ IT _ R? _ 7™
\

^~L~V"~W ~S~r*~R*' K ~ r* ~ R6

'(18)

If in the original system a certain surface is that of a con-

ductor, and has therefore a constant potential P, then in the

transformed system the image of the surface will have a potential

7?

P-. But by placing at 0,the centre of inversion, a quantity

of electricity equal to —PR, the potential of the transformed

surface is reduced to zero.

Hence, if we know the distribution of electricity on a con-

ductor when insulated in open space and charged to the potential

P, we can find by inversion the distribution on a conductor,

whose form is the image of the first, under the influence of an

electrified point with a charge —PR placed at the centre of

inversion, the conductor being in connexion with the earth.

163.] The following geometrical theorems are useful in studying

cases of inversion.

Every sphere becomes, when inverted, another sphere, unless

it passes through the centre of inversion, in which case it becomes

a plane.

If the distances of the centres of the spheres from the centre

* See Thomson and Tait's Natural Philosophy, § 515.
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of inversion are a and a', and if their radii are a and a, and if

we define the pw.ver of a sphere with respect to the centre of in-
version to be the product of the segments cut off by the sphere
from a line through the centre of inversion, then the power of
the first sphere is a2-a 2

, and that of the second is a'2— a'2
. We

have in this case

a~ a~ a2-a* ~ ~B2 '
(19)

or the ratio of the distances of the centres of the first and second
spheres is equal to the ratio of their radii, and to the ratio of the
power of the sphere of inversion to the power of the first sphere,
or of the power of the second sphere to the power of the sphere
of inversion.

The image of the centre of inversion with regard to one sphere
is the inverse point of the centre of the other sphere.

In the case in which the inverse surfaces are a plane and a
sphere, the perpendicular from the centre of inversion on the
plane is to the radius of inversion as this radius is to the diameter
of the sphere, and the sphere has its centre on this perpendicular
and passes through the centre of inversion.

Every circle is inverted into another circle unless it passes
through the centre of inversion, in which case it becomes a
straight line.

The angle between two surfaces, or two lines at their intersec-
tion, is not changed by inversion.

Every circle which passes through a point and the image of
that point with respect to a sphere, cuts the sphere at right angles.

Hence, any circle which passes through a point and cuts the
sphere at right angles passes through the image of the point.

164.] We may apply the method of inversion to deduce the
distribution of electricity on an uninsulated sphere under the in-
fluence of an electrified point from the uniform distribution on
an insulated sphere not influenced by any other body.

If the electrified point be at A, take it for the centre of in-

version, and if A is at a distance/ from the centre of the sphere
whose radius is a, the inverted figure will be a sphere whose
radius is a' and whose centre is distant/, where

a' f R2

The centre of either of these spheres corresponds to the inverse
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point of the other with respect to A, or if G is the centre and B

the inverse point of the first sphere, & will be the inverse point,

and B' the centre of the second.

Now let a quantity e' of electricity be communicated to the

second sphere, and let it be uninfluenced by external forces. It

will become uniformly distributed over the sphere with a surface-

density <r'=-^. (
21

)

Its action at any point outside the sphere will be the same as

that of a charge e' placed at B' the centre of the sphere.

At the spherical surface and within it the potential is

P' = -,, (22)
a

a constant quantity.

Now let us invert this system. The centre B' becomes in the

inverted system the inverse point B, and the charge e' at B'

becomes e'-w at B, and at any point separated from B by the

surface the potential is that due to this charge at B.

The potential at any point P on the spherical surface, or on

the same side as B, is in the inverted system

a'AP'
If we now superpose on this system a charge e at A, where

e = - -,R, (23)

the potential on the spherical surface, and at all points on the

same side as B, will be reduced to zero. At all points on the

same side as A the potential will be that due to a charge e at A,
TO

and a charge e' 77- at B.

But • e'j^-ej^-ej, (24)

as we found before for the charge of the image at B.

To find the density at any point of the first sphere we have

'
R*

(25)

Substituting for the value of a-' in terms of the quantities be-

longing to the first sphere, we find the same value as in Art 158,

„_f£=!g. (26)
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On Finite Systems of Successive Images.

165.] If two conducting planes intersect at an angle which is

a submultiple of two right angles, there will be a finite system
of images which will completely determine the electrification.

For let AOB be a section of the two conducting planes per-

pendicular to their line of intersection, and let the angle of inter-

section AOB = - » let P be an electrified point. Then, if we

draw a circle with centre and radius OP, and find points which
are the successive images of P in the two planes beginning with
OB, we shall find Qt for the image of P in OB, P

2 for the image
of Q1

in OA, Q3 for that of P2
in OB, P

3 for that of Q3 in OA,
Q2 for that ofP3 in OB, and so on.

If we had begun with the image ofP in AO we should have
found the same points in the

reverse order Q2 , P3 , Q3 , P2 , Qlt

provided AOB is a submultiple

of two right angles.

For the electrified point and
the alternate images P

2 , P
3

are ranged round the circle at

angular intervals equal to 2AOB,
and the intermediate images

Qi> Q2' Q3 are a* intervals of

the same magnitude. Hence,
if 2AOB is a submultiple of

lg* 10'

2 7r, there will be a finite number of images, and none of these

will fall within the angle AOB. If, however, AOB is not a
submultiple of it, it will be impossible to represent the actual

electrification as the result of a finite series of electrified points.

If AOB = -> there will be n negative images Q 15 Q2 , &c, each

equal and of opposite sign to P, and n— 1 positive images P2 ,

P3 , &c, each equal to P, and of the same sign.

2 7"

The angle between successive images of the same sign is —- •

n
If we consider either of the conducting planes as a plane of

symmetry, we shall find the electrified point and the positive

and negative images placed symmetrically with regard to that
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plane, so that for every positive image there is a negative

image in the same normal, and at an equal distance on the

opposite side of the plane.

If we now invert this system with respect to any point, the

two planes become two spheres, or a sphere and a plane inter-

secting at an angle - , the influencing point P, the inverse point

of P, being within this angle.

The successive images lie on the circle which passes through P

and intersects both spheres at right angles.

To find the position of the images we may make use of the

principle that a point and its image in a sphere are in the

same radius of the sphere, and draw successive chords of the

circle on which the images lie beginning at P and passing

through the centres of the two spheres alternately.

To find the charge which must be attributed to each image,

take any point in the circle of intersection, then the charge of

each image is proportional to its distance from this point, and its

sign is positive or negative according as it belongs to the first or

the second system.

166.] We have thus found the distribution of the images when

any space bounded by a conductor consisting of two spherical

surfaces meeting at an angle -
, and kept at potential zero, is

influenced by an electrified point.

We may by inversion deduce the case of a conductor consisting

of two spherical segments meeting at a re-entering angle -
,

charged to potential unity

and placed in free space.

For this purpose we invert

the system of planes with re-

spect toPand change the signs

of the charges. The circle

on which the images formerly

lay now becomes a straight

line through the centres of
Fis- 11 - the spheres.

If the figure (11) represents a section through the line of

centres AB, and if D, D' are the points where the circle of

intersection cuts the plane of the paper, then, to find the sue-
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cessive images, draw DA a radius of the first circle, and draw

DC, DE, &c., making angles -> — » &c. with DA. The
n n

points A, C, E, &c. at which they cut the line of centres will be
the positions of the positive images, and the charge of each will

be represented by its distance from D. The last of these images
will be at the centre of the second circle.

To find the negative images draw DQ, DR, &c, making angles

~> —> &c - witn tne line of centres. The intersections of these

lines with the line of centres will give the positions of the

negative images, and the charge of each will be represented by
its distance from D {for if E and Q are inverse points in the

sphere A the aDgles ADE, AQD are equal}.

The surface-density at any point of either sphere is the sum
of the surface-densities due to the system of images. For
instance, the surface-density at any point S of the sphere whose
centre is A, is

where A, B, C, &c. are the positive series of images.

When S is on the circle of intersection the density is zero.

To find the total charge on one of the spherical segments, we
may find the surface-integral of the induction through that

segment due to each of the images.

The total charge on the segment whose centre is A due to the

image at A whose charge is DA is

BA I

)̂^ = HDA + OA),

where is the centre of the circle of intersection.

In the same way the charge on the same segment due to the

image at B is \ (DB + OB), and so on, lines such as OB measured
from to the left being reckoned negative.

Hence the total charge on the segment whose centre is A is

\ {DA +DB+DC+ &c.) + * (OA + B + 0C+ &c.)

- \ (DP+ DQ + &c.) -l(0P+0Q + &c).

167.] The method of electrical images may be applied to any
space bounded by plane or spherical surfaces all of which cut one
another in angles which are submultiples of two right angles.
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In order that such a system of spherical surfaces may exist,

every solid angle of the figure must be trihedral, and two of its

angles must be right angles, and the third either a right angle

or a submultiple of two right angles.

Hence the cases in which the number of images is finite

are

—

(1) A single spherical surface or a plane.

(2) Two planes, a sphere and a plane, or two spheres inter-

secting at an angle - •

(3) These two surfaces with a third, which maybe either plane

or spherical, cutting both orthogonally.

(4) These three surfaces with a fourth, plane or spherical,

cutting the first two orthogonally and the third at an angle —,
•

Of these four surfaces one at least must be spherical.

We have already examined the first and second cases. In the

first case we have a single image. In the second case we have

2 n~ 1 images arranged in two series on a circle which passes

through the influencing point and is orthogonal to both surfaces.

In the third case we have, besides these images and the in-

fluencing point, their images with respect to the third surface,

that is, 4 7i— 1 images in all besides the influencing point.

In the fourth case we first draw through the influencing point

a circle orthogonal to the first two surfaces, and determine on it

the positions and magnitudes of the n negative images and the

n—1 positive images. Then through each of these 2 n points,

including the influencing point, we draw a circle orthogonal to

the third and fourth surfaces, and determine on it two series of

images, n' in each series. We shall obtain in this way, besides

the influencing point, 2nn'— 1 positive and Inn' negative

images. These 4 n n' points are the intersections of circles

belonging to the two systems of lines of curvature of a cyclide.

If each of these points is charged with the proper quantity of

electricity, the surface whose potential is zero will consist of

n + ru spheres, forming two series of which the successive spheres

of the first set intersect at angles -, and those of the second setG n

at angles — , while every sphere of the first set is orthogonal to
n

every sphere of the second set.
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a/3

Case of Two Spheres cutting Orthogonally. See Fig. IV
at the end of this volume.

168.] Let A and B, Fig. 12, be the centres of two spheres
cutting each other orthogonally

in a circle through D and IX, and
let the straight line DH cut the

line of centres in G. Then C is

the image of A with respect to

the sphere B, and also the image
of B with respect to the sphere

A. If AD = a, BD=8, then

AB = Va2 +B*, and if we place Fis- 12 -

at A, B, C quantities of electricity equal to a, 8, and —
. , Va2 + 8*

respectively, then both spheres will be equipotential surfaces
whose potential is unity.

We may therefore determine from this system the distribution
of electricity in the following cases :

(1) On the conductor PDQD' formed of the larger segments of
both spheres. Its potential is unity, and its charge is

a + 8 -^— =AD +BD-CB.
Va2 + 82

This quantity therefore measures the capacity of such a figure

when free from the inductive action of other bodies.

The density at any point P of the sphere whose centre is A ,

and the density at any point Q of the sphere whose centre is B,
are respectively

ir.0 -(&)") ^ 40 -Oq))-
On the circle of intersection the density is zero.

If one of the spheres is very much larger than the other, the
density at the vertex of the smaller sphere is ultimately three
times that at the vertex of the larger sphere.

(2) On the lens P'DQ'D' formed by the two smaller segments of

the spheres, charged with a quantity of electricity = "^
. ,

V a2 + p
2

and acted on by points A and B, charged with quantities a and 8
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at potential unity, and the density at any point is expressed

by the same formula.

(3) On the meniscus DPD'Qf charged with a quantity a, and

acted on by points B and C charged respectively with quantities

B and , which is also in equilibrium at potential
H

., Va2 + 82

unity.

(4) On the other meniscus QDP'D' charged with a quantity

6 under the action of A and G.

We may also deduce the distribution of electricity on the

following internal surfaces

—

The hollow lens P'DQ'D' under the influence of the internal

electrified point C at the centre of the circle DD\

The hollow meniscus under the influence of a point at the

centre of the concave surface.

The hollow formed of the two larger segments of both spheres

under the influence of the three points A, B, G.

But, instead of working out the solutions of these cases, we

shall apply the principle of electrical images to determine the

density of the electricity induced at the point P of the external

surface of the conductor PDQD' by the action of a point at

charged with unit of electricity.

Let OA = a
t

OB = b, OP = r, BP = p,

AD = a, BD = 8, AB = Va2 + 82
.

Invert the system with respect to a sphere of radius unity and

centre 0.

The two spheres will remain spheres, cutting each other ortho-

gonally, and having their centres in the same radii with A and B.

If we indicate by accented letters the quantities corresponding

to the inverted system,

b , a n, B
,

a ,,__ ,_ a ,_
^^"2' u -b2 -8*' "-at-a2 '

H -b2-82 '

,_1 „ B2 r2 + (b*-8*)(p2-82
)

r ~ r ' P ~~
r2 (b2-82

f

If, in the inverted system, the potential of the surface is

unity, then the density at the point J" is
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If, in the original system, the density at P is a-, then

(T _ 1

and the potential is - • By placing at a negative charge of

electricity equal to unity, the potential will become zero over

the original surface, and the density at P will be

_ 1 a2_ a2
. £V*

°"~47r ar6 \ (£
2 r2 + (&

2 -/32
)(^

2-32))f '

This gives the distribution of electricity on one of the spherical

segments due to a charge placed at 0. The distribution on the

other spherical segment may be found by exchanging a and b,

a and ft, and putting q or AQ instead of p.

To find the total charge induced on the conductor by the

electrified point at 0, let us examine the inverted system.

In the inverted system we have charges a' at A', and ft' at B',

a 8'
and a negative charge

,
at a point C" in the line A'B\5 6

^a'2 + ft'
2

^

such that A'C : G'B' : : a'
2

: /3
/2

.

If 0A'= a\ OB' = b\ 00' = c', we find

»'2 _ a/2
/3
/2 + &

/2 a/2-a/2
/3' 2

C '~
a'

2 + ft'
2

Inverting this system the charges become

(/ _ a ft' _ ft

a'- a* b'~b'

a' ft' 1 aft
and —

^/a
' 2 + /3' 2 c' Va2

ft
2 + b2 a2-a2

ft
2

'

Hence the whole charge on the conductor due to a unit of

negative electricity at is

-+ £- "ft

a 6 Va2
ft
2 + b2 a2-a2

ft
2

'

Distribution of Electricity on Three Spherical Surfaces

which Intersect at Right Angles.

169.] Let the radii of the spheres be a, ft, y, then

BC = VW+7, CA = </y* + tf, AB = Va^+ft2
.

Let FQR, Fig. 13, be the feet of the perpendiculars from ABC
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on the opposite sides of the triangle, and let be the inter-

section of perpendiculars.

Then P is the image of B
in the sphere y, and also the

image of C in the sphere /8.

Also is the image ofP in the

sphere a.

Let charges a, /3, and y be

placed at A, B, and G.

Then the charge to be placed

at P is

0y 1

Fig. 13.

Vp2 + y
2

Also AP =
Vp* + y

2

sidered as the image of P, is

a/3y

V/32 +
y
2

V/jV +yV +a^
SQ that the charge ftt 0j con.

I.+ J.+
1

" ' - ' p r
In the same way we may find the system of images which are

electrically equivalent to four spherical surfaces at potential

unity intersecting at right angles.

If the radius of the fourth sphere is 5, and if we make the

charge at the centre of this sphere = 5, then the charge at the

intersection of the line of centres of any two spheres, say a and

/3, with their plane of intersection, is

1

a2 +
P
2

The charge at the intersection of the plane of any three centres

ABC with the perpendicular from the centre D is

+ -/I l

'

a*
+
p

2 +
y
2

and the charge at the intersection of the four perpendiculars is

1

V11^1^2 + jj2
+ yZ + TVb2
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System of Four Spheres Intersecting at Right A ngles, at zero

potential, under the Action of an Electrified Unit Point.

170.] Let the four spheres be'A, B, C, D, and let the electrified

point be 0. Draw four spheres A x , Bx , Cx , Dx , of which any

one, A x , passes through and cuts three of the spheres, in this

case B, O, and D, at right angles. Draw six spheres (ab), (ac),

(ad), (be), (bd), (cd), of which each passes through and through

the circle of intersection of two of the original spheres.

The three spheres Blt C
x , D x

will intersect in another point

besides 0. Let this point be called A f
, and let B', C", and D' be

the intersections of C
x>
D

x , A x , of Dx , A ly Bx , and of A
x , Bx , C x

respectively. Any two of these spheres, A
x , B} , will intersect

one of the six (cd) in a point (a' b'). There will be six such

points.

Any one of the spheres, A
x , will intersect three of the six (ab),

(ac), (ad) in a point a'. There will be four such points. Finally,

the six spheres (ab), (ac), (ad), (cd), (db), (be), will intersect in one

point S in addition to 0.

If we now invert the system with respect to a sphere of radius

unity and centre 0, the four spheres A, B, C, D will be inverted

into spheres, and the other ten spheres will become planes. Of
the points of intersection the first four A', B', C, D' will become

the centres of the spheres, and the others will correspond to the

other eleven points described above. These fifteen points form

the image of in the system of four spheres.

At the point A', which is the image of in the sphere A, we

must place a charge equal to the image of 0, that is, , where
(aj

a is the radius of the sphere A , and a is the distance of its centre

from 0. In the same way we must place the proper charges at

B\ C, D\
The charge for any of the other eleven points may be found

from the expressions in the last article by substituting a, ft, y,
8'

for a, ft, y, h, and multiplying the result for each point by the

distance of the point from 0, where

£>'= ^_ y
' = __Z_ g' = _ 8

r* 1,2 a-2> I — „z . z»
u —

[The cases discussed in Arts. 169, 170 may be dealt with as

follows: Taking three coordinate planes at right angles, let us
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place at the system of eight points (± ^-, — ol' ±5")

charges ±e, the minus charges being at the points which have

1 or 3 negative coordinates. Then it is obvious the coordinate

planes are at potential zero. Now let us invert with regard to

any point and we have the case of three spheres cutting ortho-

gonally under the influence of an electrified point. If we invert

\sdth regard to one of the electrified points, we find the solution

for the case of a conductor in the form of three spheres of radii

a, /3, y cutting orthogonally and freely charged.

If to the above system of electrified points we superadd their

images in a sphere with its centre at the origin we see that, in

addition to the three coordinate planes, the surface of the sphere

forms also a part of the surface of zero potential.]

Two Spheres not Intersecting.

171. J When a space is bounded by two spherical surfaces

which do not intersect, the successive images of an influencing

point within this space form two infinite series, none of which lie

between the spherical surfaces, and therefore fulfil the condition

of the applicability of the method of electrical images.

Any two non-intersecting spheres may be inverted into two

concentric spheres by assuming as the point of inversion either

of the two common inverse points of the pair of spheres.

We shall begin, therefore, with the case of two uninsulated

concentric spherical surfaces, subject

to the induction ofan electrified point

P placed between them.

Let the radius of the first be b, and
that of the second be

w
, and let the

distance of the influencing point from

the centre be r = be".

Then all the successive images

will be on the same radius as the
lg

* ' influencing point.

Let Q , Fig. 14, be the image of P in the first sphere, P
1
that

of Q in the second sphere, Qx
that of P

x
in the first sphere, and

so on ; then OP,.0Q8
= b2

,

and OP
s
.OQ

s . 1
= b2

e
n2VJ
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also OQ = be~
u

,

OP1 = be
u+2ST

,

OQ
1
= be-^+V*, &c.

Hence OPs = be^>w\

OQ
s
= be-^+2i1z\

If the charge of P is denoted by P, that of P8 by P8 , then

P
s
= Pe™, Q„ = -Pe-<*+«w >.

Next, let Q/ be the image of P in the second sphere, P/ that

of Qi in the first, &c, then

OQS = 6e
2CT-*, OP/ = 6e"-

2,n7
,

OQ/ = be
iXS -», OPS = 6e»-4

CT
,

OQS = be2
°™~ u

, OP/ = be"- 2 *™,

QS = - Pc 8 CT- tt

, P/ = Pe-w .

Of these images all the P's are positive, and all the Q's

negative, all the P"s and Q's belong to the first sphere, and
all the P's and Q"a to the second.

The images within the first sphere form two converging series,

the sum of which is jv-u, 1

-P- — .

e
m -l

This therefore is the quantity of electricity on the first or

interior sphere. The images outside the second sphere form two

diverging series, but the surface-integral due to each with respect

to the spherical surface is zero. The charge of electricity on the

exterior spherical surface is therefore

p(t ZJ
_i = _P- e

-

If we substitute for these expressions their values in terms of

OA, OB, and OP, we find

, , „OAPB
charge on A = -F

qJ>jj;>

, „ pOBAP
charge on B = -P^ -^ •

If we suppose the radii of the spheres to become infinite, the

case becomes that of a point placed between two parallel planes

A and B. In this case these expressions become

charge on A =--P
2iT

charge on B = — P-t-^ .

AB
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Fig. 15.

172.] In order to pass from this case to that of any two spheres

not intersecting each other, we begin by finding the two common
inverse points O, O'

through which all cir-

cles pass that are ortho-

gonal to both spheres.

Then, if we invert the

system with respect to

either of these points,

the spheres become

concentric, as in the

first case.

If we take the point

O in Fig. 15 as centre

of inversion this point

will be situated in Fig. 14 somewhere between the two spherical

surfaces.

Now in Art. 171 we solved the case where an electrified point

is placed between two concentric conductors at zero potential.

By inversion ofthat case with regard to the point O we shall there-

fore deduce the distributions induced on two spherical conductors

at potential zero, exterior to one another, by an electrified

point in their neighbourhood. In Art. 173 it will be shewn how
the results thus obtained may be employed in finding the distri-

butions on two spherical charged conductors subject to their

mutual influence only.

The radius OAPB in Fig. 14 on which the successive images

lie becomes in Fig. 15 an arc of a circle through O and O', and

the ratio of O'P to OP is equal to Ceu where G is a numerical

quantity.

= 102
OJP
OP'

u = log
O'A a 1 °'B

If we put „ — ^^ -=-_ , ^^ _. At & OP & OA
then /3— a = tn-, u+a = 6*.

All the successive images of P will lie on the arc O'APBO.
The position of the image of P in A is Q where

e(Qo)
= \og^ = 2a-0.

* {Since O' inverts into O, the common centre of the spheres, we have by Art. 162

OP
OO' OA

O'P OP O'A OA ± , x O'P.OA OP M1
so that = —— = eu.

jOP OO' OP.O'A OA
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That of Q in B is F^ where

0(^ =^^=6 + 2^.

Similarly

0(f>) = + 2s*r, 6(Ql )
= 2a— 6— 2s*T.,

In the same way if the successive images of P in B, A s
B, &c.

are Q ', P/, Q/, &c,

0(QO
') = 2/3-0, ft') =6-2*;

6(P/) = 0-2sv, d(Q,')= 2/3-0 + 2sct.

To find the charge of any image P, we observe that in the

inverted figure (14) its charge is

OPP„ ,1 'V OP
In the original figure (15) we must multiply this by OFJ. Hence
the charge of P, in the dipolar figure as P = P/OP, is

OR.O'P,
OP.O'P'

If we make £ = -/OP. O'P, and call £ the parameter of the

point P, then we may write

P= -P

or the charge of any image is proportional to its parameter.

If we make use of the curvilinear coordinates 6 and </>, such

that
,,=»_ 2+^3*=*

x+ '/—ly + k'

where 2k is the distance 00', then

h sinh lc sin

nnah A n/ui A. ' Ocosh 0— cos
<f>'

u cosh 6—cos $'

%2 + (y—k cot #)
2 = k2 cosec2 <t>,

(x + k coth 0f + y
2 =k2 cosech 2

0,

_ a^ + ^-fc* a^ +^ + fc*

£= ,

V
'
2k

f.
v cosh — cos

* {Hence
tf>

is constant for all points on the arc along which the images are
situated. ]•

f In these expressions we must remember that

2 cosh 6 = e
e + e~°, 2 sinh0 = e

9-e~ 9
,
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Since the charge of each image is proportional to its parameter,

£, and is to be taken positively or negatively according as it is

of the form P or Q, we find

l? = P Vcoeh — cos

v^cosh (d + 2svr)— cos 4>

P -/cosh — cos <j>

v/cosh (2u-0— 2 Sot) — COS

P/ =

Q/=-

Pv/coshtf— cos
<f>

Vcosh(0— 2sar) — cos <p

P -/cosh d— cos(f>

Vcosh (2 13— 6? + 2 s ar)— cos <j>

We have now obtained the positions and charges of the two
infinite series of images. We have next to determine the total

charge on the sphere A by finding the sum of all the images
within it which are of the form Q or P'. We may write this

1
P-Zcosh — cos <t>^l-ri

,

Vcosh (0— 2 s rs)— cos <£

P— -/cosh — cos$2I = (

I = 00

=

v/cosh(2a— — 2stsr)— cos</>

In the same way the total induced charge on B is

P\/cosh0— cos$2I = r

—

—
,

-/cosh (0 + 2 srsr)— cos
<f>

— P\/cosh0—cos$2* = o
</COsh(2/3— + 2Svr) — COS0

173.] We shall apply these results to the determination of the
coefficients of capacity and induction of two spheres whose radii
are a and b, and the distance between whose centres is c.

Let the sphere A be at potential unity, and the sphere B at
potential zero.

Then the successive images of a charge a placed at the centre

and the other functions of 9 are derived from these by the same definitions as the
corresponding trigonometrical functions.
The method of applying dipolar coordinates to this case was given by Thomson in

LiouvilUs Journal i^v 1847. See Thomson's reprint ofElectrical Papers, §§ 211, 212.
In the text I have made use of the investigation of Prof. Betti, Nuovo Cimento,
vol. xx, for the analytical method, but I have retained the idea of electrical images as
used by Thomson in his original investigation, Phil. Mag., 1853.
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of the sphere A will be those of the actual distribution of elec-

tricity. All the images will lie on the axis between the poles

and the centres of the spheres, and it will be observed that of

the four systems of images determined in Art. 1 72, only the third

and fourth exist in this case.

If we put

Va* + 64 + c4-2&V -2c-a2-2az b2

k = ,

k . k
then sinh a = , sinh 8 = t •

a o

The values of 6 and $ for the centre of the sphere A are

6 = 2a,
(f>
= 0.

Hence in the equations we must substitute a or — k
sinh a

for P, 2 a for 6 and for #, remembering thatP itself forms part of

the charge of A. We thus find for the coefficient ofcapacity ofA

qaa ~ ^*=° sinh(sw -a)'

for the coefficient of induction of A on B or of B on A

?«6 = ~&2;=islnh-^-

We might, in like manner, by supposing B at potential unity
and A at potential zero, determine the value of qbb . We should
find, with our present notation,

«»= *2;:r sinh03+sw)
-

To calculate these quantities in terms of a and 6, the radii of
the spheres, and of c the distance between their centres, we
observe that if

K= Vai + b* + ci -2b2c2-2c2a2-2a2 b2
,

we may write

sinh a — — -—-

t
sinh 3 = -^ , sinh w = —-=-

.

2ac ^ 2bc 2ab*

cosha = _— , cosh£ = —r , coshw =——=
;<sca. 2cb 2ab

and we may make use of

sinh (a + 8) = sinh a cosh 8 + cosh a sinh 8,

cosh (a + 8) = cosh o cosh 8 + sinh a sinh 8.
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By this process or by the direct calculation of the successive

images as shewn in Sir W. Thomson's paper, we find

_ a 2 b aW

ab a2 b2

__ a^ „

qab ~~T~c{c2 -a2-b2
) c(c2-a2 -b2 + ab)(c2-a2 -b2 -ab)

_ , ab2 ^ a2 bz
„

?6& ~ b +^t? +
(c2-a2 + bc){c*-a2 -bc)

+

174.] We have then the following equations to determine

the charges Ea and Eb of the two spheres when electrified to

potentials Va and Vb respectively,

Eh = Xqab + 'Kqbb-

If we put qaaqbb—qab
2 = D = -jy,

aild Paa=qbbD', Pab = —qabD\ Pbb = ?«<*#'',

Whence PaaPbb-Pab
2 = D''J

then the equations to determine the potentials in terms of the

charges are jr = paaEa +pahEh ,

Vb =pabEa + phhEbi

and paa,pab, and pbb are the coefficients of potential.

The total energy of the system is, by Art. 85,

Q = \(EaVa +EbVb )

= t (Va 2q(W + 2 VaVbqab + Vb
2
qhb)

= 1 (#a
2
.Paa + 2EaEbpab +Eb

2phb).

The repulsion between the spheres is therefore, by Arts. 92, 93,

W— i \y2
d<l™

| 2VVdqab
a- V,

2<^1~ 2
l

a
dc

+ ' y" y
» dc

+ b dcS

= -\\e<

where c is the distance between the centres of the spheres.

Of these two expressions for the repulsion, the first, which

expresses it in terms of the potentials of the spheres and the

variations of the coefficients of capacity and induction, is the

most convenient for calculation.

We have therefore to differentiate the g's with respect to c.

These quantities are expressed as functions of k, a, /3, and or, and
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must be differentiated on the supposition that a and b are con-

stant. From the equations

7 . , t . , n sinh a sinh ftk — —asinha = o sinh ft = — c —.——
%

>

smh vt

dk cosh a cosh ft

dc sinh sr

£ j da sinh a cosh 3we find — =———. 1
,

dc k sinh isr

cZft _ cosh a sinhft

ate A; sinh w
dm _ 1

whence we find

dqaa _ cosh a cosh ft g^ ^* = « (sc + 5 cosh ft) cosh (sex— a)

dc ~ sinner k ^* = ° c(sinh(sra— a))
2

dqab _ cosh a cosh ft g^ ^* = °° s cosn 8OT

dc ~ sinner T + ^s=1 (sinhsw)2 '

C&7&& _ cosh a cosh ft o;66 ^* = » (sc + a cosh a) cosh (ft + sct)

dc ~~ sinh m T _ ^ 8 =
c(sinh(ft + so7))

2

Sir William Thomson has calculated the force between two
spheres of equal radius separated by any distance less than the

diameter of one of them. For greater distances it is not neces-

sary to use more than two or three of the successive images.

The series for the differential coefficients of the ^'s with respect

to c are easily obtained by direct differentiation,

dqaa _ _2o2jc_ _ 2a*b2c(2c2 -2b2-a2
) fe

dc ~
(c

2-b2
)
2

(c
2-b2 + ac)2 {c*-b2 -ac)2

C "'

dq^_ab a2 b2{3c2-a2~b2
)

dc ~
c2

+
c2 (c2-a2-b2)"

a3 b3 f(5c2-a2-b2
)(c2-a2-b2)-a2 b2 }+

c2 (c
2-a2-b2 + ab) 2

(c
2-d£-b2-abf

C"

dqbh _ 2ab2c 2a2 b3 c(2c2-2a2-b2
)

dc ~ (c?-a*)* (c
2- a2 + bef (c

2 - a2- be)2
~

Distribution of Electricity on Two Spheres in Contact.

175.] If we suppose the two spheres at potential unity and
not influenced by any point, then, if we invert the system with
respect to the point of contact, we shall have two parallel planes,
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distant — and —7 from the point of inversion, and electrified by

the action of a positive unit of electricity at that point.

There will be a series of positive images, each equal to unity,

at distances s(- + j) from the origin, where s may have any

integral value from —00 to +00.

There will also be a series of negative images each equal to

— 1, the distances of which from the origin, reckoned in the

direction of a, are - + s (- + T ) •

When this system is inverted back again into the form of the

two spheres in contact, we have corresponding to the positive

images a series of negative images, the distances of which from

the point of contact are of the form —- — , where s is positive

for the sphere A and negative for the sphere B. The charge

of each image, when the potential of the spheres is unity, is

numerically equal to its distance from the point of contact, and

is always negative.

There will also be a series of positive images corresponding to

the negative ones for the two planes, whose distances from the

point of contact measured in the direction of the centre of a,

are of the form - •

- + 8 (- + 7)a ya b ;

When s is zero, or a positive integer, the image is inside

the sphere A.

When s is a negative integer the image is inside the sphere B.

The charge of each image is numerically equal to its distance

from the origin and is always positive.

The total charge of the sphere A is therefore

-^^8 = 00 1 dO ^^8 = 00 1

a va b J

Each of these series is infinite, but if we combine them in the

form ^, = 00 a?b

s(a + b) {s(a + b) — a}

the series becomes convergent.
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find for i

ab

s(a + b)-

In the same way we find for the charge of the sphere B,

_ ^* = co CLO dO -^8=— 00 1

6=^l=1 s(a + b)-b~a~+b^ t =-1
g

2» = oo CLO

s(a + b) {s(a + b)— b}

The expression for Ea is obviously equal to

ab r^da+ b —l, a

oTbi -j=<rdd >

in which form the result in this case was given by Poisson.

It may also be shewn (Legendre, TraitS des Fonctions Ellip-

tiques, ii. 438) that the above series for Ea is equal to

where y = -57712..., and *(#) = -^-logr(l +*).

The values of * have been tabulated by Gauss (Werke, Band iii,

pp. 161-162).

If we denote for an instant b -4- (a+ b) by x, we find for the

difference of the charges Ea and Eb ,

--^logI>)r(l-<z)x-^r,
dx s v ' v ' a + b

ab d
~ a + b dx'

x :JZlog sin 71x,

nab . irb
cot

a+b a+b

When the spheres are equal the charge of each for potential

unity is w t

2s(2s-l)

= a(l-l + l-± + &c.)

= a log,, 2 = -69314718a.

When the sphereA is very small compared with the sphere B,

the charge on A is

Ea =j2*s = i 82
approximately,

°r ^=6 6-
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The charge on B is nearly the same as if A were removed, or

Eb = b '

The mean density on each sphere is found by dividing the

charge by the surface. In this way we get

Ea _ 77

(r"~ 47ia2 ~ 246'

Eh 1

0-6 =
4tt62 4tt6'

7T
2

6^
Hence, if a very small sphere is made to touch a very large

one, the mean density on the small sphere is equal to that on
2

the large sphere multiplied by — , or 1-644936.

Application of Electrical Inversion to the case of a

Spherical Bowl.

176.] One of the most remarkable illustrations of the power of

Sir W. Thomson's method of Electrical Images is furnished by his

investigation of the distribution of electricity on a portion of a

spherical surface bounded by a small circle. The results of this

investigation, without proof, were communicated to M. Liouville

and published in his Journal in 1 847. The complete investigation

is given in the reprint of Thomson's Electrical Papers, Article

XV. I am not aware that a solution of the problem of the dis-

tribution of electricity on a finite portion of any curved surface

has been given by any other mathematician.
As I wish to explain the method rather than to verify the

calculation, I shall not enter at length into either the geometry
or the integration, but refer my readers to Thomson's work.

Distribution of Electricity on an Ellipsoid.

177.] It is shewn by a well-known method* that the attraction
of a shell bounded by two similar and similarly situated and
concentric ellipsoids is such that there is no resultant attraction
on any point within the shell. If we suppose the thickness of
the shell to diminish indefinitely while its density increases, we
ultimately arrive at the conception of a surface-density varying
as the perpendicular from the centre on the tangent plane, and

* Thomson and Taifc's Natural Philosopliy, § 520, or Art. 150 of this book.
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since the resultant attraction of this superficial distribution on

any point within the ellipsoid is zero, electricity, if so distributed

on the surface, will be in equilibrium.

Hence, the surface-density at any point of an ellipsoid undis-

turbed by external influence varies as the distance of the tangent

plane from the centre.

Distribution of Electricity on a Disk.

By making two of the axes of the ellipsoid equal, and making

the third vanish, we arrive at the case of a circular disk, and at an

expression for the surface-density at any point P of such a disk

when electrified to the potential V and left undisturbed by ex-

ternal influence. If a be the surface-density on one side of the

disk, and if KPL be a chord drawn through the point P, then

V
2nWKP.PL

Application of the Principle of Electric Inversion.

178.] Take any point Q as the centre of inversion, and let B
be the radius of the sphere of inversion. Then the plane of the

disk becomes a spherical surface passing through Q, and the disk

itself becomes a portion of the spherical surface bounded by a

circle. We shall call this portion of the surface the bowl.

If S' is the disk electrified to potential V and free from external

influence, then its electrical image S will be a spherical segment

at potential zero, and electrified by the influence of a quantity

V'R of electricity placed at Q.

We have therefore by the process of inversion obtained the

solution of the problem of the distribution of electricity on a bowl

or a plane disk at zero potential when under the influence of an

electrified point in the surface of the sphere or plane produced.

Influence of an Electrified Point placed on the unoccupied

part of the Spherical Surface.

The form of the solution, as deduced by the principles already

given and by the geometry of inversion, is as follows :

If G is the central point or pole of the spherical bowl S, and

if a is the distance from C to any point in the edge of the segment,

then, if a quantity q of electricity is placed at a point Q in the

surface of the sphere produced, and if the bowl S is maintained
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at potential zero, the density o- at any point P of the bowl will be

_ J__g_ /CQ
2-a2

<r ~2^QP2/V a2-CP2 '

CQ, CP, and QP being the straight lines joining the points, C, Q,

and P.

It is remarkable that this expression is independent of the

radius of the spherical surface of which the bowl is a part. It

is therefore applicable without alteration to the case of a plane

disk.

Influence of any Number of Electrified Points.

Now let us consider the sphere as divided into two parts, one

of which, the spherical segment on which we have determined

the electric distribution, we shall call the bowl, and the other

the remainder, or unoccupied part of the sphere on which the

influencing point Q is placed.

If any number of influencing points are placed on the remainder

of the sphere, the electricity induced by these on any point of the

bowl may be obtained by the summation of the densities induced

by each separately.

179.] Let the whole of the remaining surface of the sphere be

uniformly electrified, the surface-density being p, then the density

at any point of the bqwl may be obtained by ordinary integration

over the surface thus electrified.

We shall thus obtain the solution of the case in which the bowl
is at potential zero, and electrified by the influence of the re-

maining portion of the spherical surface rigidly electrified with

density p.

Now let the whole system be insulated and placed within a

sphere of diameter/, and let this sphere be uniformly and rigidly

electrified so that its surface-density is p.

There will be no resultant force within this sphere, and therefore

the distribution of electricity on the bowl will be unaltered, but
the potential of all points within the sphere will be increased by
a quantity V where y= 2 7rp

/
/'.

Hence the potential at every point of the bowl will now be V.

Now let us suppose that this sphere is concentric with the sphere

of which the bowl forms a part, and that its radius exceeds that

of the latter sphere by an infinitely small quantity.
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We have now the case of the bowl maintained at potential V
and influenced by the remainder of the sphere rigidly electrified

with superficial density p + //.

180.] We have now only to suppose p + p' = 0, and we get the

case of the bowl maintained at potential Fand free from external

influence.

If o- is the density on either surface of the bowl at a given point

when the bowl is at potential zero, and is influenced by the rest

of the sphere electrified to density p, then, when the bowl is main-

tained at potential V, we must increase the density on the outside

of the bowl by //, the density on the supposed enveloping sphere.

The result of this investigation is that if / is the diameter of

the sphere, a the chord of the radius of the bowl, and r the chord

of the distance of P from the pole of the bowl, then the surface-

density o- on the inside of the bowl is

and the surface-density on the outside of the bowl at the same

point is V

In the calculation of this result no operation is employed

more abstruse than ordinary integration over part of a spherical

surface. To complete the theory of the electrification of a spherical

bowl we only require the geometry of the inversion of spherical

surfaces.

181.] Let it be required to find the surface-density induced at

any point of the uninsulated bowl by a quantity q of electricity

placed at a point Q, not now in the spherical surface produced. ,

Invert the bowl with respect to Q, the radius of the sphere of

inversion being R. The bowl S will be inverted into its image S',

and the point P will have Pf
for its image. We have now to

determine the density </ at Pf when the bowl S' is maintained at

potential V\ such that q = VR, and is not influenced by any

external force.

The density <r at the point P of the original bowl is

<r'Rs

this bowl being at potential zero, and influenced by a quantity q

of electricity placed at Q.
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The result of this process is as follows

:

Let the figure represent a section through the centre, 0, of the

sphere, the pole, C, of the bowl, and the influencing point Q.

D is a point which corresponds in the inverted figure to the

unoccupied pole of the rim of the

bowl, and may be found by the

following construction.

Draw through Q the chords EQE'
and FQF', then if we suppose the

radius of the sphere of inversion to

be a mean proportional between the

segments into which a chord is

divided at Q, E'F' will be the image

of EF. Bisect the arc F'GE' in D\
so that FD'=D'E\ and draw D'QD
to meet the sphere in D. D is the

point required. Also through 0, the centre of the sphere, and Q
draw HOQH' meeting the sphere in H and H'. Then if P be

any point in the bowl, the surface-density at P on the side which
is separated from Q by the completed spherical surface, induced

by a quantity q of electricity at Q, will be

- g QS.QJET iPQ
f
CB*-aKi _r

\-PQ

,

CD*-a\^)
<T ~

2T!2 HH'.PQ3 lDQ\a2-CP2)
tan [dQW-CP*) 3'

where a denotes the chord drawn from G, the pole of the bowl,

to the rim of the bowl*.

On the side next to Q the surface-density is

q QH.QH'

Fig. 16.

t +
2ttHH'.PQs

* { For further investigations of the electrical distribution on a bowl, see Ferrer's
Quarterly Journal of Math,. 1882 ; Gallop., Quarterly Journal, 1886, p. 229. In this

paper it is shewn that the capacity of the bowl = a ^a + 8in a> whei-e a is the radius of
it

the sphere of which the bowl forms a part and a the semi-vertical angle of the cone
passing through the edge of the bowl whose apex is the centre of the sphere.
See also Kruseman ' On the Potential of the Electric Field in the neighbourhood of a
Spherical Bowl,' Phil. Mag. xxiv. 38, 1887. Basset, Proc. Lond. Math. Soc. xvi.
p. 286.}
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APPENDIX TO CHAPTER XI.

{The electrical distribution over two mutually influencing spheres lias

occupied the attention of many mathematicians. The first solution, which

was expressed in terms of definite integrals, was given by Poisson in two

most powerful and fascinating papers, Mem. de Vlnstitut, 1811, (1) p. 1,

(2) p. 163. In addition to those mentioned in the text the following

authors among others have considered the problem. Plana, Mem. di

Torino 7, p. 71, 16, p. 57; Cayley, Phil. Mag. (4), 18, pp. 119, 193;

Kirchhoff, Crelle, 59, p. 89, Wied. Ann. 27, p. 673 ; Mascart, C. E. 98,

p. 222, 1884.

The series giving the charges on the spheres have been put in a very

elegant form by Kirchhoff. They can easily be deduced as follows.

Suppose the radii of the spheres whose centres are A, B are a, b, their

potentials U, V respectively, then if the spheres did not influence each

other the electrical effect would be the same as that of two charges a U,

b V placed at the centres of the spheres. When the distance c between

the centres is finite this distribution of electricity would not make the

potentials over the spheres constant ; thus the charge at A would alter

the potential of the sphere B. If we wish to keep this potential unaltered

we must take the image of A in B and place a charge there, this charge

however will alter the potential of A, so we must take the image of this

image and so on. Thus we shall get an infinite series of images which it

will be convenient to divide into four sets a, /3, y, b. The first two sets

are due to the charge at the centre of A, a comprises the images inside

A, /3, the images inside the sphere B, the other two sets, y and 8, are

due to the charge at the centre of B; y consists of those inside B, o" of

those inside A. Let pn , fn denote the charge and the distance from

A of the niix image of the first set, pn', /„' the charge and the distance

from B of the n^ image of the second set, then we have the following

relations between the consecutive images,

/n ~c-/„' *•-
b

'

Jn+l — „ xn 2}n+i —
° Jn

Pnfn+i

Eliminating// and jpB
' from these equations we get

n _ yn(qf».H-q
2

) mlWi- -
h

' 0)
57,2a'b

DU* /«+i
= yr ' so that c/»+i- «2= ^_ cyn_ b2

C -7-

C-fn
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_ ab

Pn_ _ C*-cfn-b2
^

Pn+x »b

but from (1) pn __ cfn—a2

Pn-i
~~ ab

and thus pn fn _ c
2—

6

8—-a2

Pn+x Pn-i~ ab

1 1 1

Or if We put fn— p, Pn-x~^p— > ^n+i=p
•*n *»—

i

* *

we get
+1

From the symmetry of the equations we see that if we put pn = p> we

shall get the same sequence equation for Pnf as for Pn .

From the sequence equation we see that

where a and 1/a are the roots of the equation

x2-x y
r '- +1 = 0.

ab

We shall suppose that a is the root which is less than unity. Then

_ a"
Pn ~ Aa** + B'

and the charge on the sphere due to this series of images is

2in = o Aaw + B'

To determine A and B we have the equations

, A (a+ ba)2

thence » = ~ ' «—
^ = — C >

say>H c

an

pn =aU{\-£2

\
l_^aW >
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,_ «"

Pn ~A'a**+ B''

, abll 1

Po =

Pi =-
c ^I'+ iT
aWU

c{c*-(a? + b
2
)) A'o?+ B'

Hence ^'/.B'= - a2
,

and 2;V= fl — «'}^_
2 + 1 ,+ z 6 + -\'

c (1— a 1— a* 1— a"
)

Hence if E
x
and .#

2
are the charges on the sphere, and if

a& /l 2\( J
,

a
,

ft2
, £

ox ( 1 a «2
/

^^^-^{l^ +T^v + i^^ + "•}'

, 2 (6 + aa2

)where n2= s
—- •

c
2

These are the series given by Poisson and Kirchhoff.

Since —3— =- + 4/ „ , ,
(&*,

1 _ 1 1 r
M

sinpt

<*" 1 „ 1
r

cc
a" Sin(27iloga + 2logQ< ^

l-£2a2 " 2
a

2raloga+2logf Jo «**«—

1

v
«" _1 1 y an

l-f2 a2 " 2 1 -a 2rcloga+ 21cgf

, a
n sin(2wloga + 21og£)£< lint-I
2<log£

dt,N°W
2nloga+2log£ Jo l-ae« to«»

and

v « • /o i , oi cw sin(2< logf)-qBin(2< logf/a)
ia,2 sin(2*iloga+21ogt)< = —4— /c. . .

=
v 8 8W 1— 2 a cos (2Hog a) + a2

hence

*..=.<i-pfe-^"r
e2*log^

. ae2tloga

_ r
00 ' Bin(2*log£)»-aBin(2<logf/q) j^

Jo (e^-l)(l-2acos(2*loga)+ a2
)) '

which is Poisson's integral for these expressions.}

* {De Morgan, Biff, and Int. Cal. p. 672.}



CHAPTER XII.

THEORY OF CONJUGATE FUNCTIONS IN TWO DIMENSIONS.

182.] The number of independent cases in which the problem
of electrical equilibrium has been solved is very small. The
method of spherical harmonics has been employed for spherical

conductors, and the methods of electrical images and of inversion

are still more powerful in the cases to which Ihey can be applied.

The case of surfaces of the second degree is the only one, as far

as I know, in which both the equipotential surfaces and the lines

of force are known when the lines of force are not plane curves.

But there is an important class of problems in the theory of

electrical equilibrium, and in that of the conduction of currents,

in which we have to consider space of two dimensions only.

For instance, if throughout the part of the electric field under
consideration, and for a considerable distance beyond it, the

surfaces of all the conductors are generated by the motion of

straight lines parallel to the axis of 0, and if the part of the
field where this ceases to be the case is so far from the part con-
sidered that the electrical action of the distant part of the field

may be neglected, then the electricity will be uniformly dis-

tributed along each generating line, and if we consider a part
of the field bounded by two planes perpendicular to the axis of z

and at distance unity, the potential and the distributions of
electricity will be functions oi.x and y only.

If p dx dy denotes the quantity of electricity in an element
whose base is dx dy and height unity, and a- ds the quantity on an
element of area whose base is the linear element ds and height

unity, then the equation of Poisson may be written

dW d2V
dx^

+ l^ + ^p = -
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When there is no free electricity, this is reduced to the equa-

tion of Laplace, fPY d2V
dx2 dy2

The general problem of electric equilibrium may be stated as

follows :

—

A continuous space of two dimensions, bounded by closed

curves Cl5 C2 , &c. being given, to find the form of a function, V,

such that at these boundaries its value may be Vlt V2 , &c. re-

spectively, being constant for each boundary, and that within

this space V may be everywhere finite, continuous, and single

valued, and may satisfy Laplace's equation.

I am not aware that any perfectly general solution of even

this problem has been given, but the method of transformation

given in Art. 190 is applicable to this case, and is much more

powerful than any known method applicable to three dimen-

sions.

The method depends on the properties of conjugate functions

of two variables.

Definition of Conjugate Functions.

183.] Two quantities a and j3 are said to be conjugate functions

of x and y,ifa+ /^T /3 is a function of x + V— 1 y.

It follows from this definition that

da d8 da dS . /f .— =-/-, and -y-+-T-=0; (1)
dx dy dy dx

d?a d?a_ #£ &£ = (2)
dx2 + dy2 ~

' dx2 ^ dy2 K
'

Hence both functions satisfy Laplace's equation. Also

\ d
f\= B 2

. (
3
)

dadjB dadjS _da\ 2 da 2_ dji

dxdy~dydx~dx\ dy ~ dx dy

If x and y are rectangular coordinates, and if ds
l
is the inter-

cept of the curve (/J = constant) between the curves (a) and

(a + da), and ds
2
the intercept of a between the curves (/3) and

(/3 + d/3), then ^ _ ds^ _ 1_ ,^
~d^~ dp~ R' { }

and the curves intersect at right angles.

If we suppose the potential V= %+ka, where k is some con-

stant, then V will satisfy Laplace's equation, and the curves (a)
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will be equipotential curves. The curves (fi) will be lines of

force, and the surface-integral of R over unit-length of a cylin-

drical surface whose projection on the plane of xy is the curve

AB will be k (Pb—Pa), where Pa and pB are the values of p at

the extremities of the curve.

If there be drawn on the plane one series of curves corre-

sponding to values of a in arithmetical progression, and another

series corresponding to a series of values of p having the same

common difference, then the two series of curves will everywhere

intersect at right angles, and, if the common difference is small

enough, the elements into which the plane is divided will be

ultimately little squares, whose sides, in different parts of the

field, are in different directions and of different magnitudes, being

inversely proportional to jK.

If two or more of the equipotential lines (a) are closed curves

enclosing a continuous space between them, we may take these

for the surfaces of conductors at potentials 1^+kax , V+ ka2 , &c.

respectively. The quantity of electricity upon any one of these

k
between the lines of force (&-,) and (/32) will be — (/32— &)•

The number of equipotential lines between two conductors

will therefore indicate their difference of potential, and the

number of lines of force which emerge from a conductor will

indicate the quantity of electricity upon it.

We must next state some of the most important theorems

relating to conjugate functions, and in proving them we may use

either the equations (1), containing the differential coefficients,

or the original definition, which makes use of imaginary

symbols.

184.] Theorem I. If x' and y' are conjugatefunctions with

respect to x and y, and if x" and y" are also conjugate

functions with respect to x and y, then the functions x'+ x"

and y' +y" will be conjugate functions with respect to x
and y.

-p, dx' _ dy^ , dx" _ dy"
#

dx dy' dx ~ dy
'

therefore ^} =^.
ax dy
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., dx' _ dy' dx" _ dy'\

dy dx ' dy dx

therefore
d(x'+^ = -*«+&;

dy dx
or x' + x" and y' + y" are conjugate with respect to x and 2/.

Graphic Representation of a Function which is the Sum
of Two Given Functions.

Let a function (a) of x and y be graphically represented by a

series of curves in the plane of xy, each of these curves corre-

sponding to a value of a which belongs to a series of such values

increasing by a common difference, 8.

Let any other function, (/3), of x and y be represented in the

same way by a series of curves corresponding to a series of values

of /3 having the same common difference as those of a.

Then to represent the function (a + /3) in the same way, we must

draw a series of curves through the intersections of the two former

series, from the intersection of the curves (a) and (/3) to that of

the curves (a + 8) and (/3— 8), then through the intersection of

(a + 2 8) and (ft— 2 8), and so on. At each of these points the

function will have the same value, namely (a + /3). The next

curve must be drawn through the points of intersection of (a)

and (/3 + 8), of (a + 8) and (/3), of (a + 2 8) and (/3 — 8), and so on.

The function belonging to this curve will be (a + /3 + 8).

In this way, when the series of curves (a) and the series (/3) are

drawn, the series (a + /3) may be constructed. These three series

of curves may be drawn on separate pieces of transparent paper,

and when the first and second have been properly superposed,

the third may be drawn.

The combination of conjugate functions by addition in this way
enables us to draw figures of many interesting cases with very

little trouble when we know how to draw the simpler cases of

which they are compounded. We have, however, a far more

powerful method of transformation of solutions, depending on the

following theorem.

185.] Theorem II. If x" and y" are conjugatefunctions with

respect to the variables x' and y', and if x
r and y' are con-

jugate functions with respect to x and y, then x" and y" will

be conjugate functions with respect to x and y.
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„ dx" __ dx" dx' dx" di/

dx
~~

dx' dx dy' dx
'

_ &tfdtf_ dy"dx'
~~

dy' dy dx' dy

dy
'

, dx" _ dx" dx' dx" dy'

dy
~~

dx' dy dy' dy
'

_ dy"dy' dy" dx'
~ dy' dx dx' dx

dy '

and these are the conditions that x" and y" should be conjugate

functions of x and y.

This may also be shewn from the original definition of conjugate

functions. For x"+ V— 1 y" is a function of x'+ V — 1 y, and

x' + V— 1 y' is a function of x + »/— 1 y. Hence, x" +. V— 1 y"

is a function of x + V— 1 y.

In the same way we may shew that if x' and y' are conjugate

functions of x and y, then x and y are conjugate functions of x'

and y'.

This theorem may be interpreted graphically as follows :

—

Let x', y' be taken as rectangular coordinates, and let the

curves corresponding to values of x" and of y" taken in regular

arithmetical series be drawn on paper. A double system of

curves will thus be drawn cutting the paper into little squares.

Let the paper be also ruled with horizontal and vertical lines at

equal intervals, and let these lines be marked with the corre-

sponding values of x' and y'.

Next, let another piece of paper be taken in which x and y are

made rectangular coordinates and a double system of curves x', y'

is drawn, each curve being marked with the corresponding value

of x' or y'. This system of curvilinear coordinates will correspond,

point for point, to the rectilinear system of coordinates x', y' on
the first piece of paper.

Hence, if we take any number of points on the curve x" on the

first paper, and note the values of x' and y' at these points, and
mark the corresponding points on the second paper, we shall find



1 86.] THEOKEMS. 289

a number of points on the transformed curve x". If we do the

same for all the curves x", y" on the first paper, we shall obtain

on the second paper a double series of curves x", y" of a different

form, but having the same property of cutting the paper into

little squares.

186.] Theorem III. If V is any function of x' and y', and if

x' and y' conjugate functions of x and y, then

rrrd
2V d2Vs.. rr,d2V d2 V, JfJ ,

JJ (d* + W^ dXdy=
JJ(d^

+^ V '

the integration being between the same limits.

For
dV_dVdrf dVdtf
dx ~ dx' dx dy' dx '

d2V_d2V
(
dx\ 2 d2V dx'dy' d2V

(
dy\ 2

dx2 ~dx'2 ^dx' dx'dy' dx dx dy'2 ^dx)

dV&af dVdY

.

dx' dx* dy' dx*
'

A ^Z_d^V (
oW, 2 d2V dx'dy' d2V sdy's*

^ dy2 ~ dx'^dy)
4

dx'dy
1

dy dy
+
df^dy)
dVd2x' dVd2y'

dx' dy2 dy' dy%

Adding the last two equations, and remembering the conditions

of conjugate functions (1), we find

d2V dW
dx2 + dy 2

d2V d2 Vs .dx'dy' dx'dy'

\

dx'2 dy'2 ' ^dx dy dy dx-

Hence

rr.dW dW.j , rr,d2V dW,,dx'dy' dx'dy',, ,

JJte +
Hf)

dxdy =
JJ(oW2 + d^^-Sj ~ djtx)

dxdy

rr(d
2V d2V,, ,, .=

JJ(d^ +^ dxdl/'

If V is a potential, then, by Poisson's equation

d2V dW
dx2 dy2 ~~ '

and we may write the result

I I pdxdy — If p'dx'dy',

"*" 7
° ~ dx'2 Mx) +

\dy> ] dy'2
\
Kdx)

"*"

VfyM

= (
d2V d2 V^ .dx'dy' dx'dy\

\-d.cr!2 do/2' \d,{r. dm dm dcr.s
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or the quantity of electricity in corresponding portions of two

systems is the same if the coordinates ofone system are conjugate

functions of those of the other.

Additional Theorems on Conjugate Functions.

187.] Theorem IV. If x
x
and yx , and also x

2
and y2 , are

conjugate functions of x and y, then, if

X = x
x
x
2-yxy2 , and Y=x

xy2 + x2yt ,

X and Y will be conjugate functions of x and y.

For X + V~l Y=(xx+ V^l

y

x)
(x

2 + V~l y2).

Theorem V. If cp be a solution of the equation

dH d^ = Q
dx2 dy2 '

fdq

d$
2

.

d*\\ a^ + -i
dx

• -^- ), and 0= — tan^tt:
dy\ ' d$

dy
R and will be conjugate functions of x and y.

and if 2R = log U- + -T- ) , and = -tan"1^,

For R and are conjugate functions of -7— and -^-, and these

are conjugate functions of x and y.

Example I.

—

Inversion.

188.] As an example of the general method of transformation

let us take the case of inversion in two dimensions.

If is a fixed point in a plane, and OA a fixed direction, and
if r = OP = aeP, and 6 = AOP, and if x, y are the rectangular

coordinates of P with respect to 0,

nn0. )x = aeP cos 0, y = aeP sin d,

thus p and 6 are conjugate functions of x and y.

If // = np and 0' = nd, p and 6' will be conjugate functions of

p and 6. In the case in which n = — 1 we have

r' =— , and 0' = -d, (6)

which is the case of ordinary inversion combined with turning

the figure 180° from OA.
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Inversion in Two Dimensions.

In this case if r and r' represent the distances of corresponding

points from 0, e and e' the total electrification of a body, S and S'

superficial elements, V and V solid elements, a and a surface-

densities, p and // volume densities, <p and <// corresponding poten-

tials,

r' - ?. - ?L - T2. II - °L - r!l
r~ 8 ~ r2 ~ a2 ' V ~r*~ a*'

i-i z. - r! - °L P - r* _ °L_

e~ ' 7 ~ a2 ~ r'2 ' p ~ ^ ~
r'4

'

)- (
7

)

and since by hypothesis <\>' is got from <£ by expressing

the old variables in terms of the new, — = 1

.

Example II.

—

Electric Images in Two Dimensions.

189.] Let A be the centre of a circle of radius AQ = b at zero

potential, and let E be a charge at A,

then the potential at any point P is

<t>
= 2E\og~; (8)

*

and if the circle is a section of a

hollow conducting cylinder, the surface-

V
density at any point Q is r •

2tt0

Invert the system with respect to a point 0, making

AO = mb, and a 2 = (m2— 1) b2
;

then the circle inverts into itself and we have a charge at A'

equal to that at A, where

aa>=^.m
The density at Q

f
is

E b 2-AA'
2tt6 A fQ' 2

and the potential at any point P' within the circle is

<!>'=<!>= 2E(logb-logAP),
= 2E(logOP'-logA'P'-\ogm). (9)

This is equivalent to the potential arising from a combination

of a charge E at A', and a charge —E at 0, which is the image
of A f with respect to the circle. The imaginary charge at is

thus equal and opposite to that at A'.
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If the point F is denned by its polar coordinates referred to

the centre of the circle, and if we put

p = log r— log b, and r = log AA'— log b,

then AF = beP, AA'=be*>, AO = be~<">; (10)

and the potential at the point (/>, 6) is

<p = E log (e
_2p0— 2 e~P° ef cos + e2p

)

- #log (e
2<">— 2eP«eP cos + e

2P) + 2Ep . (11)

This is the potential at the point (p, 6) due to a charge E,

placed at the point (p , 0), with the condition that when p = 0,

<p= 0.

In this case p and are the conjugate functions in equations

(5): p is the logarithm of the ratio of the radius vector of a

point to the radius of the circle, and is an angle.

The centre is the only singular point in this system of coor-

-j- ds round a closed curve is

zero or 2 it, according as the closed curve excludes or includes

the centre.

Example III.—Neumanns Transformation of this Case *.

190.] Now let a and /3 be any conjugate functions of x and y,

such that the curves (a) are equipotential curves, and the curves

(/3) are lines of force due to a system consisting of a charge of

half a unit per unit length at the origin, and an electrified system

disposed in any manner at a certain distance from the origin.

Let us suppose that the curve for which the potential is a is

a closed curve, such that no part of the electrified system except

the half-unit at the origin lies within this curve.

Then all the curves (a) between this curve and the origin

will be closed curves surrounding the origin, and all the curves

(/3) will meet in the origin, and will cut the curves (a) ortho-

gonally.

The coordinates of any point within the curve (a ) will be

determined by the values of a and at that point, and if the

point travels round one of the curves (a) in the positive direc-

tion, the value of /3 will increase by 2 it for each complete circuit.

If we now suppose the curve (a ) to be the section of the inner

* See Crelle's Journal, lix. p. 335, 1861, also Schwarz Crelle, lxxiv. p. 218, 1872.
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surface of a hollow cylinder of any form maintained at potential

zero under the influence of a charge of linear density E on a, line

of which the origin is the projection, then we may leave the

external electrified system out of consideration, and we have for

the potential at any point (a) within the curve

</> = 2E(a-a ), (12)

and for the quantity of electricity on any part of the curve o

between the points corresponding to ftx and ft2 ,

Q=~E{ft 1 -ft.1). (13)

If in this way, or in any other, we have determined the dis-

tribution of potential for the case of a curve of given section

when the charge is placed at a given point taken as origin, we
may pass to the case in which the charge is placed at any other

point by an application of the general method of transformation.

Let the values of a and ft for the point at which the charge is

placed be a
x
and ftlt then substituting in equation (11) a— a

for p, oj — a for p , since both vanish at the surface a = a
Q , and

ft
— /3X

for 6, we find for the potential at any point whose coor-

dinates are a and ft,

<f>
= i£log(l — 2ea+a>"-2a°cos(/3 — ft1) + e2(a+a

-2aa
))

- E log (1- 2 e*-«. cos (/3 -ft) + e2 (*-«'))-2E \ax -aj). (14)

This expression for the potential becomes zero when a = a
,

and is finite and continuous within the curve a except at the

point (a15 ft), at which point the second term becomes infinite,

and in the immediate neighbourhood of that point this term
is ultimately equal to — 2 E log r'

y
where r' is the distance from

that point.

We have therefore obtained the means of deducing the

solution of Green's problem for a charge at any point within

a closed curve when the solution for a charge at any other point

is known.

The charge induced upon an element of the curve a between

the points ft and ft + dft by a charge E placed at the point (a1? ftj

is, with the notation of Art. 183,

1 d <t>j„

4 Ti c/Sj

where cfe
x

is measured inwards and a is to be put equal to a

after differentiation.
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This becomes, by (4) of Art. 183,

7~^T d3> (
a==ao);

4ir da

I.e. ; c ; r , d 8. (15)
2 77 l-2e(a.-

«) cos (/rf— /3 X) + e
2
<
ai-°o)

M '

From this expression we may find the potential at any point

(aj, Bj within the closed curve, when the value of the potential

at every point of the closed curve is given as a function of B,

and there is no electrification within the closed curve.

For, by Art. 86, the part of the potential at (a
x , /3j), due to the

maintenance of the portion d8 of the closed curve at the potential

V is nV, where n is the charge induced on dB by unit of electri-

fication at (ctj, /3X ).
Hence, if V is the potential at a point on

the closed curve defined as a function of 8, and </> the potential

at the point (^,8^ within the closed curve, there being no

electrification within the curve,

1_ f 2ff (i-e^-^)Vda
^ 2-itJo 1— 2e(ai- a°)cos(/3-/3

1 ) + e
:i(ai-a<'>* * '

Example IV.

—

Distribution of Electricity near an Edge of a

Conductor formed by Tivo Plane Faces.

191.] In the case of an infinite plane face y—0 of a con-

ductor, extending to infinity in the negative direction of y,

charged with electricity to the surface-density <r , we find for

the potential at a distance y from the plane

V= C-4n<r y,

where C is the value of the potential of the conductor itself.

Assume a straight line in the plane as a polar axis, and trans-

form into polar coordinates, and we find for the potential

V= C— 47ro-oae
p sin0,

and for the quantity of electricity on a parallelogram of breadth

unity, and length ae p measured along the axis

E = <r aei>.

Now let us make p = np' and 6 = n6', then, since p' and 6'

are conjugate to p and 8, the equations

V = C- 4 7Ta aen^ sin n Q'

and E = <r aeni>'

express a possible distribution of potential and of electricity.
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If we write r for ae p/
, r will be the distance from the axis ; we

may also put 6 instead of 6' for the angle. We shall then have

V = G— 47ro-n
-—-. sin ?i0,

v an~ L

°an
~1

V will be equal to C whenever nO = tt or a multiple of tt.

Let the edge be a salient angle of the conductor, the inclination

of the faces being a, then the angle of the dielectric is 2 it— a, so

that when 6 = 2ir— a the point is in the other face of the con-

ductor. We must therefore make

71 (2tt— a) = tt, or 71 =
2-n— a

ttO
Then V=C-4TTo- a(-) "sin-^-,W 2tt— a

w

The surface-density o- at any distance r from the edge is

a— ir

_ CLE IT r 2^-a
a - d^F

=
2^-a^a) '

WT
hen the angle is a salient one a is less than it, and the

surface-density varies according to some inverse power of the

distance from the edge, so that at the edge itself the density

becomes infinite, although the whole charge reckoned from the

edge to any finite distance from it is always finite.

Thus, when a = the edge is infinitely sharp, like the edge of

a mathematical plane. In this case the density varies inversely

as the square root of the distance from the edge.

When a = - the edge is like that of an equilateral prism, and

the density varies inversely as the |th power of the distance.

TT

When a = - the edge is a right angle, and the density is in-

versely as the cube root of the distance.

When a =s— the edge is like that of a regular hexagonal
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prism, and the density is inversely as the fourth root of the

distance.

When a = tt the edge is obliterated, and the density is con-

stant.

When a — %-n the edge is like that of the outside of the

hexagonal prism, and the density is directly as the square

root of the distance from the edge.

When a = f 7r the edge is a re-entrant right angle, and the

density is directly as the distance from the edge.

When a = fir the edge is a re-entrant angle of 60°, and the

density is directly as the square of the distance from the edge.

In reality, in all cases in which the density becomes infinite

at any point, there is a discharge of electricity into the dielectric

at that point, as is explained in Art. 55.

Example V.

—

Ellipses and Hyperbolas. Fig. X.

19.2.] We see that if

x
x
= e* cos \fr, 2/1 — e* B*n ^J 0)

x
x
and 2/1 will be conjugate functions of

<f>
and \j/.

Also, if xz
— e~* cos \}/, y2

= — e~* sin y}/, (2)

and 2/2 will ^e conjugate functions of
<f>
and \fs. Hence, if

2 x = Xx + x
2
= (e* + e~*) coBf, 2y = yx + y2 = (e*— e~+) sin f, (3)

x and y will also be conjugate functions of $ and \\r.

In this case the points for which
<f>

is constant lie on the ellipse

whose axes are e* + e
_
* and e*— e~*.

The points for which \Jr is constant lie on the hyperbola whose

axes are 2 cos \fr and 2 sin y\r.

On the axis of x, between x = — 1 and x = + 1

,

(fi = 0, \f/
= cos

-1
x. (4)

On the axis of x, beyond these limits on either side, we have

x> 1, ^ = 2ms, </> = log(a:+ Va?— 1),

x<-l, \jf=(2n+l)7Tt <f>
= log(<A:2— l—x). (5)

Hence, if </> is the potential function, and i/r the function of

flow, we have the case of electricity flowing from the positive

to the negative side of the axis of x through the space between

the points — 1 and + 1, the parts of the axis beyond these limits

being impervious to electricity.
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Since, in this case, the axis of y is a line of flow, we may
suppose it also impervious to electricity.

We may also consider the ellipses to be sections of the equi-

potential surfaces due to an indefinitely long flat conductor of

breadth 2, charged with half a unit of electricity per unit of

length. {This includes the charge on both sides of the flat

conductor.

}

If we make y\r the potential function, and </> the function of

flow, the case becomes that of an infinite plane from which
a strip of breadth 2 has been cut away and the plane on

one side charged to potential tt while the other remains at

zero potential.

These cases may be considered as particular cases of the

quadric surfaces treated of in Chapter X. The forms of the

curves are given in Fig. X.

Example VI.—Fig. XL
193.] Let us next consider x' and y

f
as functions of x and y,

where

x'=b log Vx2 + y
2

,
y'=b tan"1 ^

,

(6)

xf and y
/
will be also conjugate functions of the </> and \ff of

Art. 192.

The curves resulting from the transformation of Fig. X with

respect to these new coordinates are given in Fig. XL
If x' and y' are rectangular coordinates, then the properties of

the axis of x in the first figure will belong to a series of lines

parallel to x' in the second figure for which y
f = bri'ir, where nr

is any integer.

The positive values of xf on these lines will correspond to

values of x greater than unity, for which, as we have already

seen,

y\t = mr, <\> = \og(x + Va?-\) — log (e
b + /\J e

b - 1). (7)

The negative values of x' on the same lines will correspond

to values of x less than unity, for which, as we have seen,

a/

<f>
= 0, \/r = cos-1 a; = cos_1 e

6
. (8)

The properties of the axis of y in the first figure will belong

to a series of lines in the second figure parallel to x', for which

y'=bit{n' + \). (9)
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The value of
\f/

along these lines is \jr = -n(n + J) for all points

both positive and negative, and

i. / £i'

4, = log (y+ Vtf+\) = log(e
b
+V e

b + l). (10)

[The curves for which $ and ^ are constant may be traced

directly from the equations

xf = I b log i (e
2* + e~2 * + 2 cos 2 \j/),

y'= h tan_1Ct^ tan *)•

As the figure repeats itself for intervals of irb in the values of

y' it will be sufficient to trace the lines for one such interval.

Now there will be two cases, according as
<f>

or \j/ changes sign

with y'. Let us suppose that $ so changes sign. Then any

curve for which ^ is constant will be symmetrical about the

axis of x', cutting that axis orthogonally at some point on its

negative side. If we begin with this point for which (j> = 0, and

gradually increase </>, the curve will bend round from being at

first orthogonal to being, for large values of </>, at length parallel

to the axis of x''. The positive side of the axis of x' is one of the

system, viz. y\t is there zero, and when y''— ±l^b, ^ = \tt.

The lines for which
\f/

has constant values ranging from to \it

form therefore a system of curves embracing the positive side of

the axis of x''.

The curves for which $ has constant values cut the system
\f/

orthogonally, the values of <£ ranging from +cc to — go . For

any one of the curves <p drawn above the axis of x' the value of

</> is positive, along the negative side of the axis of x' the value

is zero, and for any curve below the axis of x' the value is

negative.

We have seen that the system 1// is symmetrical about the axis

of x' ; let PQR be any curve cutting that system orthogonally

and terminating in P and R in the lines y' = ±\-nb, the point

Q being in the axis of a/. Then the curve PQR is symmetrical

about the axis of a/, but if c be the value of <f>
along PQ,

the value of
<f>
along QR will be — c. This discontinuity in the

value of (j> will be accounted for by an electrical distribution in

the case which will be discussed in Art. 195.

If we next suppose that \[r and not <p changes sign with y', the

values of
<f>

will range from to go . When <jf> = we have the
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negative side of the axis of x\ and when <£ = co we have a line

at an infinite distance perpendicular to the axis of x''. Along any
line PQR between these two cutting the \js system orthogonally the

value of </> is constant throughout its entire length and positive.

Any value \[/ now experiences an abrupt change at the point

where the curve along which it is constant crosses the negative

side of the axis of x\ the sign of v/^ changing there. The sig-

nificance of this discontinuity will appear in Art. 197.

The lines we have shewn how to trace are drawn in Fig. XI
if we limit ourselves to two-thirds of that diagram, cutting off

the uppermost third.]

194.] If we consider </> as the potential function, and \}r as the

function of flow, we may consider the case to be that of an in-

definitely long strip of metal of breadth irb with a non-conducting
division extending from the origin indefinitely in the positive

direction, and thus dividing the positive part of the strip into two
separate channels. We may suppose this division to be a narrow
slit in the sheet of metal.

If a current of electricity is made to flow along one of these

divisions and back again along the other, the entrance and exit

of the current being at an infinite distance on the positive side

of the origin, the distribution of potential and of current will be

given by the functions
<f>
and \}r respectively.

If, on the other hand, we make V the potential, and <j> the

function of flow, then the case will be that of a current in the

general direction of y', flowing through a sheet in which a number
of non-conducting divisions are placed parallel to x', extending

from the axis of y' to an infinite distance in the negative

direction.

195.] We may also apply the results to two important cases

in statical electricity.

(1) Let a conductor in the form of a plane sheet, bounded by
a straight edge but otherwise unlimited, be placed in the plane

of xz on the positive side of the origin, and let two infinite con-

ducting planes be placed parallel to it and at distances \nb on
either side. Then, if \\r is the potential function, its value is

for the middle conductor and \ n for the two planes.

Let us consider the quantity of electricity on a part of the

middle conductor, extending to a distance 1 in the direction of z,

and from the origin to xf = a.
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The electricity on the part of this strip extending from x{ to

4 IT

Hence from the origin to x'= a the amount on one side of the

middle plate is

E=—\og(e b + \/

e

b -l)- (11)

If a is large compared with b, this becomes

1 -

E = — log 2 e b
,

= a + blog
e
2 ^

4tt6

Hence the quantity of electricity on the plane bounded by

the straight edge is greater than it would have been if the elec-

tricity had been uniformly distributed over it with the same

density that it has at a distance from the boundary, and it is

equal to the quantity of electricity having the same uniform

surface-density, but extending to a breadth equal to 61og
e
2

beyond the actual boundary of the plate.

This imaginary uniform distribution is indicated by the dotted

straight lines in Fig. XI. The vertical lines represent lines of

force, and the horizontal lines equipotential surfaces, on the

hypothesis that the density is uniform over both planes, pro-

duced to infinity in all directions.

196.] Electrical condensers are sometimes formed of a plate

placed midway between two parallel plates extending con-

siderably beyond the intermediate one on all sides. If the

radius of curvature of the boundary of the intermediate plate

is great compared with the distance between the plates, we

may treat the boundary as approximately a straight line, and

calculate the capacity of the condenser by supposing the inter-

mediate plate to have its area extended by a strip of uniform

breadth round its boundary, and assuming the surface-density

on the extended plate the same as it is in the parts not near the

boundary.

Thus, if 8 be the actual area of the plate, L its circumference,

and B the distance between the large plates, we have

b = -B
t

(13)
it
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and the breadth of the additional strip is

a = ^l.B, (14)

so that the extended area is

S'=S+
l^BL. (15)

The capacity of-one side of the middle plate is

2-.B = 2-Ab
+ L

*
10& 2 \' W

Corrections for the Thickness of the Plate.

Since the middle plate is generally of a thickness which
cannot be neglected in comparison with the distance between
the plates, we may obtain a better representation of the facts

of the case by supposing the section of the intermediate plate

to correspond with the curve \j/ = \j/'.

The plate will be of nearly uniform thickness, p = 26f,ata
distance from the boundary, but will be rounded near the edge.

The position of the actual edge of the plate is found by putting

2/'= 0, whence of = 6 log, cos *'. (17)

The value of <j> at this edge is 0, and at a point for which
x'= a (a/b being large) it is approximately

a + b \og
e
2

b

Hence, altogether, the quantity of electricity on the plate is

the same as if a strip of breadth

- (log, 2 + log. COB ||),

i- e
-

- lo&(2cos f]|p' (
18

)

had been added to the plate, the density being assumed to be

everywhere the same as it is at a distance from the boundary.

Density near the Edge.

The surface-density at any point of the plate is

-
1 d(f> 1 e b

4 TV dx' 4iri / 2*'

>.» -1
1 2a? 4sc*

= 4^( 1 + ie~ + |e
~
1r+&C-} (19>
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The quantity within brackets rapidly approaches unity as x'

increases, so that at a distance from the boundary equal to n

times the breadth of the strip a, the actual density is greater

than the normal density by about +1 of the normal density.

In like manner we may calculate the density on the infinite

planes x
j_

1 e
F

47T& / 'I*
(20)

b + 1

When x' — 0, the density is 2~* of the normal density.

At n times the breadth of the strip on the positive side, the

density is less than the normal density by about -

o2n+1 of the

normal density.

At n times the breadth of the strip on the negative side, the

density is about — of the normal density.

These results indicate the degree of accuracy to be expected in

applying this method to plates of limited extent, or in which

irregularities may exist not very far from the boundary. The

same distribution would exist in the case of an infinite series of

similar plates at equal distances, the potentials of these plates

being alternately -f V and — V. In this case we must take the

distance between the plates equal to B.

197.] (2) The second case we shall consider is that of an

infinite series of planes parallel to x'z at distances B = Trb, and

all cut off by the plane of y'z, so that they extend only on the

negative side of this plane. If we make $ the potential function,

we may regard these planes as conductors at potential zero.

Let us consider the curves for which $ is constant.

When y' =mrb, that is, in the prolongation of each of the

planes, we have ^ = 6 log * (e* + e^), (21)

when y' = (n + tyirb, that is in the intermediate positions

x'=b\og\{&-e-*). (22)

Hence, when </> is large, the curve for which ^ is constant is

an undulating line whose mean distance from the axis of y' is

approximately a = b (^_l ge 2), (23)
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and the amplitude of the undulations on either side of this line is

* 6]*££- <
24

>

When
<f>

is large this becomes for 2
*, so that the curve ap-

proaches to the form of a straight line parallel to the axis of y'

at a distance a from that axis on the positive side.

If we suppose a plane for which x' = a, kept at a constant

potential while the system of parallel planes is kept at a different

potential, then, since bcb — a + bloge 2, the surface-density of

the electricity induced on the plane is equal to that which

would have been induced on it by a plane parallel to itself at

a potential equal to that of the series of planes, but at a distance

greater than that of the edges of the planes by b log
e
2.

If B is the distance between two of the planes of the series,

B — irb, so that the additional distance is

a=B^SSl. (25)
It

198.] Let us next consider the space included between two

of the equipotential surfaces, one of which consists of a series of

parallel waves, while the other corresponds to a large value

of
<f>,

and may be considered as approximately plane.

If D is the depth of these undulations from the crest to the

trough of each wave, then we find for the corresponding value of cf>,

4,= Uog^±i. (26)

e b -l

The value of a/ at the crest of the wave is

6 log i («* + «"*)• (
27

)

*Hence, if A is the distance from the crests of the waves to

* Let * be the potential of the plane, </> of the undulating surface.^ The quantity

of electricity on the plane per unit area is l-r-4irb. Hence the capacity

= l-r4ir& (*-<£),

= l-T-iir(A + ar
), suppose.

Then A + a'= b (#-<*>).

But A + 61og } (e* + c
-
*) = b (*-log 2) ;

.-. o'= -bf + 6 (log 2 + log i (
e* + e~*))

= blog(l + c- 2
*)

= Mog -A^ , by (26).

l + e~6



304 CONJUGATE FUNCTIONS.
[
T 99-

the opposite plane, the capacity of the system composed of the

plane surface and the undulating surface is the same as that of

two planes at a distance A + a\ where

. B. 2
l°g

a
5- (28)

B1+e

199.] If a single groove of this form be made in a conductor

having the rest of its surface plane, and if the other conductor is

a plane surface at a distance A, the capacity of the one conductor
with respect to the other will be diminished. The amount of

this diminution will be less than the -th part of the diminutionn r

due to n such grooves side by side, for in the latter case the

average electrical force between the conductors will be less than
in the former case, so that the induction on the surface of each
groove will be diminished on account of the neighbouring
grooves.

If L is the length, B the breadth, and D the depth of the

groove, the capacity of a portion of the opposite plane whose
area is 8 will be

8-LB LB S LB a!

4tiA +
4Tr(A + a')~ 4ttA IttA'A+o.'' ^

If A is large compared with B or a, the correction becomes
by (28) L B2 2

T?a* 1os< 7' (
3°)

1+6 B

and for a slit of infinite depth, putting D = oo , the correction is

L B\
i^z* 10*- 2 -

<
31

)

To find the surface-density on the series of parallel plates we

must find a =— -^. when d> = 0. We find

a==
l^b /—£—' <

32
>

The -average density on the plane plate at distance A from the

edges of the series of plates is a = r • Hence at a distance
47TO
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from the edge of one of the plates equal to na the surface-

density is ,_ of this average density.

200.] Let us next attempt to deduce from these results the

distribution of electricity in the figure {a series of co-axial

cylinders in front of a plane} formed by rotating the plane of

the figure in Art. 197 about the axis y'=—R. In this case,

Poisson's equation will assume the form

JW.dW _l_dV
(33)

Let us assume V=(f>, the function given in Art. 193, and

determine the value of p from this equation. We know that the

first two terms disappear, and therefore

_ l 1 d<l> /34 \

p -~4*R + y'dy''
V

'

If we suppose that, in addition to the surface-density already

investigated, there is a distribution of electricity in space ac-

cording to the law just stated, the distribution of potential will

be represented by the curves in Fig. XI.

deb . -,,

Now from this figure it is manifest that ^-> is generally very

small except near the boundaries of the plates, so that the new

distribution may be approximately represented by a certain

superficial distribution of electricity near the edges of the plates.

If therefore we integrate // pdx'dy' between the limits y'—0

and y' =-b, and from x=—oo to x = + oo, we shall find the

whole additional charge on one side of the plates due to the

curvature.

Since ^=-/„we have
dy dx

I'j
dx'=f-,T,Wry^ dx'

—, (t»-t-oo)4wE +/

- 1 _i_f 2^-lV (35)~8 R+ y'^ B )
V }
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Integrating with respect to y', we find

2?

J, ]-J
dxdy = 8-8-5- los^7r ^

1 S ! B"' -

= -T2R + ur2W + &°- <
37

>

This is half the total quantity of electricity which we must
suppose distributed in space near the edge of one of the cylinders

per unit of circumference. Since it is only close to the edge of

the plate that the density is sensible, we may suppose the elec-

tricity all condensed on the surface of the plate without altering

sensibly its action on the opposed plane surface, and in calcu-

lating the attraction between that surface and the cylindric

surface we may suppose this electricity to belong to the cylindric

surface.

If there had been no curvature the superficial charge on the

positive surface of the plate per unit of length would have been

r° 1 dcf> _ , 1 . . 1

Hence, if we add to it the whole of the above distribution, this

charge must be multiplied by the factor (l + |-=) to get the total

charge on the positive side*.

f In the case of a disk of radius R placed midway between two

* {Since there is a charge on the negative side of the plate equal to that on the
positive side, it would seem that the total charge on the cylinders per unit cir-

cumference is —7(1+7 b)> so taat l^e correction for curvature is (l + \ and not4^4W \ 4 RJ

(l + H -5) fts in the text.

}

+ [In Art. 200, in estimating the total space distribution we might perhaps more
correctly take for it the integral ffplit (R + y') dx' dy\ which gives, per unit circum-

I D
ference of the edge of radius R, — 55 p. thus leading to the same correction as in the
text.

"

The case of the disk may be treated in like manner as follows

:

Let the figure of Art. 195 revolve round a line perpendicular to the plates and at a
distance + R from the edge of the middle one. That edge will therefore envelope a
circle, which will be the edge of the disk. As in Art. 200, we begin with Poiason's
equation, which in this case will be

d*V dHT
1 dV

dp + &r>- ir=j'd? + iwp = °-

We now assume that V = if/, the potential function of Art. 195. We must therefore
suppose electricity to exist in the region between the plates whose volume density p is

_1_ _1 dip

4w R — x'dx'

'
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infinite parallel plates at a distance B, we find for the capacity

of a disk &
+2

l^R + lB. (38)
J3 It

The total amount is b
p2 pR

2/ / p.2n(R-x')dx'di/'.

JO J -co

Now if 22 is large in comparison with the distance between the plates this result

will be seen, on an examination of the potential lines in Fig. XI, to be sensibly the

same as

r2 Cw dti ,

I I -T-,dxdy'; that is, — \itB.

J o J —w
The total surface distribution it we include both sides of the disk is

*f (-7-??) 2ir(B-«')dx'

= - / <p dx'

Jo »' = °

«_/ logTe^ +V e
T -l)dvf

To evaluate the latter integral put

Vl-e-*t=l-t,

we get approximately if E/b is large

2JJ

^\dt
f*

log (l + Vl-e-^) d£ »
if** log (2 _ (JL -I)

,

= -j{log2} 2-2log2(-log2-x)-2„ =1 -TT^

= fi«ga +i{iog2}--2-i^i?'

so that the quantity of electricity on the plate

= -|-i?log2-^5-^{log2}^2„=l2 1̂
-

2
-

Since the difference of potential of the plates = ^ and B — irl, the capacity is

a result which is less than that in the text by .28 B nearly.]
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Theory of Thomson's Guard-ring.

201.] In some of Sir W. Thomson's electrometers, a large plane

surface is kept at one potential, and at a distance A from this

surface is placed a plane disk of radius R surrounded by a large

plane plate called a Guard-ring with a circular aperture of radius

B! concentric with the disk. This disk and plate are kept at

potential zero.

The interval between the disk and the guard-plate may be

regarded as a circular groove of infinite depth, and of breadth

R'— R, which we denote by B.

The charge on the disk due to unit potential of the large disk,

R2

supposing the density uniform, would be—j •

The charge on one side of a straight groove of breadth B and

length L = 2ttR, and of infinite depth, may be estimated by
the number of lines of force emanating from the large disk and

falling upon the side of the groove. Referring to Art. 197 and

footnote we see that the charge will therefore be

^* X
4V6'

. RB
A + a

since in this case <t>= 1, <£= 0, and therefore b=A +a'.

But since the groove is not straight, but has a radius of curv-

ature R
y
this must be multiplied by the factor (l + \ ~\*.

The whole charge on the disk is therefore

R2
. RB , B N

R2 + R'z Rfz-R? of , x=
~I3 O-'Z+T (40)

The value of a cannot be greater than

Blog2
2-

, = 0. 2 2B nearly.
IT

J

If B is small compared with either A orR this expression will

give a sufficiently good approximation to the charge on the disk

due to unity of difference of potential. The ratio of A to R
* {If we take the correction for curvature to be (l + 7-^), see footnote p. 306, the

charge on the disk will be less than that given in the text by B2/16 (A + o'). \
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may have any value, but the radii of the large disk and of the

guard-ring must exceed R by several multiples of A.

Example VII.—Fig. XII.

202.] Helmholtz, in his memoir on discontinuous fluid motion*,

has pointed out the application of several formulae in which the

coordinates are expressed as functions of the potential and its

conjugate function.

One of these may be applied to the case of an electrified plate

of finite size placed parallel to an infinite plane surface connected

with the earth.

Since x
1
— A<j) and yx

— A\f/,

and also x2
— A <& cos-^r and y2

= Ae* sin \jr,

are conjugate functions of <£ and \jr, the functions formed by

adding xx
to x2 and yx

to y.z will be also conjugate. Hence, if

x = A<f> + Ae^coaxj/,

y = A\fr+Ae^> sin \/r,

then x and y will be conjugate with respect to $ and \j/, and <\>

and y\r will be conjugate with respect to x and y.

Now let x and y be rectangular coordinates, and let k\jr be the

potential, then k<j> will be conjugate to ky\r, k being any constant.

Let us put \{/ = 7r, then y — A tt, x = A (<£— e*).

If varies from -co to 0, and then from to + oo , x varies

from — oo to —A and from —A to — oo . Hence the equipotential

surface, for which y\r = tt, is a plane parallel to xz at a distance

b = itA from the origin, and extending from x= — oo to # = — A.

Let us consider a portion of this plane, extending from

x = — (A +o) to x = —A and from z = to z = c,

let us suppose its distance from the plane of xz to be y= b= Ait,

and its potential to be Y— k\fr = kir.

The charge of electricity on the portion of the plane considered

is found by ascertaining the values of </> at its extremities.

We have therefore to determine <£ from the equation

x — - {A + a) = A
(<f>
- e*),

<j) will have a negative value
<t>x

and a positive value <\>.2 ; at the

edge of the plane, where x = —A,<f> = 0.

Hence the charge on the one side of the plane is —c&^-r 4 7r,

and that on the other side is ck<f>2
-j- 4 n.

* Monatsberichle der Konigl. Akad. der Wissenschaften, zu Berlin, April 23, 1868,

p. 215.
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Both these charges are positive and their sum is

If we suppose that a is large compared with A,

A

<!>!= ~2 ~ 1+e

If we neglect the exponential terms in
<f>r we shall find thai

the charge on the negative surface exceeds that which it would

have if the superficial density had been uniform and equal to

that at a distance from the boundary, by a quantity equal to the

charge on a strip of breadth A = - with the uniform superficial

density.

The total capacity of the part of the plane considered is

The total charge is CV, and the attraction towards the infinite

plane, whose equation is y = and potential \j/ — 0, is

A

V2c( b b2 a* ^ R \

The equipotential lines and lines of force are given in Fig. XII.

Example VIII. Theory ofa Grating of Parallel Wires. Fig. XIII.

203.] In many electrical instruments a wire grating is used to

prevent certain parts of the apparatus from being electrified by
induction. We know that if a conductor be entirely surrounded

by a metallic vessel at the same potential with itself, no elec-

tricity can be induced on the surface of the conductor by any

electrified body outside the vessel. The conductor, however,

when completely surrounded by metal, cannot be seen, and

therefore, in certain cases, an aperture is left which is covered

with a grating of fine wire. Let us investigate the effect of this
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grating in diminishing the effect of electrical induction. We
shall suppose the grating to consist of a series of parallel wires

in one plane and at equal intervals, the diameter of the wires

being small compared with the distance between them, while

the nearest portions of the electrified bodies on the one side and

of the protected conductor on the other are at distances from the

plane of the screen, which are considerable compared with the

distance between consecutive wires.

204.] The potential at a distance r from the axis of a straight

wire of infinite length charged with a quantity of electricity A

per unit of length is F= - 2 A log r' + C. ( 1

)

We may express this in terms of polar coordinates referred to

an axis whose distance from the wire is unity, in which case we

must make r'2= 1 - 2 r cos 6 + r2
, (2)

and if we suppose that the axis of reference is also charged with

the linear density A', we find

F=-Alog(l-2rcos.0+ r8)-2A/ logr + 0. (3)

If we now make

r = e « j 6 — , (4)

then, by the theory of conjugate functions,

F=-AlogVl-2e a cos— +e a )-2A'loge
a

+C,
K '

where x and y are rectangular coordinates, will be the value of

the potential due to an infinite series of fine wires parallel to z

in the plane of xz, and passing through points in the axis of x

for which a; is a multiple of a, and to planes perpendicular to the

axis of y.

Each of these wires is charged with a linear density A.

The term involving A' indicates an electrification, producing a

constant force in the direction of y.
a

The forms of the equipotential surfaces and lines of force when

A'= are given in Fig. XIII. The equipotential surfaces near

the wires are nearly cylinders, so that we may consider the

solution approximately true, even when the wires are cylinders

of a diameter which is finite but small compared with the dis-

tance between them.
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The equipotential surfaces at a distance from the wires become

more and more nearly planes parallel to that of the grating.

If in the equation we make y= bv a quantity large compared

with a, we find approximately,

V
1
= -—! (A + A') + C nearly. (6)

Qj

If we next make y= —b
2)
where b

2
is a positive quantity large

compared with a, we find approximately,

V2=tlhx
f + C nearly. (7)

If c is the radius of the wires of the grating, c being small

compared with a, we may find the potential of the grating itself

by supposing that the surface of the wire coincides with the

equipotential surface which cuts the plane of xz at a distance c

from the axis of z. To find the potential of the grating we
therefore put x=c, and y=0, whence

F=-2Alog
a
2sin— +C. (8)

Cb

205.] We have now obtained expressions representing the

electrical state of a system consisting of a grating of wires

whose diameter is small compared with the distance between

them, and two plane conducting surfaces, one on each side of

the grating, and at distances which are great compared with

the distance between the wires.

The surface-density a
x
on the first plane is got from the

equation (6) dV 4tt. x/ ,

4"i=55i ="<x + x )' (9)

that on the second plane <r
2
from the equation (7)

If we now write

° =-^ 1oge(2sm-) 5 (11)

and eliminate c, A and A' from the equations (6), (7), (8), (9), (10),

we find

4«I (j,+ik + ^)«i((i + b)-^-r^. (12)

4„,(i, + ib+^) = -ir+?(l+5j)-F^- (13)
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When the wires are infinitely thin, a becomes infinite, and the

terms in which it is the denominator disappear, so that the case

is reduced to that of two parallel planes without a grating in-

terposed.

If the grating is in metallic communication with one of the

planes, say the first, V=VV and the right-hand side of the

equation for o-j becomes If— V2 . Hence the density o-
a
induced

on the first plane when the grating is interposed is to that

which would be induced on it if the grating were removed,

the second plane being maintained at the same potential, as

1 to 1 + \\ .

We should have found the same value for the effect of the

grating in diminishing the electrical influence of the first surface

on the second, if we had supposed the grating connected with

the second surface. This is evident since 6, and b
2
enter into

the expression in the same way. It is also a direct result of tie

theorem of Art. 88.

The induction of the one electrified plane on the other through

the grating is the same as if the grating were removed, and the

distance between the planes increased from bx + b2 to

a

If the two planes are kept at potential zero, and the grating

electrified to a given potential, the quantity of electricity on the

grating will be to that which would be induced on a plane of

equal area placed in the same position as

61 62 :6 1
62+ a(6

1 + 62).

This investigation is approximate only when bt and 6
2
are

large compared with a, and when a is large compared with c.

The quantity a is a line which may be of any magnitude. It

becomes infinite when c is indefinitely diminished.

If we suppose c-=\a there will be no apertures between the

wires of the grating, and therefore there will be no induction

through it. We ought therefore to have for this case a — 0.

The formula (11), however, gives in this case

a= -^log
e 2,

= -0-lla,
air

which is evidently erroneous, as the induction can never be



314 CONJUGATE FUNCTIONS. [206.

altered in sign by means of the grating. It is easy, however, to

proceed to a higher degree of approximation in the case of a

grating of cylindrical wires. I shall merely indicate the steps

of this process.

Method of Approximation.

206.] Since the wires are cylindrical, and since the distri-

bution of electricity on each is symmetrical with respect to the

diameter parallel to y, the proper expansion of the potential is

of the form y= Cq log r + 1C{ ri cos ie
^ (! 4)

where r is the distance from the axis of one of the wires, and 6

the angle between r and y ; and, since the wire is a conductor,

when r is made equal to the radius V must be constant, and

therefore the coefficient of each of the multiple cosines of d must

vanish.

For the sake of conciseness let us assume new coordinates

£, 77, &c. such that

a^—2-nx, a^ — 1-ny, ap = 2nr, a/3 = 2tt6, &c, (15)

and let F
fi
= log{e1

>+P + e-^+^-2eo&$). (16)

Then if we make

F^J.J'.+J.g+J^+k (17)

by giving proper values to the coefficients A we may express

any potential which is a function of 77 and cos £, and does not

become infinite except when 77 + /3 = and cos £ = 1

.

When /3 = the expansion of F in terms of p and 6 is*

F = 2 log P + T\ p
2 cos 20-„W4 cos 40+ &C. (18)

For finite values of /3 the expansion of F is

^==/3+2log(l-e-^+^^pcos0-
(l _^^j3)2

p
2 cos20 + &c. (19)

In the case of the grating with two conducting planes whose

equations are 77 = /3X
and ?/ = — /32, that of the plane of the

grating being 77 = 0, there will be two infinite series of images

* {The expansion of F can be got by noticing that log (e
-1 + e*»— 2cos£) only

differs by a constant from log ra + log rx
a + log r./+ ... where r,r1} r2 ... are the distances

of P from the wires.

We can apply the same method to expand Fp since this corresponds to moving the

wires through a distance —b parallel toy, the expansion however is not of the same
form as that given in the text.

J-
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of the grating. The first series will consist of the grating itself

together with an infinite series of images on both sides, equal

and similarly electrified. The axes of these imaginary cylinders

lie in planes whose equations are of the form

.
iJ = ±27l(ft + /32), (20)

n being an integer.

The second series will consist of an infinite series of images for

which the coefficients A , A2 , A 4, &c. are equal and opposite to

the same quantities in the grating itself, while A
ly
A

3, &c. are

equal and of the same sign. The axes of these images are in

planes whose equations are of the form

.

>>=2
/
32 ±2m(/31 + /32), (21)m being an integer.

The potential due to any infinite series of such images will

depend on whether the number of images is odd or even. Hence
the potential due to an infinite series is indeterminate, but if we
add to it the function Brj + C, the conditions of the problem will

be sufficient to determine the electrical distribution.

We may first determine Vx and Yz, the potentials of the two
conducting planes, in terms of the coefficients A , Av &c, and
of B and C. We must then determine o-j and <r

2 , the surface-

densities at any points of these planes. The mean values of o-j

and <r
2 are given by the equations

4*^ = ^(4,-5), 4^ = ^(4 + 5). (22)

We must then expand the potentials due to the grating itself

and to all the images in terms of p and cosines of multiples of 6,

adding to the result Bp cos e + a
The terms independent of then give V the potential of the

grating, and the coefficient of the cosine of each multiple of 6

equated to zero gives an equation between the indeterminate co-

efficients.

In this way as many equations may be found as are sufficient

to eliminate all these coefficients and to leave two equations to

determine <r
x and <r

2
in terms of T£ T£, and V.

These equations will be of the form

\—V— 4Tro-
1 (61 + a— y) + 47r<r

2
(a+ y),

T£_F=4 7ro-1 (a + y) + 4Tro-
2 (&2 + a-y). (23)

The quantity of electricity induced on one of the planes
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protected by the grating, the other plane being at a given dif-

ference of potential, will be the same as if the planes had been at

a distance

(^
- y)(61 + &

2) +M2
-4ay

ingtead of ^ +K
a + y

The values of a and y are approximately as follows,

_ a
5i

a 5 7r
4
c
4

a= 2W g 2^c~ 3' 15a4 + 7i
4 c4

+ 2e~
i7rb

^(l +e'
inb
i +e~

in
^ + &c.)+ &c. j» (24)

A.
''1 t

l" V

3-nac 2 / e « e a, \ . .

* = 3-^?? —^s -—^i
+ (25)

* { In the Supplementary Volume another method ofemploying conjugate functions,

by which the capacity of finite plane surfaces etc. can be calculated, will be described j.



CHAPTER XIII.

ELECTEOSTATIC INSTRUMENTS.

On Electrostatic Instruments.

The instruments which we have to consider at present may
be divided into the following classes:

(1) Electrical machines for the production and augmentation
of electrification.

(2) Multipliers, for increasing electrification in a known ratio.

(3) Electrometers, for the measurement of electric potentials

and charges.

(4) Accumulators, for holding large electrical charges.

Electrical Machines.

207.] In the common electrical machine a plate or cylinder of

glass is made to revolve so as to rub against a surface of leather,

on which is spread an amalgam of zinc and mercury. The
surface of the glass becomes electrified positively and that of

the rubber negatively. As the electrified surface of the glass

moves away from the negative electrification of the rubber it

acquires a high positive potential. It then comes opposite to a
set of sharp metal points in connexion with the conductor of the

machine. The positive electrification of the glass induces a

negative electrification of the points, which is the more intense

the sharper the points and the nearer they are to the glass.

When the machine works properly there is a discharge through
the air between the glass and the points, the glass loses part of

its positive charge, which is transferred to the points and so to

the insulated prime conductor of the machine, or to any other

body with which it is in electric communication.
The portion of the glass which is advancing towards the
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rubber has thus a smaller positive charge than that which is

lea.ving it at the same time, so that the rubber, and the con-

ductors in communication with it, become negatively electrified.

The highly positive surface of the glass where it leaves the

rubber is more attracted by the negative charge of the rubber

than the partially discharged surface which is advancing towards

the rubber. The electrical forces therefore act as a resistance to

the force employed in turning the machine. The work done in

turning the machine is therefore greater than that spent in over-

coming ordinary friction and other resistances, and the excess is

employed in producing a state of electrification whose energy is

equivalent to this excess.

The work done in overcoming friction is at once converted

into heat in the bodies rubbed together. The electrical energy

may be also converted either into mechanical energy or into

heat.

If the machine does not store up mechanical energy, all the

energy will be converted into heat, and the only difference be-

tween the heat due to friction and that due to electrical action

is that the former is generated at the rubbing surfaces while

the latter may be generated in conductors at a distance *.

We have seen that the electrical charge on the surface of the

glasB is attracted by the rubber. If this attraction were suffi-

ciently intense there would be a discharge between the glass and

the rubber, instead of between the glass and the collecting points.

To prevent this, flaps of silk are attached to the rubber. These

become negatively electrified and adhere to the glass, and so

diminish the potential near the rubber.

The potential therefore increases more gradually as the glass

moves away from the rubber, and therefore at any one point

there is less attraction of the charge on the glass towards the

rubber, and consequently less danger of direct discharge to the

rubber.

In some electrical machines the moving part is of ebonite

instead of glass, and the rubbers of wool or fur. The rubber

is then electrified positively and the prime conductor negatively.

* It is probable that in many cases where dynamical energy is converted into heat

by friction, part of the energy may be first transformed into electrical energy and

then converted into heat as the electrical energy is spent in maintaining currents of

short circuit close to the rubbing surfaces. See Sir W. Thomson, ' On the Electro-

dynamic Qualities of Metals.' Phil. Trans., 1856, p. 649.
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The Eleetrophorus of Volta.

208.] The eleetrophorus consists of a plate of resin or of
ebonite backed with metal, and a plate of metal of the same size.

An insulating handle can be screwed to the back of either of
these plates. The ebonite plate has a metal pin which connects
the metal plate with the metal back of the ebonite plate when
the ebonite and metal plates are in contact.

The ebonite plate is electrified negatively by rubbing it with
wool or cat's skin. The metal plate is then brought near the
ebonite by means of the insulating handle. No direct discharge
passes between the ebonite and the metal plate, but the poten-
tial of the metal plate is rendered negative by induction, so
that when it comes within a certain distance of the metal pin a
spark passes, and if the metal plate be now carried to a distance
it is found to have a positive charge which may be communicated
to a conductor. The metal at the back of the ebonite plate is

found to have a negative charge equal and opposite to the charge
of the metal plate.

In using the instrument to charge a condenser or accumulator
one of the plates is laid on a conductor in communication with
the earth, and the other is first laid on it, then removed and
applied to the electrode of the condenser, then laid on the fixed

plate and the process repeated. If the ebonite plate is fixed the
condenser will be charged positively. If the metal plate is fixed

the condenser will be charged negatively.

The work done by the hand in separating the plates is always
greater than the work done by the electrical attraction during
the approach of the plates, so that the operation of charging the
condenser involves the expenditure of work. Part of this work
is accounted for by the energy of the charged condenser, part
is spent in producing the noise and heat of the sparks, and the
rest in overcoming other resistances to the motion.

On Machines producing Electrification by Mechanical Work

209.] In the ordinary frictional electrical machine the work
done in overcoming friction is far greater than that done in
increasing the electrification. Hence any arrangement by which
the electrification may be produced entirely by mechanical work
against the electrical forces is of scientific importance if not of
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practical value. The first machine of this kind seems to have

been Nicholson's Revolving Doubler, described in the Philo-

sophical Transactions for 1788 as 'an Instrument which, by the

turning of a Winch, produces the Two States of Electricity with-

out Friction or Communication with the Earth/

210.] It was by means of the revolving doubler that Volta

succeeded in developing from the electrification of the pile an

electrification capable of affecting his electrometer. Instruments

on the same principle have been invented independently by

Mr. C. F. Varley * and Sir W. Thomson.

These instruments consist essentially of insulated conductors

of various forms, some fixed and others moveable. The move-

able conductors are called Carriers, and the fixed ones may be

called Inductors, Receivers, and Regenerators. The inductors

and receivers are so formed that when the carriers arrive at

certain points in their revolution they are almost completely

surrounded by a conducting body. As the inductors and re-

ceivers cannot completely surround the carrier and at the same

time allow it to move freely in and out without a complicated

arrangement of moveable pieces, the instrument is not theoreti-

cally perfect without a pair of regenerators, which store up the

small amount of electricity which the carriers retain when they

emerge from the receivers.

For the present, however, we may suppose the inductors and

receivers to surround the carrier completely when it is within

them, in which case the theory is much simplified.

We shall suppose the machine to consist of two inductors A

and G, and of two receivers B and D, with two carriers F and 0.

Suppose the inductor A to be positively electrified so that

its potential is A, and that the carrier F is within it and is at

potential F. Then, if Q is the coefficient of induction (taken

positive) between A and F, the quantity of electricity on the

carrier will be Q (F—A).

If the carrier, while within the inductor, is put in connexion

with the earth, then F=0, and the charge on the carrier will bo

-QA, a negative quantity. Let the carrier be carried round

till it is within the receiver B, and let it then come in contact

with a spring so as to be in electrical connexion with B. It

* Specification of Patent, Jan. 27, I860, No. 206.
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will then, as was shewn in Art. 32, become completely dis-

charged, and will communicate its whole negative charge to the

receiver B.

The carrier will next enter the inductor C, which we shall

suppose charged negatively. While within G it is put in

connexion with the earth and thus acquires a positive charge,

which it carries off and communicates to the receiver D, and so on.

In this way, if the potentials of the inductors remain always

constant, the receivers B and D receive successive charges,

which are the same for every revolution of the carrier, and thus

every revolution produces an equal increment of electricity

in the receivers.

But by putting the inductor A in communication with the

receiver D, and the inductor C with the receiver B, the poten-

tials of the inductors will be continually increased, and the

quantity of electricity communicated to the receivers in each

revolution will continually increase.

For instance, let the potential of A and D be IT, and that of B
and C, V, then, since the potential of the carrier is zero when
it is within A, being in contact with earth, its charge is

= —QU. The carrier enters B with this charge and com-
municates 'it to B. If the capacity of B and C is B, their

potential will be changed from V to V— j= U.

If the other carrier has at the same time carried a charge

—QV from C to D, it will change the potential of A and D from
Q'

IT to U—j V, if Q' is the coefficient of induction between the
JO.

carrier and 0, and A the capacity of A and D. If, therefore,

Un and Vu be the potentials of the two inductors after n half

revolutions, and TTn+l and Vn+l after n+ 1 half revolutions,

IT — U ——V

V — V— — IT

If we write p2 = -^ and q
2 = -j- , we find

plTn+1 + qVn+1 = (PUn + qVn ) (1-pq) = (PU + qV )
{l-pq)«+\

pUn+x-qVn+1 = (pUn-qVJ (1 +pq) = (pU -qV
) (1 +pq)» + \



322 ELECTROSTATIC INSTRUMENTS. [211.

Hence

2CTn = I7 ((l-M)« + (1+Mr) + ^((1-^)B -(1+M)")'

2 Vn = t _ U ((1 -pg)-- (1 +pq)
n
) + V ((1 -pqf + (1 +m)") *

It appears from these equations that the quantity pU+qV
continually diminishes, so that whatever be the initial state of

electrification the receivers are ultimately oppositely electrified,

so that the potentials of A and B are in the ratio of q to —p.

On the other hand, the quantity pU-qV continually in-

creases, so that, however little pTJ may exceed or fall short of

qV at first, the difference will be increased in a geometrical ratio

in each revolution till the electromotive forces become so great

that the insulation of the apparatus is overcome.

Instruments of this kind may be used for various purposes.

—

For producing a copious supply of electricity at a high

potential, as is done by means of Mr. Varley's large machine.

For adjusting the charge of a condenser, as in the case of

Thomson's electrometer, the charge of which can be increased or

diminished by a few turns of a very small machine of this kind,

which is called a Keplenisher.

For multiplying small differences of potential. The inductors

may be charged at first to an exceedingly small potential, as, for

instance, that due to a thermo-electric pair, then, by turning the

machine, the difference of potentials may be continually multi-

plied till it becomes capable of measurement by an ordinary

electrometer. By determining by experiment the ratio of

increase of this difference due to each turn of the machine, the

original electromotive force with which the inductors were

charged may be deduced from the number of turns and the final

electrification.

In most of these instruments the carriers are made to revolve

about an axis and to come into the proper positions with respect

to the inductors by turning an axle. The connexions are made

by means of springs so placed that the carriers come in contact

with them at the proper instants.

211.] Sir W. Thomson*, however, has constructed a machine

for multiplying electrical charges in which the carriers are drops

of water falling into an insulated receiver out of an uninsulated

* Proc. R. S., June 20, 1867.
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vessel placed inside but not touching an inductor. The receiver

is thus continually supplied with electricity of opposite sign to

that of the inductor. If the inductor is electrified positively, the

receiver will receive a continually increasing charge of negative

electricity.

The water is made to escape from the receiver by means of a

funnel, the nozzle of which is almost surrounded by the metal of

the receiver. The drops falling from this nozzle are therefore

nearly free from electrification. Another inductor and receiver

of the same construction are arranged so that the inductor of

the one system is in connexion with the receiver of the other.

The rate of increase of charge of the receivers is thus no longer

constant, but increases in a geometrical progression with the

time, the charges of the two receivers being of opposite signs.

This increase goes on till the falling drops are so diverted from

their course by the electrical action that they fall outside of the

receiver or even strike the inductor.

In this instrument the energy of the electrification is drawn

from that of the falling drops.

212.] Several other electrical machines have been constructed

in which the principle of electric induction is employed. Of

these the most remarkable is that of Holtz, in which the carrier

is a glass plate varnished with gum-lac and the inductors are

pieces of pasteboard. Sparks are prevented from passing be-

tween the parts of the apparatus by means of two glass plates,

one on each side of the revolving carrier plate. This machine

is found to be very effective, and not to be much affected by the

state of the atmosphere. The principle is the same as in the

revolving doubler *and the instruments developed out of the

same idea, but as the carrier is an insulating plate and the

inductors are imperfect conductors, the complete explanation of

the action is more difficult than in the case where the carriers

are good conductors of known form and are charged and dis-

charged at definite points*.

213.] In the electrical machines already described sparks

occur whenever the carrier comes in contact with a conductor at

a different potential from its own.

* {The induction machines most frequently used at present are those of Voss and
Wimshurst. A description of these with diagrams will be found in Nature, vol. xxviii.

p. 12.}
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Fig. 18.

Now we have shewn that whenever this occurs there is a loss

of energy, and therefore the whole work employed in turning

the machine is not converted into electrification in an available

form, but part is spent in pro-

ducing the heat and noise of

electric sparks.

I have therefore thought it

desirable to shew how an elec-

trical machine may be con-

structed which is not subject

to this loss of efficiency. I

do not propose it as a useful

form of machine, but as an

example of the method by

which the contrivance called

in heat-engines a regenerator

may be applied to an electrical machine to prevent loss of work.

In the figure let A, B, C, A', B\ G' represent hollow fixed

conductors, so arranged that the carrier P passes in succession

within each of them. Of these A, A' and B, B' nearly surround

the carrier when it is at the middle point of its passage, but

C and C" do not cover it so much.

We shall suppose A, B, C to be connected with a Leyden jar

of great capacity at potential V, and A', B', C to be connected

with another jar at potential — V

.

P is one of the carriers moving in a circle from A to C, &c,

and touching in its course certain springs, of which a and a' are

connected with A and A' respectively, and e, e are connected

with the earth.

Let us suppose that when the carrier P is in the middle of A
the coefficient of induction between P and A is —A. The

capacity of P in this position is greater than A, since it is not

completely surrounded by the receiver A. Let it be A +a.

Then if the potential of P is U, and that of A, V, the charge

on P will be (A + a) U-A V.

Now let P be in contact with the spring a when in the middle

of the receiver A, then the potential of P is V, the same as that

of A, and its charge is therefore aV.

If P now leaves the spring a it carries with it the charge aV.

As P leaves A its potential diminishes, and it diminishes still
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more when it comes within the influence of C\ which is

negatively electrified.

If when P comes within C it's coefficient of induction on C
is —C and its capacity is C' + c', then, if U is the potential of

P, the charge on P is

(C'+ c')U+C'V'=aV.
If C'V=aV,

then at this point U the potential of P will be reduced to zero.

Let P at this point come in contact with the spring e' which

is connected with the earth. Since the potential of P is equal

to that of the spring there will be no spark at contact.

This conductor C\ by which the carrier is enabled to be con-

nected to earth without a spark, answers to the contrivance

called a regenerator in heat-engines. We shall therefore call it

a Regenerator.

Now let P move on, still in contact with the earth-spring e',

till it comes into the middle of the inductor B, the potential of

which is V. If —B is the coefficient of induction between

P and B at this point, then, since JJ= the charge on P will

be -BV.
When P moves away from the earth-spring it carries this

charge with it. As it moves out of the positive inductor B
towards the negative receiver A' its potential will be increasingly

negative. At the middle of A', if it retained its charge, its

potential would be
A'V' +BV
A' + a?

'

and if BV is greater than a'V' its numerical value will be

greater than that of V. Hence there is some point before P
reaches the middle of A' where its potential is — V . At this

point let it come in contact with the negative receiver-spring a'.

There will be no spark since the two bodies are at the same
potential. Let P move on to the middle of A', still in contact with

the spring, and therefore at the same potential with A'. During

this motion it communicates a negative charge to A'. At the

middle of A' it leaves the spring and carries away a charge —a'V
towards the positive regenerator C, where its potential is re-

duced to zero and it touches the earth-spring e. It then slides

along the earth-spring into the negative inductor B', during

which motion it acquires a positive charge B'V which it finally
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communicates to the positive receiver A, and the cycle of opera-

tions is completed.

During this cycle the positive receiver has lost a charge aV
and gained a charge B'Y'. Hence the total gain of positive

electricity is B'V'—aV.

Similarly the total gain of negative electricity is BY— a' V.

By making the inductors so as to be as close to the surface of

the carrier as is consistent with insulation, B and B' may be

made large, and by making the receivers so as nearly to surround

the carrier when it is within them, a and a' may be made very

small, and then the charges of both the Leyden jars will be

increased in every revolution.

The conditions to be fulfilled by the regenerators are

C'V' = aV, and CV=a'V.

Since a and a' are small the regenerators must neither be

large nor very close to the carriers.

On Electrometers and Electroscopes.

214.] An electrometer is an instrument by means of which

electric charges or electric potentials may be measured. In-

struments by means of which the existence of electric charges or

of differences of potential may be indicated, but which are not

capable of affording numerical measures, are called Electro-

scopes.

An electroscope if sufficiently sensitive may be used in elec-

trical measurements, provided we can make the measurement

depend on the absence of electrification. For instance, if we

have two charged bodies A and B we may use the method

described in Chapter I to determine which body has the greater

charge. Let the body A be carried by an insulating support

into the interior of an insulated closed vessel 0. Let C be

connected to earth and again insulated. There will then be no

external electrification on C. Now let A be removed, and B
introduced into the interior of 0, and the electrification of

tested by an electroscope. If the charge of B is equal to that

of A there will be no electrification, but if it is greater or less

there will be electrification of the same kind as that of B, or

the opposite kind.

Methods of this kind, in which the thing to be observed is the

non-existence of some phenomenon, are called null or zero
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methods. They require only an instrument capable of detecting

the existence of the phenomenon.

In another class of instruments for the registration of phe-

nomena the instruments may be depended upon to give always

the same indication for the same value of the quantity to be

registered, but the readings of the scale of the instrument are not

proportional to the values of the quantity, and the relation

between these readings and the corresponding value is unknown,
except that the one is some continuous function of the other.

Several electrometers depending on the mutual repulsion of

parts of the instrument which are similarly electrified are of

this class. The use of such instruments is to register phenomena,

not to measure them. Instead of the true values of the quantity

to be measured, a series of numbers is obtained, which may be

used afterwards to determine these values when the scale of the

instrument has been properly investigated and tabulated.

In a still higher class of instruments the scale readings are

proportional to the quantity to be measured, so that all that is

required for the complete measurement of the quantity is a

knowledge of the coefficient by which the scale readings must be

multiplied to obtain the true value of the quantity.

Instruments so constructed that they contain within them-

selves the means of independently determining the true values

of quantities are called Absolute Instruments.

Coulomb's Torsion Balance.

215.] A great number of the experiments by which Coulomb

established the fundamental laws of electricity were made by

measuring the force between two small spheres charged with

electricity, one of which was fixed while the other was held in

equilibrium by two forces, the electrical action between the

spheres, and the torsional elasticity of a glass fibre or metal wire.

See Art. 38.

The balance of torsion consists of a horizontal arm of gum-lac,

suspended by a fine wire or glass fibre, and carrying at one end

a little sphere of elder pith, smoothly gilt. The suspension wire

is fastened above to the vertical axis of an arm which can be

moved round a horizontal graduated circle, so as to twist the

upper end of the wire about its own axis any number of

degrees.
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The whole of this apparatus is enclosed in a case. Another

little sphere is so mounted on an insulating stem that it can be

charged and introduced into the case through a hole, and brought

so that its centre coincides with a definite point in the horizontal

circle described by the suspended sphere. The position of the

suspended sphere is ascertained by means of a graduated circle

engraved on the cylindrical glass case of the instrument.

Now suppose both spheres charged, and the suspended sphere

in equilibrium in a known position such that the torsion-arm

makes an angle 6 with the radius through the centre of the fixed

sphere. The distance of the centres is then 2 a sin \ 6, where a

is the radius of the torsion-arm, and if F is the force between the

spheres the moment of this force about the axis of torsion is

Fa cos \ 6.

Let both spheres be completely discharged, and let the torsion-

arm now be in equilibrium at an angle <£ with the radius through

the fixed sphere.

Then the angle through which the electrical force twisted the

torsion-arm must have been 6— $, and if M is the moment of

the torsional elasticity of the fibre, we shall have the equation

FacoB\9 = M(d-(f>).

Hence, if we can ascertain M, we can determine F, the actual

force between the spheres at the distance 2 a sin \ 0.

To find M, the moment of torsion, let I be the moment of

inertia of the torsion-arm, and T the time of a double vibration

of the arm under the action of the torsional elasticity, then

if=4^.
In all electrometers it is of the greatest importance to know

what force we are measuring. The force acting on the suspended

sphere is due partly to the direct action of the fixed sphere, but

partly also to the electrification, if any, of the sides of the case.

If the case is made of glass it is impossible to determine the

electrification of its surface otherwise than by very difficult

measurements at every point. If, however, either the case is

made of metal, or if a metallic case which almost completely

encloses the apparatus is placed as a screen between the spheres

and the glass case, the electrification of the inside of the metal

screen will depend entirely on that of the spheres, and the
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electrification of the glass case will have no influence on the

spheres. In this way we may avoid any indefiniteness due to

the action of the case.

To illustrate this by an example in which we can calculate all

the effects, let us suppose that the case is a sphere of radius b,

that the centre of motion of the torsion-arm coincides with the

centre of the sphere and that its radius is a ; that the charges on

the two spheres are E
x
and E, and that the angle between their

positions is 6 ; that the fixed sphere is at a distance a
x
from the

centre, and that r is the distance between the two small spheres.

Neglecting for the present the effect of induction on the dis-

tribution of electricity on the small spheres, the force between

them will be a repulsion

_EE
X

and the moment of this force round a vertical axis through the

centre will be EE^a.sinO

The image of Ex due to the spherical surface of the case is a

b2

point in the same radius at a distance from the centre — with

b .

ai

a charge —E
x
— , and the moment of the attraction between E

and this image about the axis of suspension is

& • „
, a— sin 9

EE
X

h

= EE
X

1 \a2— 2 — cos0 + —3
>

I a
x V)

aa
x
sin 6

b
\
1 ~ 2

-W
<i0s6+

~b^\

If b, the radius of the spherical case, is large compared with a

and av the distances of the spheres from the centre, we may
neglect the second and third terms of the factor in the de-

nominator. Equating the moments tending to turn the torsion-

arm, we get

EEiaaL Bm0fe - p} = M (0-</>).
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Electrometers for the Measurement of Potentials.

216.] In all electrometers the moveable part is a body charged

with electricity, and its potential is different from that of certain

of the fixed parts round it. When, as in Coulomb's method, an

insulated body having a certain charge is used, it is the charge

which is the direct object of measurement. We may, however,

connect the balls of Coulomb's electrometer, by means of fine

wires, with different conductors. The charges of the balls will

then depend on the values of the potentials of these conductors

and on the potential of the case of the instrument. The charge

on each ball will be approximately equal to its radius multiplied

by the excess of its potential over that of the case of the instru-

ment, provided the radii of the balls are small compared with

their distances from each other and from the sides or opening of

the case.

Coulomb's form of apparatus, however, is not well adapted for

measurements of this kind, owing to the smallness of the force

between spheres at the proper distances when the difference of

potentials is small. A more convenient form is that of the

Attracted Disk Electrometer. The first electrometers on this

principle were constructed by Sir W. Snow Harris *. They have

since been brought to great perfection, both in theory and con-

struction, by Sir W. Thomson f

.

When two disks at different potentials are brought face to

face with a small interval between them there will be a nearly

uniform electrification on the opposite faces and very little elec-

trification on the backs of the disks, provided there are no other

conductors or electrified bodies in the neighbourhood. The
charge on the positive disk will be approximately proportional to

its area, and to the difference of potentials of the disks, and

inversely as the distance between them. Hence, by making the

areas of the disks large and the distance between them small, a

small difference of potential may give rise to a measurable force

of attraction.

The mathematical theory of the distribution of electricity

over two disks thus arranged is given at Art. 202, but since

* Phil. Trans. 1834.
1* See an excellent report on Electrometers by Sir W. Thomson. Report of the

British Association, Dundee, 1867.
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it is impossible to make the case of the apparatus so large that

we may suppose the disks insulated in an infinite space, the

indications of the instrument in this form are not easily inter-

preted numerically.

217.] The addition of the guard-ring to the attracted disk

is one of the chief improvements which Sir W. Thomson has

made on the apparatus.

Instead of suspending the whole of one of the disks and

determining the force acting upon it, a central portion of the

disk is separated from the rest to form the attracted disk, and

the outer ring forming the remainder of the disk is fixed. In

this way the force is measured only on that part of the disk

where it is most regular, and the want of uniformity of the

COUNTERPOISE

Fig. 19.

electrification near the edge is of no importance, as it occurs

on the guard-ring and not on the suspended part of the disk.

Besides this, by connecting the guard-ring with a metal case

surrounding the back of the attracted disk and all its sus-

pending apparatus, the electrification of the back of the disk

is rendered impossible, for it is part of the inner surface of a

closed hollow conductor all at the same potential.

Thomson's Absolute Electrometer therefore consists essentially
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of two parallel plates at different potentials, one of which is

made so that a certain area, no part of which is near the

edge of the plate, is moveable under the action of electric force.

To fix our ideas we may suppose the attracted disk and guard-

ring uppermost. The fixed disk is horizontal, and is mounted
on an insulating stem which has a measurable vertical motion

given to it by means of a micrometer screw. The guard-ring

is at least as large as the fixed disk ; its lower surface is truly

plane and parallel to the fixed disk. A delicate balance is

erected on the guard-ring to which is suspended a light move-

able disk which almost fills the circular aperture in the guard-

ring without rubbing against its sides. The lower surface of

the suspended disk must be truly plane, and we must have the

means of knowing when its plane coincides with that of the

lower surface of the guard-ring, so as to form a single plane

interrupted only by the narrow interval between the disk and

its guard-ring.

For this purpose the lower disk is screwed up till it is in

contact with the guard-ring, and the suspended disk is allowed

to rest upon the lower disk, so that its lower surface is in

the same plane as that of the guard-ring. Its position with

respect to the guard-ring is then ascertained by means of a

system of fiducial marks. Sir W. Thomson generally uses for

this purpose a black hair attached to the moveable part. This

hair moves up or down just in front of two black dots on a

white enamelled ground and is viewed along with these dots

by means of a plano-convex lens with the plane side next the

eye. If the hair as seen through the lens appears straight and

bisects the interval between the black dots it is said to be in

its sighted position, and indicates that the suspended disk with

which it moves is in its proper position as regards height. The
horizontality of the suspended disk may be tested by comparing

the reflexion of part of any object from its upper surface

with that of the remainder of the same object from the upper

surface of the guard-ring.

The balance is then arranged so that when a known weight

is placed on the centre of the suspended disk it is in equilibrium

in its sighted position, the whole apparatus being freed from

electrification by putting every part in metallic communication.

A metal case is placed over the guard-ring so as to enclose the
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balance and suspended disk, sufficient apertures being left to see

the fiducial marks.

The guard-ring, case, and suspended disk are all in metallic

communication with each other, but are insulated from the

other parts of the apparatus.

Now let it be required to measure the difference of potentials

of two conductors. The conductors are put in communication

with the upper and lower disks respectively by means of wires,

the weight is taken off the suspended disk, and the lower disk

is moved up by means of the micrometer screw till the electrical

attraction brings the suspended disk down to its sighted

position. We then know that the attraction between the disks is

equal to the weight which brought the disk to its sighted position.

If W be the numerical value of the weight, and g the force of

gravity, the force is Wg, and if A is the area of the suspended

disk, D the distance between the disks, and V the difference of

the potential of the disks *,

Wg = -—=55 » or V -

* Let us denote the radius of the suspended disk by R, and that of the aperture

of the guard-ring by B, then the breadth of the annular interval between the

disk and the ring will be B = R'— R.

If the distance between the suspended disk and the large fixed disk is D, and

the difference of potentials between these disks is V, then, by the investigation in

Art. 201, the quantity of electricity on the suspended disk will be

_ iff +F R' 3-R2 a )

Q
( SI) ~ 8D D + a\*

where o = Z*
1^?, or a = 0-220635 (R'-R).

If the surface of the guard-ring is not exactly in the plane of the surface of

the suspended disk, let us suppose that the distance between the fixed disk and

the guard-ring is not D but I) + z = D', then it appears from the investigation in

Art. 225 that there will be an additional charge of electricity near the edge of

the disk on account of its height z above the general surface of the guard-ring.

The whole charge in this case is therefore, approximately,

and in the expression for the attraction we must substitute for A, the area of the

disk, the corrected quantity

I a in(R+R'))
A = i n j

R* + R*- (R"- R*) jj-^ + 8 (JB + R') (D'- D) log, —^g-
j

,

where R = radius of suspended disk,

R' = radius of aperture in the guard-ring,

B = distance between fixed and suspended disks,

D' = distance between fixed disk and guard-ring,

a = 0-220635 (R'-R).
When a is small compared with D we may neglect the second term, and when

D'—D is small we may neglect the last term. {For another investigation of this see

Supplementary Volume. ]•
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If the suspended disk is circular, of radius R, and if the radius

of the aperture of the guard-ring is R', then

A = \*{R* + R'% and V= ^a/^I^-
218.] Since there is always some uncertainty in determining

the micrometer reading corresponding to D = 0, and since any

error in the position of the suspended disk is most important

when D is small, Sir W. Thomson prefers to make all his

measurements depend on differences of the electromotive force

V. Thus, if V and V are two potentials, and D and D' the

corresponding distances,

r-F=(D-zr)/\/8rrgWA
For instance, in order to measure the electromotive force of a

galvanic battery, two electrometers are used.

By means of a condenser, kept charged if necessary by a

replenisher, the lower disk of the principal electrometer is main-

tained at a constant potential. This is tested by connecting the

lower disk of the principal electrometer with the lower disk of a

secondary electrometer, the suspended disk of which is connected

with the earth. The distance between the disks of the secondary

electrometer and the force required to bring the suspended disk

to its sighted position being constant, if we raise the potential

of the condenser till the secondary electrometer is in its sighted

position, we know that the potential of the lower disk of the

principal electrometer exceeds that of the earth by a constant

quantity which we may call V.

If we now connect the positive electrode of the battery to

earth, and connect the suspended disk of the principal electro-

meter to the negative electrode, the difference of potentials

between the disks will be V+v, if v is the electromotive force

of the battery. Let D be the reading of the micrometer in this

case, and let D' be the reading when the suspended disk is

connected with earth, then

v={D-v)Ay*if.
In this way a small electromotive force v may be measured

by the electrometer with the disks at a conveniently measurable

distance. When the distance is too small a small change of
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absolute distance makes a great change in the force, since the

force varies inversely as the square of the distance, so that any

error in the absolute distance introduces a large error in the

result unless the distance is large compared with the limits of

error of the micrometer screw.

The effects of small irregularities of form in the surfaces of the

disks and of the interval between them diminish according to

the inverse cube and higher inverse powers of the distance, and

whatever be the form of a corrugated surface, the eminences of

which just reach a plane surface, the electrical effect at any

distance which is considerable compared to the breadth of the

corrugations, is the same as that of a plane at a certain small

distance behind the plane of the tops of the eminences. See

Arts. 197, 198.

By means of the auxiliary electrification, tested by the aux-

iliary electrometer, a proper interval between the disks is secured.

The auxiliary electrometer may be of a simpler construction,

in which there is no provision for the determination of the force

of attraction in absolute measure, since all that is wanted is to

secure a constant electrification. Such an electrometer may be

called a gauge electrometer.

This method of using an auxiliary electrification besides the

electrification to be measured is called the Heterostatic method

of electrometry, in opposition to the Idiostatic method in which

the whole effect is produced by the electrification to be measured.

In several forms of the attracted disk electrometer, the at-

tracted disk is placed at one end of an arm which is supported

by being attached to a platinum wire passing through its centre

of gravity and kept stretched by means of a spring. The other

end of the arm carries the hair which is brought to a sighted

position by altering the distance between the disks, and so ad-

justing the force of the electric attraction to a constant value.

In these electrometers this force is not in general determined in

absolute measure, but is known to be constant, provided the

torsional elasticity of the platinum wire does not change.

The whole apparatus is placed in a Leydenjar, of which the

inner surface is charged and connected with the attracted disk

and guard-ring. The other disk is worked by a micrometer

screw, and is connected first with the earth and then with the

conductor whose potential is to be measured. The difference of
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readings multiplied by a constant to be determined for each

electrometer gives the potential required.

219.] The electrometers already described are not self-acting,

but require for each observation an adjustment of a micrometer

screw, or some other movement which must be made by the

observer. They are therefore not fitted to act as self-registering

instruments, which must of themselves move into the proper

position. This condition is fulfilled by Thomson's Quadrant

Electrometer.

The electrical principle on which this instrument is founded

may be thus explained :

—

A and B are two fixed conductors which may be at the same

or at different potentials. C is a moveable conductor at a high

potential, which is so placed that part of it is opposite to the

surface of A and part opposite to that of B, and that the pro-

portions of these parts are altered as G moves.

For this purpose it is most convenient to make C moveable

about an axis, and make the opposed surfaces of A, of B, and

of G portions of surfaces of revolution about the same axis.

In this way the distance between the surface of C and the

opposed surfaces of A or of B remains always the same, and the

motion of C in the positive direction simply increases the area

opposed to B and diminishes the area opposed to A.

If the potentials of A and B are equal there will be no force

urging G from A to B, but if the potential of C differs from that

of B more than from that of A, then C will tend to move so as

to increase the area of its surface opposed to B.

By a suitable arrangement of the apparatus this force may be

made nearly constant for different positions of C within certain

limits, so that if G is suspended by a torsion fibre, its deflexions

will be nearty proportional to the difference of potential between

A and B multiplied by the difference of the potential of G from

the mean of those of A and B.

G is maintained at a high potential by means of a condenser

provided with a replenisher and tested by a gauge electrometer,

and A and B are connected with the two conductors the dif-

ference of whose potentials is to be measured. The higher the

potential of G the more sensitive is the instrument. This elec-

trification of C, being independent of the electrification to be

measured, places this electrometer in the heterostatic class.
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We may apply to this electrometer the general theory of

systems of conductors given in Arts. 93, 127.

Let A, B, C denote the potentials of the three conductors re-

spectively. Let a, b, c be their respective capacities, p the co-

efficient of induction between B and G, q that between G and A,

and r that between A and B. All these coefficients will in

general vary with the position of 0, and if G is so arranged that

the extremities of A and B are not near those of G as long as

the motion of G is confined within certain limits, we may
ascertain the form of these coefficients. If 9 represents the de-

flexion of G from A towards B, then the part of the surface ofA
opposed to G will diminish as increases. Hence if A is kept

at potential 1 while B and G are kept at potential 0, the charge

on A will be a• = aQ
— a 9, where a and a are constants, and a is

the capacity of A.

If A and B are symmetrical, the capacity of B is 6 = b + a6.

The capacity of G is not altered by the motion, for the only

effect of the motion is to bring a different part of G opposite to

the interval between A and B. Hence c = c .

The quantity of electricity induced on G when B is raised to

potential unity is p = p — a 9.

The coefficient of induction between A and G is q = q + a6.

The coefficient of induction between A and B is not altered

by the motion of C, but remains r = r .

Hence the electrical energy of the system is

W= \A2a + hB2b + \C2
c + BGp + GAq + ABr,

and if is the moment of the force tending to increase 9,

dW= -j-, A, B, C being supposed constant,
cL9

, ia da -, ™db , ™dc T>„dp „ . da
, ATt dr

= -\£za+ lB2a-BGa +GAa
;

or Q = a(A-B) {C-l{A + B)}*.

* i This can also be deduced as follows : If the needle is symmetrically placed

within the quadrants there will be no couple when A = B. Since dW/d0 vanishes

in this case for all possible values of C, we must have

da db dr

*re
+ i

d~e
+
de'

=0
>

*?
j.
di - ft

do
+ do~ '

dc

de
= '
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Fig. 20.

In the present form of Thomson's Quadrant Electrometer the

conductors A and B are in the form of a cylindrical box com-

pletely divided into four quadrants,

separately insulated, but joined by

wires so that two opposite quadrants

A and A' are connected together as

are also the two others B and B\

The conductor C is suspended so as

to be capable of turning about a

vertical axis, and may consist of

two opposite flat quadrantal arcs sup-

ported by radii at their extremities.

In the position of equilibrium these

quadrants should be partly within A and partly within B, and

the supporting radii should be near the middle of the quadrants

of the hollow base, so that the divisions of the box and the

extremities and supports of C may be as far from each other as

possible.

The conductor C is kept permanently at a high potential by

being connected with the inner coating of the Leyden jar which

forms the case of the instrument. B and A are connected, the

first with the earth, and the other with the body whose potential

is to be measured.

If the potential of this body is zero, and if the instrument be

in adjustment, there ought to be no force tending to make G

move, but if the potential of A is of the same sign as that of C,

then C will tend to move from A to B with a nearly uniform

force, and the suspension apparatus will be twisted till an equal

force is called into play and produces equilibrium. Within

So that
&W
d0

= l(A-Z)(.
. da _ db ^ _ dq^A Te- B

dl
+iC

ro/

If the quadrants entirely surround the needle the couple will not be affected by

increasing all the potentials by the same amount, hence

So that
dW
dO

da db dq
+ 2 — = 0.

d9 dO dO

da
-i<A-*>\«-°>%-<*-°>a\

If the quadrants are symmetrical — = — — and we get the expression in the text.
dO dO

The student should also consult Dr. G. Hopkinson's Paper on the Quadrant Electro-

meter, Phil. Mag. 5th series, xix. p. 291, and Hallwachs Wied. Ann. xxix. p. 11.}
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certain limits the deflexions of C will be proportional to the

pro'duct (A-B) {C-\(A+B)}.

By increasing the potential of C the sensibility of the instru-

ment may be increased, and for small values of | (A + B) the

deflexions will be nearly proportional to (A — B) C.

On the Measurement of Electric Potential.

220.] In order to determine large differences of potential in

absolute measure we may employ the attracted disk electro-

meter, and compare the attraction with the effect of a weight.

If at the same time we measure the difference of potential of

the same conductors by means of the quadrant electrometer, we
shall ascertain the absolute value of certain readings of the scale

of the quadrant electrometer, and in this way we may deduce

the value of the scale readings of the quadrant electrometer in

terms of the potential of the suspended part, and the moment of

torsion of the suspension apparatus*.

To ascertain the potential of a charged conductor of finite size

we may connect the conductor with one electrode of the electro-

meter, while the other is connected to earth or to a body of

constant potential. The electrometer reading will give the

potential of the conductor after the division of its electricity

between it and the part of the electrometer with which it is

put in contact. If K denote the capacity of the conductor, and

Kf
that of this part of the electrometer, and if V, V denote the

potentials of these bodies before making' contact, then their

common potential after making contact will be

._ KV+K'V -

V ~ K + K'

Hence the original potential of the conductor was

If the conductor is not large compared with the electrometer,

K' will be comparable with K, and unless we can ascertain the

values of K and K' the second term of the expression will have

a doubtful value. But if we can make the potential of the

* {Large differences of potential are more conveniently measured by means of

Sir William Thomson's new Voltmeter. ]
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electrode of the electrometer very nearly equal to that of the

body before making contact, then the uncertainty of the values

of K and K' will be of little consequence.

If we know the value of the potential of the body approxi-

mately, we may charge the electrode by means of a ' replenisher
'

or otherwise to this approximate potential, and the next experi-

ment will give a closer approximation. In this way we may
measure the potential of a conductor whose capacity is small

compared with that of the electrometer.

To Measure the Potential at any Point in the Air.

221.] First Method. Place a sphere, whose radius is small

compared with the distance of electrified conductors, with its

centre at the given point. Connect it by means of a fine wire

with the earth, then insulate it, and carry it to an electrometer

and ascertain the total charge on the sphere.

Then, if V be the potential at the given point, and a the

radius of the sphere, the charge on the sphere will be —Va = Q,

and if V be the potential of the sphere as measured by an

electrometer when placed in a room whose walls are connected

with the earth, then Q —ya

whence V+V'=0,

or the potential of the air at the point where the centre of the

sphere was placed is equal but of opposite sign to the potential

of the sphere after being connected to earth, then insulated, and

brought into a room.

This method has been employed by M. Delmann of Creuznach

in measuring the potential at a certain height above the earth's

surface.

Second Method. We have supposed the sphere placed at the

given point and first connected to earth, and then insulated,

and carried into a space surrounded with conducting matter at

potential zero.

Now let us suppose a fine insulated wire carried from the

electrode of the electrometer to the place where the potential is

to be measured. Let the sphere be first discharged completely.

This may be done by putting it into the inside of a vessel of

the same metal which nearly surrounds it and making it touch

the vessel. Now let the sphere thus discharged be carried to
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the end of the wire and made to touch it. Since the sphere is

not electrified it will be at the potential of the air at the place.

If the electrode wire is at the same potential it will not be

affected by the contact, but if the electrode is at a different

potential it will by contact with the sphere be made nearer to

that of the air than it was before. By a succession of such

operations, the sphere being alternately discharged and made
to touch the electrode, the potential of the electrode of the

electrometer will continually approach that of the air at the

given point.

222.] To measure the potential of a conductor without touch-

ing it, we may measure the potential of the air at any point in

the neighbourhood of the conductor, and calculate that of the

conductor from the result. If there be a hollow nearly sur-

rounded by the conductor, then the potential at any point of

the air in this hollow will be very nearly that of the conductor.

In this way it has been ascertained by Sir W. Thomson that

if two hollow conductors, one of copper and the other of zinc,

are in metallic contact, then the potential of the air in the

hollow surrounded by zinc is positive with reference to that of

the air in the hollow surrounded by copper.

ThiscR Method. If by any means we can cause a succession of

small bodies to detach themselves from the end of the electrode,

the potential of the electrode will approximate to that of the sur-

rounding air. This may be done by causing shot, filings, sand,

or water to drop out of a funnel or pipe connected with the

electrode. The point at which the potential is measured is that

at which the stream ceases to be continuous and breaks into

separate parts or drops.

Another convenient method is to fasten a slow match to the

electrode. The potential is very soon made equal to that of the

air at the burning end of the match. Even a fine metallic point

is sufficient to create a discharge by means of the particles of

the air {or dust?} when the difference of potentials is consider-

able, but if we wish to reduce this difference to zero, we must

use one of the methods stated above.

If we only wish to ascertain the sign of the difference of the

potentials at two places, and not its numerical value, we may
cause drops or filings to be discharged at one of the places from

a nozzle connected with the other place, and catch the drops or
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filings in an insulated vessel. Each drop as it falls is charged

with a certain amount of electricity, and it is completely dis-

charged into the vessel. The charge of the vessel therefore is

continually accumulating, and after a sufficient number of drops

have fallen, the charge of the vessel may be tested by the

roughest methods. The sign of the charge is positive if the

potential of the place connected to the nozzle is positive rela-

tively to that of the other place.

MEASUKEMENT OP SURFACE-DENSITY OP ELECTRIFICATION.

Theory of the Proof Plane.

223.] In testing the results of the mathematical theory of the

distribution of electricity on the surface of conductors, it is

necessary to be able to measure the surface-density at different

points of the conductor. For this purpose Coulomb employed a

small disk of gilt paper fastened to an insulating stem of gum-
lac. He applied this disk to various points of the conductor by
placing it so as to coincide as nearly as possible with the surface

of the conductor. He then removed it by means of the in-

sulating stem, and measured the charge of the disk by means
of his electrometer.

Since the surface of the disk, when applied to the conductor,

nearly coincided with that of the conductor, he concluded that

the surface-density on the outer surface of the disk was nearly

equal to that on the surface of the conductor at that place, and
that the charge on the disk when removed was nearly equal to

that on an area of the surface of the conductor equal to that of

one side of the disk. A disk, when employed in this way, is

called a Coulomb's Proof Plane.

As objections have been raised to Coulomb's use of the proof

plane, I shall make some remarks on the theory of the experi-

ment.

This experiment consists in bringing a small conducting body
into contact with the surface of the conductor at the point where
the density is to be measured, and then removing the body and
determining its charge.

We have first to shew that the charge on the small body when
in contact with the conductor is proportional to the surface-
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density which existed at the point of contact before the small

body was placed there.

We shall suppose that all the dimensions of the small body,

and especially its dimension in the direction of the normal at the

point of contact, are small compared with either of the radii of

curvature of the conductor at the point of contact. Hence the

variation of the resultant force due to the conductor supposed

rigidly electrified within the space occupied by the small body

may be neglected, and we may treat the surface of the conductor

near the small body as a plane surface.

Now the charge which the small body will take by contact

with a plane surface will be proportional to the resultant force

normal to the surface, that is, to the surface-density. We shall

ascertain the amount of the charge for particular forms of the body.

We have next to shew that when the small body is removed

no spark will pass between it and the conductor, so that it will

carry its charge with it. This is evident, because when the

bodies are in contact their potentials are the same, and therefore

the density on the parts nearest to the point of contact is ex-

tremely small. When the small body is removed to a very short

distance from the conductor, which we shall suppose to be elec-

trified positively, then the electrification at the point nearest to

the small body is no longer zero but positive, but, since the

charge of the small body is positive, the positive electrification

close to the small body will be less than at other neighbouring

points of the surface. Now the passage of a spark depends in

general on the magnitude of the resultant force, and this on the

surface-density. Hence, since we suppose that the conductor is

not so highly electrified as to be discharging electricity from the

other parts of its surface, it will not discharge a spark to the

small body from a part of its surface which we have shewn to

have a smaller surface-density.

224.] We shall now consider various forms of the small body.

Suppose it to be a small hemisphere applied to the conductor

so as to touch it at the centre of its flat side.

Let the conductor be a large sphere, and let us modify the

form of the hemisphere so that its surface is a little more than a

hemisphere, and meets the surface of the sphere at right angles.

Then we have a case of which we have already obtained the

exact solution. See Art. 168.
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If A and B be the centres of the two spheres cutting each

other at right angles, DD' a diameter of the circle of intersection,

and G the centre of that circle, then if V is the potential of a

conductor whose outer surface coincides with that of the two

spheres, the quantity of electricity on the exposed surface of the

sphere A is
4V (

AD +BD +AC-GB- BC),

and that on the exposed surface of the sphere B is

\V(AD + BD + BG-CD- AG),

the total charge being the sum of these, or

V(AD + BD-CD).
If a and /3 are the radii of the spheres, then, when a is large

compared with /3, the charge on B is to that on A in the ratio of

3/3
2

/, 1/3 102
,

v , ,

4au 3 a 6 a2 '

Now let a- be the uniform surface-density on A when B is

removed, then the charge on A is

4 rr a2 a,

and therefore the charge on B is

1/3
3jr/3V('l+-£ +&C.V

v 3 a J

or, when /3 is very small compared with a, the charge on the

hemisphere B is equal to three times that due to a surface-density

o- extending over an area equal to that of the circular base of the

hemisphere.

It appears from Art. 175 that if a small sphere is made to

touch an electrified body, and is then removed to a distance

from it, the mean surface-density on the sphere is to the surface-

density of the body at the point of contact as tj
2 is to 6, or

as 1.645 to 1.

225.] The most convenient form for the proof plane is that of

a circular disk. We shall therefore shew how the charge on a

circular disk laid on an electrified surface is to be measured.

For this purpose we shall construct a value of the potential

function so that one of the equipotential surfaces resembles a

circular flattened protuberance whose general form is somewhat
like that of a disk lying on a plane.

Let o- be the surface-density of a plane, which we shall suppose

to be that of xy.
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The potential due to this electrification will be

V— —4ir(rz.

Now let two disks of radius a be rigidly electrified with

surface-densities — </ and + </. Let the first of these be placed

on the plane of xy with its centre at the origin, and the second

parallel to it at the very small distance c.

Then it may be shewn, as we shall see in the theory of mag-

netism, that the potential of the two disks at any point is a> a c,

where a> is the solid angle subtended by the edge of either disk

at the point. Hence the potential of the whole system will be

V= — liso-Z + aCG).

The forms of the equipotential surfaces and lines of induction

are given on the left-hand side of Fig. XIIIA.

Let us trace the form of the surface for which V= 0. This

surface is indicated by the dotted line.

Putting the distance of any point from the axis of z — r, then,

when r is much less than a, and z is small, we find

z „
to = 2rr — 2TT- + &.Q.

a

Hence, for values of r considerably less than a, the equation

of the zero equipotential surface is

z c
=-47ro-2 + 2 7r</c— 27ra'-2- +&c;

<r'c

or zn

2o- + </-
a

Hence this equipotential surface near the axis is nearly flat.

Outside the disk, where r is greater than a, a> is zero when
z is zero, so that the plane of xy is part of the equipotential

surface.

To find where these two parts of the surface meet, let us find

dV
at what point of this plane —r — 0.

When r is very nearly equal to a, the solid angle a> becomes

approximately a lune of the sphere of unit radius whose angle

is tan-1 {2-=-(r— a)}, that is, <o is 2 tan-1 {z-r-(r— a)}, so that

when z = j— = —4iro--| , approximately.
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Hence, when

dV a'c zn ,

-y- = 0, rn =a+ -— = a + — , nearly.
dZ 2tT(T 77

The equipotential surface V= is therefore composed of a disk-

like figure of radius r , and nearly uniform thickness z , and of

the part of the infinite plane of xy which lies beyond this figure.

The surface-integral over the whole disk gives the charge of

electricity on it. It may be found, as in the theory of a circular

current in Part IV, Art. 704, to be

8a
Q = 4iraer'c {log- - 2} + 7T<rr

2
.

The charge on an equal area of the plane surface is tt <rr 2
,

hence the charge on the disk exceeds that on an equal area of

the plane very nearly in the ratio of

zn . 8nrn ,

1 + 8 — log - to unity,

where z is the thickness and r the radius of the disk, z being

supposed small compared with r .

On Electric Accumulators and the Measurement of Capacity.

226.] An Accumulator or Condenser is an apparatus consisting

of two conducting surfaces separated by an insulating dielectric

medium.

A Leyden jar is an accumulator in which an inside coating of

tinfoil is separated from the outside coating by the glass of which

the jar is made. The original Leyden phial was a glass vessel

containing water which was separated by the glass from the

hand which held it.

The outer surface of any insulated conductor may be con-

sidered as one of the surfaces of an accumulator, the other being

the earth or the walls of the room in which it is placed, and the

intervening air being the dielectric medium.

The capacity of an accumulator is measured by the quantity

of electricity with which the inner surface must be charged to

make the difference between the potentials of the surfaces unity.

Since every electrical potential is the sum of a number of

parts found by dividing each electrical element by its distance

from a point, the ratio of a quantity of electricity to a potential
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must have the dimensions of a line. Hence electrostatic capacity-

is a linear quantity, or we may measure it in feet or metres

without ambiguity.

In electrical researches accumulators are used for two principal

purposes, for receiving and retaining large quantities of electricity

in as small a compass as possible, and for measuring definite

quantities of electricity by means of the potential to which they

raise the accumulator.

For the retention of electrical charges nothing has been devised

more perfect than the Leyden jar. The principal part of the loss

arises from the electricity creeping along the damp uncoated

surface of the glass from the one coating to the other. This

may be checked in a great degree by artificially drying the air

within the jar, and by varnishing the surface of the glass where

it is exposed to the atmosphere. In Sir W. Thomson's electro-

scopes there is a very small percentage of loss from day to day,

and I believe that none of this loss can be traced to direct con-

duction either through air or through glass when the glass is

good, but that it arises chiefly from superficial conduction along

the various insulating stems and glass surfaces of the instru-

ment.

In fact, the same electrician has communicated a charge to

sulphuric acid in a large bulb with a long neck, and has then

hermetically sealed the neck by fusing it, so that the charge was

completely surrounded by glass, and after some years the charge

was found still to be retained.

It is only, however, when cold, that glass insulates in this

way, for the charge escapes at once if the glass is heated to a

temperature below 100
C
C.

When it is desired to obtain great capacity in small compass,

accumulators in which the dielectric is sheet caoutchouc, mica,

or paper impregnated with paraffin are convenient.

227.] For accumulators of the second class, intended for the

measurement of quantities of electricity, all solid dielectrics must

be employed with great caution on account of the property which

they possess called Electric Absorption.

The only safe dielectric for such accumulators is air, which

has this inconvenience, that if any dust or dirt gets into the

narrow space between the opposed surfaces, which ought to be

occupied only by air, it not only alters the thickness of the
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stratum of air, but may establish a connexion between the

opposed surfaces, in which case the accumulator will not hold a

charge.

To determine in absolute measure, that is to say in feet or

metres, the capacity of an accumulator, we must either first

ascertain its form and size, and then solve the problem of the

distribution of electricity on its opposed surfaces, or we must

compare its capacity with that of another accumulator, for which

this problem has been solved.

As the problem is a very difficult one, it is best to begin with

an accumulator constructed of a form for which the solution is

known. Thus the capacity of an insulated sphere in an unlimited

space is known to be measured by the radius of the sphere.

A sphere suspended in a room was actually used by MM.
Kohlrausch and Weber, as an absolute standard with which

they compared the eapacity of other accumulators.

The capacity, however, of a sphere of moderate size is so small

when compared with the capacities of the accumulators in

common use that the sphere is not a convenient standard

measure.

Its capacity might be greatly increased by surrounding the

sphere with a hollow concentric spherical surface of somewhat

greater radius. The capacity of the inner surface is then a

fourth proportional to the thickness of the stratum of air and

the radii of the two surfaces.

Sir W. Thomson has employed this arrangement as a standard

of capacity, {it has also, been used by Prof. Rowland and Mr.

Rosa in their determinations of the ratio of the electromagnetic

to the electrostatic unit of electricity, Phil. Mag. ser. v. 28,

pp. 304, 315,} but the difficulties of working the surfaces truly

spherical, of making them truly concentric, and of measuring

their distance and their radii with sufficient accuracy, are con-

siderable.

We are therefore led to prefer for an absolute measure of ca-

pacity a form in which the opposed surfaces are parallel planes.

The accuracy of the surface of the planes can be easily tested,

and their distance can be measured by a micrometer screw, and

may be made capable of continuous variation, which is a most

important property of a measuring instrument.

The only difficulty remaining arises from the fact that the
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planes must necessarily be bounded, and that the distribution of

electricity near the boundaries of the planes has not been rigidly

calculated. It is true that if we make them equal circular disks,

whose radius is large compared with the distance between them,

we may treat the edges of the disks as if they were straight

lines, and calculate the distribution of electricity by the method

due to Helmholtz, and described in Art. 202. But it will be

noticed that in this case part of the electricity is distributed on

the back of each disk, and that in the calculation it has been

supposed that there are no conductors in the neighbourhood,

which is not and cannot be the case with a small instrument.

228.] We therefore prefer the following arrangement, due to

Sir W. Thomson, which we may call the Guard-ring arrange-

ment, by means of which the quantity of electricity on an

insulated disk may be exactly determined in terms of its

potential.

The Guard-ring Accumulator.

Bb is a cylindrical vessel of conducting material of which the

outer surface of the upper face is accurately plane. This upper

surface consists oftwo parts,

a disk A, and a broad ring

BB surrounding the disk,

separated from it by a very

small interval all round, just

sufficient to prevent sparks

passing. The upper surface

of the disk is accurately in

the same plane with that of

the guard-ring. The disk is

supported by pillars of insulating material GG. C is a metal

disk, the under surface of which is accurately plane and parallel

to BB. The disk C is considerably larger than A. Its distance

from A is adjusted and measured by means of a micrometer

screw, which is not given in the figure.

This accumulator is used as a measuring instrument as

follows :

—

Suppose C to be at potential zero, and the disk A and vessel

Bb both at potential V. Then there will be no electrification on

1

II 1 i
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p

G
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a
B

1 b t>

Fie. 21.
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the back of the disk because the vessel is nearly closed and is

all at the same potential. There will be very little electrification

on the edges of the disk because BB is at the same potential

with the disk. On the face of the disk the electrification will

be nearly uniform, and therefore the whole charge on the disk

will be almost exactly represented by its area multiplied by the

surface-density on a plane, as given in Art. 124.

In fact, we learn from the investigation in Art. 201 that the

charge on the disk is

i 8^1 ~ 8A A+aj'
where R is the radius of the disk, R' that of the hole in the

guard-ring, A the distance between A and G, and a a quantity

which cannot exceed (R'—R) ^ e
•

77

If the interval between the disk and the guard-ring is small

compared with the distance between A and G, the second term

will be very small, and the charge on the disk will be nearly

VR
2 + R'2

8A
{This is very nearly the same as the charge on a disk uni-

formly electrified with the surface-density F/4 it A, whose radius

is the arithmetic mean between those of the original disk and
the hole.

}

Now let the vessel Bb be put in connexion with the earth.

The charge on the disk A will no longer be uniformly dis-

tributed, but it will remain the same in quantity, and if we
now discharge A we shall obtain a quantity of electricity,

the value of which we know in terms of V, the original

difference of potentials and the measurable quantities R, R'
and A.

On the Comparison of the Capacity of Accumulators.

229.] The form of accumulator which is best fitted to have its

capacity determined in absolute measure from the form and
dimensions of its parts is not generally the most suitable for

electrical experiments. It is desirable that the measures of

capacity in actual use should be accumulators having only two
conducting surfaces, one of which is as nearly as possible sur-

rounded by the other. The guard-ring accumulator, on the
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other hand, has three independent conducting portions which

must be charged and discharged in a certain order. Hence it is

desirable to be able to compare the capacities of two accumu-

lators by an electrical process, so as to test accumulators which
may afterwards serve as secondary standards.

I shall first shew how to test the equality of the capacity of

two guard-ring accumulators.

Let A be the disk, B the guard-ring with the rest of the con-

ducting vessel attached to it, and G the large disk of one of

these accumulators, and let A', B', and C be the corresponding

parts of the other.

If either of these accumulators is of the more simple kind,

having only two conductors, we have only to suppress B or B',

and to suppose A to be the inner and C the outer conducting

surface, G in this case being understood to surround A.

Let the following connexions be made.

Let B be kept always connected with (7, and B' with G, that

is, let each guard-ring be connected with the large disk of the

other condenser.

(1) Let A be connected with B and Gr and with J, the elec-

trode of a Leyden jar with a positive charge, and let A' be

connected with B? and G and with the earth.

(2) Let A, B, and G' be insulated from J.

(3) Let A be insulated from B and G', and A' from B' and G.

(4) Let B and C be connected with Bf and G and with the

earth.

(5) Let A be connected with A'.

(6) Let A and A' be connected with an electroscope E.

We may express these connexions as follows :

—

(1) o = G = B' = A'
|

A = B = CT=J.

(2) = C = B' = A'
J

A = B = C
\
J.

(3) = G = B'
|
A'

| A
\
B = G'.

(4) = G = B'
|
A'

|
A

|
B = C = 0.

(5) = G = B'
\
A' = A

|
B = C = 0.

(6) o = C = B'
j
A'=E=A | jB = C" = 0.

Here the sign of equality expresses electrical connexion, and

the vertical stroke expresses insulation.

In (1) the two accumulators are charged oppositely, so that A
is positive and A' negative, the charges on A and A' being
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uniformly distributed on the upper surface opposed to the large

disk of each accumulator.

In (2) the jar is removed, and in (3) the charges on A and A'

are insulated.

In (4) the guard-rings are connected with the large disks, so

that the charges on A and A', though unaltered in magnitude,

are now distributed over their whole surfaces.

In (5) A is connected with A'. If the charges are equal and

of opposite signs, the electrification will be entirely destroyed,

and in (6) this is tested by means of the electroscope E.

The electroscope E will indicate positive or negative electri-

fication according as A or A' has the greater capacity.

By means of a key of proper construction*, the whole of these

operations can be performed in due succession in a very small

fraction of a second, and the capacities adjusted till no electri-

fication can be detected by the electroscope, and in this way the

capacity of an accumulator may be adjusted to be equal to that

of any other, or to the sum of the capacities of several accumu-

lators, so that a system of accumulators may be formed, each of

which has its capacity determined in absolute measure, i.e. in

feet or in metres, while at the same time it is of the construction

most suitable for electrical experiments.

This method of comparison will probably be found useful in

determining the specific capacity for electrostatic induction of

different dielectrics in the form of plates or disks. If a disk of

the dielectric is interposed between A and G, the disk being

considerably larger than A, then the capacity of the accumulator

will be altered and made equal to that of the same accumulator

when A and G are nearer together. If the accumulator with the

dielectric plate, and with A and G at distance x, is of the same

capacity as the same accumulator without the dielectric, and

with A and G at distance x', then, if a is the thickness of the

plate, and K its specific dielectric inductive capacity referred to

air as a standard,

A =
-,

a + x —x
The combination of three cylinders, described in Art. 127,

has been employed by Sir W. Thomson as an accumulator whose

* {Such a key is described in Dr. Hopkinson's paper on the Electrostatic Capacity

of Glass and of Liquids, Phil. Trans., 1881, Part II, p. 360.}
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capacity may be increased or diminished by measurable quan-

tities.

The experiments of MM. Gibson and Barclay with this ap-

paratus are described in the Proceedings of the Royal Society,

Feb. 2, 1871, and PM. Trans., 1871, p. 573. They found the

specific inductive capacity of solid paraffin to be 1.975, that

of air being unity.



PAET II.

ELECTROKINEMATICS.

CHAPTER I.

THE ELECTRIC CURRENT.

230.] We have seen, in Art. 45, that when a conductor is in

electrical equilibrium the potential at every point of the con-

ductor must be the same.

If two conductors A and B are charged with electricity so

that the potential of A is higher than that of B, then, if they

are put in communication by means of a metallic wire G
touching both of them, part of the charge of A will be trans-

ferred to B, and the potentials of A and B will become in a

very short time equalized.

231.] During this process certain phenomena are observed

in the wire C, which are called the phenomena of the electric

conflict or current.

The first of these phenomena is the transference of positive

electrification from A to B and of negative electrification from B
to A. This transference may be also effected in a slower manner
by bringing a small insulated body into contact with A and B
alternately. By this process, which we.may call electrical con-

vection, successive small portions of the electrification of each

body are transferred to the other. In either case a certain

quantity of electricity, or of the state of electrification, passes

from one place to another along a certain path in the space

between the bodies.
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Whatever therefore may be our opinion of the nature of elec-

tricity, we must admit that the process which we have described

constitutes a current of electricity. This current may be de-

scribed as a current of positive electricity from A to B, or a
current of negative electricity from B to A, or as a combination
of these two currents.

According to Fechner's and Weber's theory it is a combination
of a current of positive electricity with an exactly equal current

of negative electricity in the opposite direction through the same
substance. It is necessary to remember this exceedingly artificial

hypothesis regarding the constitution of the current in order to

understand the statement of some of Weber's most valuable ex-

perimental results.

If, as in Art. 36, we suppose P units of positive electricity

transferred from A to B, and JV units of negative electricity

transferred from B to A in unit of time, then, according to

Weber's theory, P = N, and P or N is to be taken as the

numerical measure of the current.

We, on the contrary, make no assumption as to the relation

between P and N, but attend only to the result of the current,

namely, the transference of P +N units of positive electrification

from A to B, and we shall consider P +N the true measure
of the current. The current, therefore, which Weber would call

1 we shall call 2.

On Steady Currents.

232.] In the case of the current between two insulated con-

ductors at different potentials the operation is soon brought to

an end by the equalization of the potentials of the two bodies,

and the current is therefore essentially a Transient Current.

But there are methods by which the difference of potentials of

the conductors may be maintained constant, in which case the

current will continue to flow with uniform strength as a Steady

Current.

The Voltaic Battery.

The most convenient method of producing a steady current is

by means of the Voltaic Battery.

For the sake of distinctness we shall describe Darnell's Con-
stant Battery :

—

A solution of sulphate of zinc is placed in a cell of porous
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earthenware, and this cell is placed in a vessel containing a

saturated solution of sulphate of copper. A piece of zinc is

dipped into the sulphate of zinc, and a piece of copper is dipped

into the sulphate of copper. Wires are soldered to the zinc and to

the copper above the surfaces of the liquids. This combination

is called a cell or element of Daniell's battery. See Art. 272.

233.] If the cell is insulated by being placed on a non-con-

ducting stand, and if the wire connected with the copper is put

in contact with an insulated conductor A, and the wire con-

nected with the zinc is put in contact with B, another insulated

conductor of the same metal as A, then it may be shewn by

means of a delicate electrometer that the potential of A exceeds

that ofB by a certain quantity. This difference of potentials is

called the Electromotive Force of the Daniell's Cell.

If A and B are now disconnected from the cell and put in

communication by means of a wire, a transient current passes

through the wire from A to B, and the potentials of A and B
become equal. A and B may then be charged again by the cell,

and the process repeated as long as the cell will work. But if

A and B be connected by means of the wire C, and at the same

time connected with the battery as before, then the cell will

maintain a constant current through C, and also a constant

difference of potentials between A and B. This difference will

not, as we shall see, be equal to the whole electromotive force of

the cell, for part of this force is spent in maintaining the current

through the cell itself.

A number of cells placed in series so that the zinc of the first

cell is connected by metal with the copper of the second and

so on, is called a Voltaic Battery. The electromotive force of

such a battery is the sum of the electromotive forces of the cells

of which it is composed. If the battery is insulated it may be

charged with electricity as a whole, but the potential of the

copper end will always exceed that of the zinc end by the elec-

tromotive force of the battery, whatever the absolute value of

either of these potentials may be. The cells of the battery may
be of very various construction, containing different chemical

substances and different metals, provided they are such that

chemical action does not go on when no current passes.

234.] Let us now consider a voltaic battery with its ends

insulated from each other. The copper end will be positively
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or vitreously electrified, and the zinc end will be negatively or

resinously electrified.

Let the two ends of the battery be now connected by means

of a wire. An electric current will commence, and will in a

very short, time attain a constant value. It is then said to be

a Steady Current.

Properties of the Current.

235.] The current forms a closed circuit in the direction from

copper to zinc through the wires, and from zinc to copper

through the solutions.

If the circuit be broken by cutting any of the wires which

connect the copper of one cell with the zinc of the next in order,

the current will be stopped, and the potential of the end of

the wire in connexion with the copper will be found to exceed

that of the end of the wire in connexion with the zinc by a

constant quantity, namely, the total electromotive force of the

circuit.

Electrolytic Action of the Current.

236.] As long as the circuit is broken no chemical action goes

on in the cells, but as soon as the circuit is completed, zinc is

dissolved from the zinc in each of the Daniell's cells, and copper

is deposited on the copper.'

The quantity of sulphate of zinc increases, and the quantity

of sulphate of copper diminishes unless more is constantly

supplied.

The quantity of zinc dissolved, and also that of copper de-

posited, is the same in each of the Daniell's cells throughout the

circuit, whatever the size of the plates of the cell, and if any one

of the cells be of a different construction, the amount of chemical

action in it bears a constant proportion to the action in the

Daniell's cell. For instance, if one of the cells consists of two

platinum plates dipped into sulphuric acid diluted with water,

oxygen will be given off at the surface of the plate where

the current enters the liquid, namely, the plate in metallic

connexion with the copper of Daniell's cell, and hydrogen

at the surface of the plate where the current leaves the liquid,

namely, the plate connected with the zinc of Daniell's cell.

The volume of the hydrogen is exactly twice the volume of
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the oxygen given off in the same time, and the weight of the

oxygen is exactly eight times the weight of the hydrogen.

In every cell of the circuit the weight of each substance

dissolved, deposited, or decomposed is equal to a certain quantity

called the electrochemical equivalent of that substance, multi-

plied by the strength of the current and by the time during

which it has been flowing.

For the experiments which established this principle, see the

seventh and eighth series of Faraday's Experimental Researches

;

and for an investigation of the apparent exceptions to the rule,

see Miller's Chemical Physics and Wiedemann's Galvanismus.

237.] Substances which are decomposed in this way are called

Electrolytes. The process is called Electrolysis. The places

where the current enters and leaves the electrolyte are called

Electrodes. Of these the electrode by which the current enters

is called the Anode, and that by which it leaves the electrolyte

is called the Cathode. The components into which the electrolyte

is resolved are called Ions : that which appears at the anode is

called the Anion, and that which appears at the cathode is called

the Cation.

Of these terms, which were, I believe, invented by Faraday

with the help of Dr. Whewell, the first three, namely, electrode,

electrolysis, and electrolyte have been generally adopted, and

the mode of conduction of the current in which this kind of

decomposition and transfer of the components takes place is

called Electrolytic Conduction.

If a homogeneous electrolyte is placed in a tube of variable

section, and if the electrodes are placed at the ends of this tube,

it is found that when the current passes, the anion appears at

the anode and the cation at the cathode, the quantities of these

ions being electrochemically equivalent, and such as to be

together equivalent to a certain quantity of the electrolyte. In

the other parts of the tube, whether the section be large or

small, uniform or varying, the composition of the electrolyte

remains unaltered. Hence the amount of electrolysis which

takes place across every section of the tube is the same. Where

the section is small the action must therefore be more intense

than where the section is large, but the total amount of each ion

which crosses any complete section *of the electrolyte in a given

time is the same for all sections.
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The strength of the current may therefore be measured by the

amount of electrolysis in a given time. An instrument by

which the quantity of the electrolytic products can be readily

measured is called a Voltameter.

The strength of the current, as thus measured, is the same

at every part of the circuit, and the total quantity of the elec-

trolytic products in the voltameter after any given time is pro-

portional to the amount of electricity which passes any section

in the same time.

238.] If we introduce a voltameter at one part of the circuit

of a voltaic battery, and break the circuit at another part, we

may suppose the measurement of the current to be conducted

thus. Let the ends of the broken circuit be A and B, and let A
be the anode and B the cathode. Let an insulated ball be made

to touch A and B alternately, it will carry from A to B a certain

measurable quantity of electricity at each journey. This quan-

tity may be measured by an electrometer, or it may be calculated

by multiplying the electromotive force of the circuit by the

electrostatic capacity of the ball. Electricity is thus carried

from A to B on the insulated ball by a process which may

be called Convection. At the same time electrolysis goes on in

the voltameter and in the cells of the battery, and the amount of

electrolysis in each cell may be compared with the amount

of electricity carried across by the insulated ball. The quantity

of a substance which is electrolysed by one unit of electricity

is called an Electrochemical equivalent of that substance.

This experiment would be an extremely tedious and trouble-

some one if conducted in this way with a ball of ordinary

magnitude and a manageable battery, for an enormous number

of journeys would have to be made before an appreciable

quantity of the electrolyte was decomposed. The experiment

must therefore be considered as a mere illustration, the actual

measurements of electrochemical equivalents being conducted

in a different way. But the experiment may be considered

as an illustration of the process of electrolysis itself, for if we

regard electrolytic conduction as a species of convection in

which an electrochemical equivalent of the anion travels with

negative electricity in the direction of the anode, while an

equivalent of the cation travels with positive electricity in

the direction of the cathode, the whole amount of transfer of
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electricity being one unit, we shall have an idea of the process

of electrolysis, which, so far as I know, is not inconsistent with

known facts, though, on account of our ignorance of the nature

of electricity and of chemical compounds, it may be a very

imperfect representation of what really takes place.

Magnetic Action of the Current.

239.] Oersted discovered that a magnet placed near a straight

electric current tends to place itself at right angles to the plane

passing through the magnet and the current. See Art. 475.

If a man were to place his body in the line of the current so

that the current from copper through the wire to zinc should

flow from his head to his feet, and if he were to direct his face

towards the centre of the magnet, then that end of the magnet

which tends to point to the north would, when the current flows,

tend to point towards the man's right hand.

The nature and laws of this electromagnetic action will be

discussed when we come to the fourth part of this treatise.

What we are concerned with at present is the fact that the

electric current has a magnetic action which is exerted outside

the current, and by which its existence can be ascertained and

its intensity measured without breaking the circuit or intro-

ducing anything into the current itself.

The amount of the magnetic action has been ascertained to be

strictly proportional to the strength of the current as measured

by the products of electrolysis in the voltameter, and to be quite

independent of the nature of the conductor in which the current

is flowing, whether it be a metal or an electrolyte.

240.] An instrument which indicates the strength of an elec-

tric current by its magnetic effects is called a Galvanometer.

Galvanometers in general consist of one or more coils of silk-

covered wire within which a magnet is suspended with its axis

horizontal. When a current is passed through the wire the

magnet tends to set itself with its axis perpendicular to the

plane of the coils. If we suppose the plane of the coils to be

placed parallel to the plane of the earth's equator, and the

current to flow round the coil from east to west in the direction

of the apparent motion of the sun, then the magnet within will

tend to set itself with its magnetization in the same direction as

that of the earth considered as a great magnet, the north pole of
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the earth being similar to that end of the compass needle which

points south.

The galvanometer is the most convenient instrument for

measuring the strength of electric currents. We shall therefore

assume the possibility of constructing such an instrument

in studying the laws of these currents, reserving the discussion

of the principles of the instrument for our fourth part. When
therefore we say that an electric current is of a certain strength

we suppose that the measurement is effected by the galvano-

meter.



CHAPTEK II.

CONDUCTION AND EESISTANCE.

241.] If by means of an electrometer we determine the elec-

tric potential at different points of a circuit in which a constant

electric current is maintained, we shall find that in any portion

of the circuit consisting of a single metal of uniform temperature

throughout, the potential at any point exceeds that at any other

point farther on in the direction of the current by a quantity

depending on the strength of the current and on the nature and

dimensions of the intervening portion of the circuit. The dif-

ference of the potentials at the extremities of this portion of the

circuit is called the External electromotive force acting on it.

If the portion of the circuit under consideration is not homo-

geneous, but contains transitions from one substance to another,

from metals to electrolytes, or from hotter to colder parts, there

may be, besides the external electromotive force, Internal elec-

tromotive forces which must be taken into account.

The relations between Electromotive Force, Current, and

[Resistance were first investigated by Dr. G. S. Ohm, in a work

published in 1827, entitled Die Galvanische Kette Matheraatisch

Bearbeitet, translated in Taylor's Scientific Memoirs. The result

of these investigations in the case of homogeneous conductors is

commonly called ' Ohm's Law.'

Ohm's Law.

The electromotive force acting between the extremities of any

part of a circuit is the product of the strength of the current

and the resistance of that part of the circuit.

Here a new term is introduced, the Resistance of a conductor,

which is defined to be the ratio of the electromotive force to
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the strength of the current which it produces. The introduction

of this term would have been of no scientific value unless Ohm
had shewn, as he did experimentally, that it corresponds to a

real physical quantity, that is, that it has a definite value which

is altered only when the nature of the conductor is altered.

In the first place, then, the resistance of a conductor is inde-

pendent of the strength of the current flowing through it.

In the second place the resistance is independent of the

electric potential at which the conductor is maintained, and of

the density of the distribution of electricity on the surface of

the conductor.

It depends entirely on the nature of the material of which the

conductor is composed, the state of aggregation of its parts, and

its temperature.

The resistance of a conductor may be measured to within one

ten thousandth or even one hundred thousandth part of its

value, and so many conductors have been tested that our as-

surance of the truth of Ohm's Law is now very high*. In the

sixth chapter we shall trace its applications and consequences.

Generation of Heat by the Current.

242.] We have seen that when an electromotive force causes

a current to flow through a conductor, electricity is transferred

from a place of higher to a place of lower potential. If the

transfer had been made by convection, that is, by carrying

successive charges on a ball from the one place to the other,

work would have been done by the electrical forces on the ball,

and this might have been turned to account. It is actually

turned to account in a partial manner in those dry pile circuits

where the electrodes have the form of bells, and the carrier ball

is made to swing like a pendulum between the two bells and

strike them alternately. In this way the electrical action is

made to keep up the swinging of the pendulum and to propagate

the sound of the bells to a distance. In the case of the con-

ducting wire we have the same transfer of electricity from a

place of high to a place of low potential without any external

work being done. The principle of the Conservation of Energy

* { For the verification of Ohm's Law for metallic conductors see Chrystal, B. A.
Report 1866, p. 36, who shews that the resistance of a wire for infinitely weak currents
does not differ from its resistance for very strong ones by 10-10 per cent. ; for the verifi-

cation of the law for electrolytes see Fitzgerald and Trouton, B. A. Beport, 1886.}
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therefore leads us to look for internal work in the conductor.

In an electrolyte this internal work consists partly of the separa-

tion of its components. In other conductors it is entirely con-

verted into heat.

The energy converted into heat is in this case the product of

the electromotive force into the quantity of electricity which

passes. But the electromotive force is the product of the current

into the resistance, and the quantity of electricity is the product

of the current into the time. Hence the quantity of heat multi-

plied by the mechanical equivalent of unit of heat is equal to

the square of the strength of the current multiplied into the

resistance and into the time.

The heat developed by electric currents in overcoming the

resistance of conductors has been determined by Dr. Joule, who
first established that the heat produced in a given time is pro-

portional to the square of the current, and afterwards by careful

absolute measurements of all the quantities concerned, verified

the equation jjf_ (72R ^

where J is Joule's dynamical equivalent of heat, H the number

of units of heat, C the strength of the current, R the resistance

of the conductor, and t the time during which the current flows.

These relations between electromotive force, work, and heat,

were first fully explained by Sir. W. Thomson in a paper on the

application of the principle of mechanical effect to the measure-

ment of electromotive forces*.

243.] The analogy between the theory of the conduction of

electricity and that of the conduction of heat is at first sight

almost complete. If we take two systems geometrically similar,

and such that the conductivity for heat at any part of the first

is proportional to the conductivity for electricity at the corre-

sponding part of the second, and if we also make the temperature

at any part of the first proportional to the electric potential at

the corresponding point of the second, then the flow of heat

across any area of the first will be proportional to the flow of

electricity across the corresponding area of the second.

Thus, in the illustration we have given, in which flow of elec-

tricity corresponds to flow of heat, and electric potential to

temperature, electricity tends to flow from places of high to

* Phil. Mag., Dec. 1851.
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places of low potential, exactly as heat tends to flow from places

of high to places cf low temperature.

244.] The theory of electric potential and that of temperature

may therefore be made to illustrate one another; there is,

however, one remarkable difference between the phenomena of

electricity and those of heat.

Suspend a conducting body within a closed conducting vessel

by a silk thread, and charge the vessel with electricity. The

potential of the vessel and of all within it will be instantly

raised, but however long and however powerfully the vessel be

electrified, and whether the body within be allowed to come in

contact with the vessel or not, no signs of electrification will

appear within the vessel, nor will the body within shew any

electrical effect when taken out.

But if the vessel is raised to a high temperature, the body

within will rise to the same temperature, but only after a con-

siderable time, and if it is then taken out it will be found hot,

and will remain so till it has continued to emit heat for some

time.

The difference between the phenomena consists in the fact

that bodies are capable of absorbing and emitting heat, whereas

they have no corresponding property with respect to electricity.

A body cannot be made hot without a certain amount of heat

being supplied to it, depending on the mass and specific heat of

the body, but the electric potential of a body may be raised to

any extent in the way already described without communicating

any electricity to the body.

245.] Again, suppose a body first heated and then placed

inside the closed vessel. The outside of the vessel will be at

first at the temperature of surrounding bodies, but it will soon

get hot, and will remain hot till the heat of the interior body

has escaped.

It is impossible to perform a corresponding electrical experi-

ment. It is impossible so to electrify a body, and so to place it

in a hollow vessel, that the outside of the vessel shall at first

shew no signs of electrification but shall afterwards become

electrified. It was for some phenomenon of this kind that

Faraday sought in vain under the name of an absolute charge

of electricity.

Heat may be hidden in the interior of a body so as to have no
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external action, but it is impossible to isolate a quantity of elec-

tricity so as to prevent it from being constantly in inductive

relation with an equal quantity of electricity of the opposite

kind.

There is nothing therefore among electric phenomena which

corresponds to the capacity of a body for heat. This follows at

once from the doctrine which is asserted in this treatise, that

electricity obeys the same condition of continuity as an incom-

pressible fluid. It is therefore impossible to give a bodily charge

of electricity to any substance by forcing an additional quantity

of electricity into it. See Arts. 61, 111, 329, 334.



CHAPTER III.

ELECTROMOTIVE FORCE BETWEEN BODIES IN CONTACT.

The Potentials of Different Substances in Contact.

246.] If we define the potential of a hollow conducting vessel

as the potential of the air inside the vessel, we may ascer-

tain this potential by means of an electrometer as described in

Part I, Art. 221.

If we now take two hollow vessels of different metals, say

copper and zinc, and put them in metallic contact with each

other, and then test the potential of the air inside each vessel,

the potential of the air inside the zinc vessel will be positive as

compared with that inside the copper vessel. The difference of

potentials depends on the nature of the surface of the insides of

the vessels, being greatest when the zinc is bright and when the

copper is coated with oxide.

It appears from this that when two different metals are in

contact there is in general an electromotive force acting from

the one to the other, so as to make the potential of the one

exceed that of the other by a certain quantity. This is Volta's

theory of Contact Electricity.

If we take a certain metal, say copper, as the standard, then

if the potential of iron in contact with copper at the zero

potential is /, and that of zinc in contact with copper at zero is

Z, then the potential of zii.c in contact with iron at zero will be

Z—I, if the medium surrounding the metals remains the same.

It appears from this result, which is true of any three metals,

that the difference of potential of any two metals at the same

temperature in contact is equal to the difference of their

potentials when in contact with a third metal, so that if a

circuit be formed of any number of metals at the same tempera-
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ture there will be electrical equilibrium as soon as they have

acquired their proper potentials, and there will be no current

kept up in the circuit.

247.] If, however, the circuit consist of two metals and an

electrolyte, the electrolyte, according to Volta's theory, tends to

reduce the potentials of the metals in contact with it to equality,

so that the electromotive force at the metallic junction is no
longer balanced, and a continuous current is kept up. The
energy of this current is supplied by the chemical action which
takes place between the electrolyte and the metals.

248.] The electric effect may, however, be produced without

chemical action if by any other means we can produce an
equalization of the potentials of two metals in contact. Thus,

in an experiment due to Sir W. Thomson*, a copper funnel is

placed in contact with a vertical zinc cylinder, so that when
copper filings are allowed to pass through the funnel, they

separate from each other and from the funnel near the middle
of the zinc cylinder, and then fall into an insulated receiver

placed below. The receiver is then found to be charged

negatively, and the charge increases as the filings continue

to pour into it. At the same time the zinc cylinder with
the copper funnel in it becomes charged more and more posi-

tively.

If now the zinc cylinder were connected with the receiver by
a wire, there would be a positive current in the wire from the

cylinder to the receiver. The stream of copper filings, each
filing charged negatively by induction, constitutes a negative

current from the funnel to the receiver, or, in other words,

a positive current from the receiver to the copper funnel. The
positive current, therefore, passes through the air (by the

filings) from zinc to copper, and through the metallic junction

from copper to zinc, just as in the ordinary voltaic arrange-

ment, but in this case the force which keeps up the current

is not chemical action but gravity, which causes the filings to

fall, in spite of the electrical attraction between the positively

charged funnel and the negatively charged filings.

249.] A remarkable confirmation of the theory of contact

electricity is supplied by the discovery of Peltier, that, when
a current of electricity crosses the junction of two metals, the

* North British Review, 1864, p. 353 ; and Proc. B. S., June 20, 1867.
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junction is heated when the current is in one direction, and

cooled when it is in the other direction. It must be remem-

bered that a current in its passage through a metal always

produces heat, because it meets with resistance, so that the

cooling effect on the whole conductor must always be less than

the heating effect. We must therefore distinguish between the

generation of heat in each metal, due to ordinary resistance,

and the generation or absorption of heat at the junction of two

metals. We shall call the first the frictional generation of heat

by the current, and, as we have seen, it is proportional to the

square of the current, and is the same whether the current be

in the positive or the negative direction. The second we may

call the Peltier effect, which changes its sign with that of the

current.

The total heat generated in a portion of a compound conductor

consisting of two metals may be expressed by

b= jcn-nct,

where II is the quantity of heat, J the mechanical equivalent of

unit of heat, R the resistance of the conductor, G the current, and

t the time ; II being the coefficient of the Peltier effect, that is, the

heat absorbed at the junction by unit of current in unit of time.

Now the heat generated is mechanically equivalent to the

work done against electrical forces in the conductor, that is, it is

equal to the product of the current into the electromotive force

producing it. Hence, if E is the external electromotive force

which causes the current to flow through the conductor,

JH = CEt = RCH-JU Gt,

whence E=RG-JU.
It appears from this equation that the external electromotive

force required to drive the current through the compound

conductor is less than that due to its resistance alone by the

electromotive force JU. Hence JU represents the electromotive

contact force at the junction acting in the positive direction.

This application, due to Sir W. Thomson*, of the dynamical

theory of heat to the determination of a local electromotive force

is of great scientific importance, since the ordinary method of

connecting two points of the compound conductor with the

* Proc. B. 8. Edin., Dec. 15, 1851 ; and Trans. B. S. Min., 1854.
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electrodes of a galvanometer or electroscope by wires would be

useless, owing to the contact forces at the junctions of the wires

with the materials of the compound conductor. In the thermal

method, on the other hand, we know that the only source of

energy is the current of electricity, and that no work is done

by the current in a certain portion of the circuit except in

heating that portion of the conductor. If, therefore, we can

measure the amount of the current and the amount of heat

produced or absorbed, we can determine the electromotive force

required to urge the current through that portion of the con-

ductor, and this measurement is entirely independent of the

effect of contact forces in other parts of the circuit.

The electromotive force at the junction of two metals, as

determined by this method, does not account for Volta's electro-

motive force as described in Art. 246. The- latter is in general

far greater than that of this Article, and is sometimes of opposite

sign. Hence the assumption that the potential of a metal is

to be measured by that of the air in contact with it must be

erroneous, and the greater part of Volta's electromotive force

must be sought for, not at the junction of the two metals, but

at one or both of the surfaces which separate the metals from

the air or other medium which forms the third element of the

circuit.

250.] The discovery by Seebeck of thermoelectric currents in

circuits of different metals with their junctions at different tem-

peratures, shews that these contact forces do not always balance

each other in a complete circuit. It is manifest, however, that

in a complete circuit of different metals at uniform temperature

the contact forces must balance each other. For if this were not

the case there would be a current formed in the circuit, and this

current might be employed to work a machine or to generate

heat in the circuit, that is, to do work, while at the same time

there is no expenditure of energy, as the circuit is all at the

same temperature, and no chemical or other change takes place.

Hence, if the Peltier effect at the junction of two metals a and b

be represented by Ylab when the current flows from a to b, then

for a circuit of two metals at the same temperature we must
have n ab + 17ba = 0,

and for a circuit of three metals a, b, c, we must have

n6c+nca+na6 = o.
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It follows from this equation that the three Peltier effects are

not independent, but that one of them can be deduced from the

other two. For instance, if we suppose c to be a standard metal,

and if we write Pa = JTTac and Ph= Jnbc , then

JTlah = Pa— i&.

The quantity Pa is a function of the temperature, and depends

on the nature of the metal a.

251.] It has also been shewn by Magnus that if a circuit is

formed of a single metal no current will be formed in it, however

the section of the conductor and the temperature may vary in

different parts*.

Since in this case there is conduction of heat and consequent

dissipation of energy, we cannot, as in the former case, consider

this result as self-evident. The electromotive force, for instance,

between two portions of a circuit might have depended on

whether the current was passing from a thick portion of the

conductor to a thin one, or the reverse, as well as on its passing

rapidly or slowly from a hot portion to a cold one, or the reverse,

and this would have made a current possible in an unequally

heated circuit of one metal.

Hence, by the same reasoning as in the case of Peltier's

phenomenon, we find that if the passage of a current through

a conductor of one metal produces any thermal effect which is

reversed when the current is reversed, this can only take place

when the current flows from places of high to places of low tem-

perature, or the reverse, and if the heat generated in a conductor

of one metal in flowing from a place where the temperature is x

to a place where it is y, is H, then

JH= RC2t-Sxv Ct,

and the electromotive force tending to maintain the current will

be Sxr
If x, y, z be the temperatures at three points of a homo-

geneous circuit, we must have

according to the result of Magnus. Hence, if we suppose z to be

the zero temperature, and if we put

QX=SXS and Qv
=Syz ,

* {Le Roux has shewn that this does not hold when there are such sudden changes

in the section that the temperature changes by a finite amount in a distance com-

parable with molecular distances.
J
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wefind SX, = QX-Q„
where Qx is a function of the temperature x, the form of the

function depending on the nature of the metal.

If we now consider a circuit of two metals a and b in which

the temperature is x where the current passes from a to b, and

y where it passes from b to a, the electromotive force will be

* = Px~ Px + Qbx~ Qbv + J-by — Piy + Qay~ Qax )

where Pax signifies the value of P for the metal a at the tempera-

ture x, or

* = Pax—Qax~ \Py~m Qay)— {-Hx~~ Qbx) + Py~ Qby

Since in unequally heated circuits of different metals there are

in general thermoelectric currents, it follows that P and Q are

in general different for the same metal and same temperature.

252]. The existence of the quantity Q was first demonstrated

by Sir. W. Thomson, in the memoir we have referred to, as a

deduction from the phenomenon of thermoelectric inversion dis-

covered by Cumming*, who found that the order of certain

metals in the thermoelectric scale is different at high and at low

temperatures, so that for a certain temperature two metals may
be neutral to each other. Thus, in a circuit of copper and iron

if one junction be kept at the ordinary temperature while the

temperature of the other is raised, a current sets from copper to

iron through the hot junction, and the electromotive force con-

tinues to increase till the hot junction has reached a temperature

T, which, according to Thomson, is about 284°C. When the

temperature of the hot junction is raised still further the elec-

tromotive force is reduced, and at last, if the temperature be

raised high enough, the current is reversed. The reversal of the

current may be obtained more easily by raising the temperature

of the colder junction. If the temperature of both junctions is

above T the current sets from iron to copper through the hotter

junction, that is, in the reverse direction to that observed when
both junctions are below T.

Hence, if one of the junctions is at the neutral temperature T
and the other is either hotter or colder, the current will set from

copper to iron through the junction at the neutral temperature.

253.] From this fact Thomson reasoned as follows :

—

Suppose the other junction at a temperature lower than T.

* Cambridge Transactions, 1823.
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The current may be made to work an engine or to generate heat

in a wire, and this expenditure of energy must be kept up by

the transformation of heat into electric energy, that is to say,

heat must disappear somewhere in the circuit. Now at the

temperature T iron and copper are neutral to each other, so that

no reversible thermal effect is produced at the hot junction, and

at the cold junction there is, by Peltier's principle, an evolution

of heat by the current. Hence the only place where the heat

can disappear is in the copper or iron portions of the circuit, so

that either a current in iron from hot to cold must cool the iron,

or a current in copper from cold to hot must cool the copper, or

both these effects may take place. {This reasoning assumes that

the thermoelectric junction acts merely as a heat engine, and

that there is no alteration (such as would occur in a battery) in

the energy of the substance forming the junction when electricity

passes across it.} By an elaborate series of ingenious experi-

ments Thomson succeeded in detecting the reversible thermal

action of the current in passing between parts of different

temperatures, and he found that the current produced opposite

effects in copper and in iron*.

When a stream of a material fluid passes along a tube from

a hot part to a cold part it heats the tube, and when it passes

from cold to hot it cools the tube, and these effects depend on

the specific capacity for heat of the fluid. If we supposed elec-

tricity, whether positive or negative, to be a material fluid, we

might measure its specific heat by the thermal effect on an un-

equally heated conductor. Now Thomson's experiments shew

that positive electricity in copper and negative electricity in

iron carry heat with them from hot to cold. Hence, if we

supposed either positive or negative electricity to be a fluid,

capable of being heated and cooled, and of communicating heat

to other bodies, we should find the supposition contradicted by

iron for positive electricity and by copper for negative electricity,

so that we should have to abandon both hypotheses.

This scientific prediction of the reversible effect of an electric

current upon an unequally heated conductor of one metal is

another instructive example of the application of the theory of

Conservation of Energy to indicate new directions of scientific

research. Thomson has also applied the Second Law of Thermo-

* ' On the Electrodynamic Qualities of Metals.' Phil. Trans., Part III, 1856.
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dynamics to indicate relations between the quantities which we
have denoted by P and Q, and has investigated the possible

thermoelectric properties of bodies whose structure is different

in different directions. He has also investigated experimentally

the conditions under which these properties are developed by
pressure, magnetization, &c.

254.] Professor Tait* has recently investigated the electro-

motive force of thermoelectric circuits of different metals, having

their junctions at different temperatures. He finds that the

electromotive force of a circuit may be expressed very ac-

curately by the formula

E= a{t
x
-t2)\t -\(t

x +Ql
where t

x
is the absolute temperature of the hot junction, t2 that

of the cold junction, and t the temperature at which the two
metals are neutral to each other. The factor a is a coefficient

depending on the nature of the two metals composing the circuit.

This law has been verified through considerable ranges of tem-

perature by Professor Tait and his students, and he hopes to

make the thermoelectric circuit available as a thermometric

instrument in his experiments on the conduction of heat, and in

other cases in which the mercurial thermometer is not convenient

or has not a sufficient range.

According to Tait's theory, the quantity which Thomson calls

the specific heat of electricity is proportional to the absolute

temperature in each pure metal, though its magnitude and even
its sign vary in different metals. From this he has deduced by
thermodynamic principles the following results. Let kat, kbt, k

tt

be the specific heats of electricity in three metals a, b, c, and let

Tbc , Tca , Tab be the temperatures at which pairs of these metals

are neutral to each other, then the equations

{kb-kc)Thc + {ke-ka)Tca + {ka-kb)Tab = 0,

Jnab = (ka-kb)t(Tab -t),
Eab = (h-h) ih-h) [Tab-\ (t, +

t

2)l

express the relation of the neutral temperatures, the value of

the Peltier effect, and the electromotive force of a thermoelectric

circuit.

* Proc. R. S. JSdin., Session 1870-71, p. 308, also Dec. 18, 1871.



CHAPTER IV.

ELECTROLYSIS.

Electrolytic Conduction.

255.] I have already stated that when an electric current in

any part of its circuit passes through certain compound sub-

stances called Electrolytes, the passage of the current is accom-

panied by a certain chemical process called Electrolysis, in

which the substance is resolved into two components called Ions,

of which one, called the Anion, or the electronegative component,

appears at the Anode, or place where the current enters the

electrolyte, and the other, called the Cation, appears at the

Cathode, or the place where the current leaves the electrolyte.

The complete investigation of Electrolysis belongs quite as

much to Chemistry as to Electricity. We shall consider it from

an electrical point of view, without discussing its application to

the theory of the constitution of chemical compounds.

Of all electrical phenomena electrolysis appears the most

likely to furnish us with a real insight into the true nature of

the electric current, because we find currents of ordinary matter

and currents of electricity forming essential parts of the same

phenomenon.

It is probably for this very reason that, in the present imper-

fectly formed state of our ideas about electricity, the theories of

electrolysis are so unsatisfactory.

The fundamental law of electrolysis, which was established by

Faraday, and confirmed by the experiments of Beetz, Hittorf,

and others down to the present time, is as follows :

—

The number of electrochemical equivalents of an electrolyte

which are decomposed by the passage of an electric current

during a given time is equal to the number of units of electricity

which are transferred by the current in the same time.
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The electrochemical equivalent of a substance is that quantity

of the substance which is electrolysed by a unit current passing

through the substance for a unit of time, or, in other words, by

the passage of a unit of electricity. When the unit of electricity

is defined in absolute measure the absolute value of the electro-

chemical equivalent of each substance can be determined in

grains or in grammes.

The electrochemical equivalents of different substances are

proportional to their ordinary chemical equivalents. The

ordinary chemical equivalents, however, are the mere numerical

ratios in which the substances combine, whereas the electro-

chemical equivalents are quantities of matter of a determinate

magnitude, depending on the definition of the unit of electricity.

Every electrolyte consists of two components, which, during

the electrolysis, appear where the current enters and leaves the

electrolyte, and nowhere else. Hence, if we conceive a surface

described within the substance of the electrolyte, the amount of

electrolysis which takes place through this surface, as measured

by the electrochemical equivalents of the components transferred

across it in opposite directions, will be proportional to the total

electric current through the surface.

The actual transfer of the ions through the substance of the

electrolyte in opposite directions is therefore part of the pheno-

menon of the conduction of an electric current through an

electrolyte. At every point of the electrolyte through which
an electric current is passing there are also two opposite material

currents of the anion and the cation, which have the same lines

of flow with the electric current, and are proportional to it in

magnitude.

It is therefore extremely natural to suppose that the currents

of the ions are convection currents of electricity, and, in parti-

cular, that every molecule of the cation is charged with a certain

fixed quantity of positive electricity, which is the same for the

molecules of all cations, and that every molecule of the anion is

charged with an equal quantity of negative electricty.

The opposite motion of the ions through the electrolyte would
then be a complete physical representation of the electric current.

We may compare this motion of the ions with the motion of

gases and liquids through each other during the process of

diffusion, there being this difference between the two processes,
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that, in diffusion, the different substances are only mixed
together and the mixture is not homogeneous, whereas in

electrolysis they are chemically combined and the electrolyte

is homogeneous. In diffusion the determining cause of the

motion of a substance in a given direction is a diminution of

the quantity of that substance per unit of volume in that

direction, whereas in electrolysis the motion of each ion is due

to the electromotive force acting on the charged molecules.

256.] Clausius *, who has bestowed much study on the theory

of the molecular agitation of bodies, supposes that the molecules

of all bodies are in a state of constant agitation, but that in solid

bodies each molecule never passes beyond a certain distance from

its original position, whereas in fluids a molecule, after moving
a certain distance from its original position, is just as likely to

move still farther from it as to move back again. Hence the

molecules of a fluid apparently at rest are continually changing

their positions, and passing irregularly from one part of the fiuiJ

to another. In a compound fluid he supposes that not only do

the compound molecules travel about in this way, but that, in

the collisions which occur between the compound molecules, the

molecules of which they are composed are often separated and
change partners, so that the same individual atom is at one time

associated with one atom of the opposite kind, and at another

time with another. This process Clausius supposes to go on in

the liquid at all times, but when an electromotive force acts on
the liquid the motions of the molecules, which before were

indifferently in all directions, are now influenced by the electro-

motive force, so that the positively charged molecules have a

greater tendency towards the cathode than towards the anode,

and the negatively charged molecules have a greater tendency

to move in the opposite direction. Hence the molecules of the

cation will during their intervals of freedom struggle towards

the cathode, but will continually be checked in their course by
pairing for a time with molecules of the anion, which are also

struggling through the crowd, but in the opposite direction.

257.] This theory of Clausius enables us to understand how
it is, that whereas the actual decomposition of an electrolyte

requires an electromotive force of finite magnitude, the con-

duction of the current in the electrolyte obeys the law of Ohm,
* Pogg. Ann. ci. p. 338 (1857).
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so that every electromotive force within the electrolyte, even the

feeblest, produces a current of proportionate magnitude.

According to the theory of Clausius, the decomposition and

recomposition of the electrolyte is continually going on even

when there is no current, and the very feeblest electromotive

force is sufficient to give this process a certain degree of direction,

and so to produce the currents of the ions and the electric

current, which is part of the same phenomenon. Within the

electrolyte, however, the ions are never set free in finite

quantity, and it is this liberation of the ions which requires

a finite electromotive force. At the electrodes the ions accumu-

late, for the successive portions of the ions, as they arrive at the

electrodes, instead of finding molecules of the opposite ion ready

to combine with them, are forced into company with molecules

of their own kind, with which they cannot combine. The

electromotive force required to produce this effect is of finite

magnitude, and forms an opposing electromotive force which

produces a reversed current when other electromotive forces are

removed. When this reversed electromotive force, owing to the

accumulation of the ions at the electrode, is observed, the

electrodes are said to be Polarized.

258.] One of the best methods of determining whether a body

is or is not an electrolyte is to place it between platinum

electrodes and to pass a current through it for some time, and

then, disengaging the electrodes from the voltaic battery, and

connecting them with a galvanometer, to observe whether a

reverse current, due to polarization of the electrodes, passes

through the galvanometer. Such a current, being due to ac-

cumulation of different substances on the two electrodes, is a

proof that the substance has been electrolytically decomposed

by the original current from the battery. This method can

often be applied where it is difficult, by direct chemical methods,

to detect the presence of the products of decomposition at the

electrodes. See Art. 271.

259.] So far as we have gone the theory of electrolysis appears

very satisfactory. It explains the electric current, the nature of

which we do not understand, by means of the currents of the

material components of the electrolyte, the motion of which,

though not visible to the eye, is easily demonstrated. It gives

a clear explanation, as Faraday has shewn, why an electrolyte
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which conducts in the liquid state is a non-conductor when
solidified, for unless the molecules can pass from one part to

another no electrolytic conduction can take place, so that the

substance must be in a liquid state, either by fusion or by
solution, in order to be a conductor.

But if we go on, and assume that the molecules of the ions

within the electrolyte are actually charged with certain definite

quantities of electricity, positive and negative, so that the elec-

trolytic current is simply a current of convection, we find that

this tempting hypothesis leads us into very difficult ground.

In the first place, we must assume that in every electrolyte

each molecule of the cation, as it is liberated at the cathode,

communicates to the cathode a charge of positive electricity, the

amount of which is the same for every molecule, not only of

that cation but of all other cations. In the same way each

molecule of the anion when liberated, communicates to the

anode a charge of negative electricity, the numerical magnitude

of which is the same as that of the positive charge due to a

molecule of a cation, but with sign reversed.

If, instead of a single molecule, we consider an assemblage of

molecules constituting an electrochemical equivalent of the ion,

then the total charge of all the molecules is, as we have seen,

one unit of electricity, positive or negative.

260.] We do not as yet know how many molecules there are

in an electrochemical equivalent of any substance, but the mole-

cular theory of chemistry, which is corroborated by many
physical considerations, supposes that the number of molecules

in an electrochemical equivalent is the same for all substances.

We may therefore, in molecular speculations, assume that the

number of molecules in an electrochemical equivalent is JV, a

number unknown at present, but which we may hereafter find

means to determine *.

Each molecule, therefore, on being liberated from the state of

combination, parts with a charge whose magnitude is -^.> and is

positive for the cation and negative for the anion. This definite

quantity of electricity we shall call the molecular charge. If it

were known it would be the most natural unit of electricity.

Hitherto we have only increased the precision of our ideas by
* See note to Art. 5.
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exercising our imagination in tracing the electrification of mole-

cules and the discharge of that electrification.

The liberation of the ions and the passage of positive elec-

tricity from the anode and into the cathode are simultaneous

facts. The ions, when liberated, are not charged with elec-

tricity, hence, when they are in combination, they have the

molecular charges as above described.

The electrification of a molecule, however, though easily

spoken of, is not so easily conceived.

We know that if two metals are brought into contact at any

point, the rest of their surfaces will be electrified, and if the

metals are in the form of two plates separated by a narrow

interval of air, the charge on each plate may become of con-

siderable magnitude. Something like this may be supposed to

occur when the two components of an electrolyte are in combi-

nation. Each pair of molecules may be supposed to touch at

one point, and to have the rest of their surface charged with

electricity due to the electromotive force of contact.

But to explain the phenomenon, we ought to shew why the

charge thus produced on each molecule is of a fixed amount,

and why, when a molecule of chlorine is combined with a

molecule of zinc, the molecular charges are the same as when

a molecule of chlorine is combined with a molecule of copper,

although the electromotive force between chlorine and zinc is

much greater than that between chlorine and copper. If the

charging of the molecules is the effect of the electromotive force

of contact, why should electromotive forces of different intensities

produce exactly equal charges ?

Suppose, however, that we leap over this difficulty by simply

asserting the fact of the constant value of the molecular charge,

and that we call this constant molecular charge, for convenience

in description, one molecule of electricity.

This phrase, gross as it is, and out of harmony with the rest

of this treatise, will enable us at least to state clearly what is

known about electrolysis, and to appreciate the outstanding

difficulties.

Every electrolyte must be considered as a binary compound

of its anion and its cation. The anion or the cation or both

may be compound bodies, so that a molecule of the anion or the

cation may be formed by a number of molecules of simple
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bodies. A molecule of the anion and a molecule of the cation

combined together form one molecule of the electrolyte.

In order to act as an anion in an electrolyte, the molecule

which so acts must be charged with what we have called one

molecule of negative electricity, and in order to act as a cation the

molecule must be charged with one molecule ofpositive electricity.

These charges are connected with the molecules only when
they are combined as anion and cation in the electrolyte.

When the molecules are electrolysed, they part with their

charges to the electrodes, and appear as unelectrified bodies

when set free from combination.

If the same molecule is capable of acting as a cation in one

electrolyte and as an anion in another, and also of entering into

compound bodies which are not electrolytes, then we must
suppose that it receives a positive charge of electricity when it

acts as a cation, a negative charge when it acts as an anion, and
that it is without charge when it is not in an electrolyte.

Iodine, for instance, acts as an anion in the iodides of the

metals and in hydriodic acid, but is said to act as a cation in

the bromide of iodine.

This theory of molecular charges may serve as a method by
which we may remember a good many facts about electrolysis.

It is extremely improbable however that when we come to under-

stand the true nature of electrolysis we shall retain in any form
the theory of molecular charges, for then we shall have obtained

a secure basis on which to form a true theory of electric currents,

and so become independent of these provisional theories.

261.] One of the most important steps in our knowledge of

electrolysis has been the recognition of the secondary chemical

processes which arise from the evolution of the ions at the elec-

trodes.

In many cases the substances which are found at the elec-

trodes are not the actual ions of the electrolysis, but the pro-

ducts of the action of these ions on the electrolyte.

Thus, when a solution of sulphate of soda is electrolysed by a

current which also passes through dilute sulphuric acid, equal

quantities of oxygen are given off at the anodes, both in the

sulphate of soda and in the dilute acid, and equal quantities of

hydrogen at the cathodes.

But if the electrolysis is conducted in suitable vessels, such as
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U-shaped tubes or vessels with a porous diaphragm, so that the

substance surrounding each electrode can be examined sepa-

rately, it is found that at the anode of the sulphate of soda

there is an equivalent of sulphuric acid as well as an equivalent

of oxygen, and at the cathode there is an equivalent of soda as

well as an equivalent of hydrogen.

It would at first sight seem as if, according to the old theory

of the constitution of salts, the sulphate of soda were elec-

trolysed into its constituents sulphuric acid and soda, while

the water of the solution is electrolysed at the same time into

oxygen and hydrogen. But this explanation would involve the

admission that the same current which passing through dilute

sulphuric acid electrolyses one equivalent of water, when it

passes through a solution of sulphate of soda electrolyses one

equivalent of the salt as well as one equivalent of the water, and

this would be contrary to the law of electrochemical equivalents.

But if we suppose that the components of sulphate of soda are

not S03
and Na2

but S04
and Na2)—not sulphuric acid and

soda but sulphion and sodium—then the sulphion travels to the

anode and is set free, but being unable to exist in a free state

it breaks up into sulphuric acid and oxygen, one equivalent of

each. At the same time the sodium is set free at the cathode,

and there decomposes the water of the solution, forming one

equivalent of soda and one of hydrogen.

In the dilute sulphuric acid the gases collected at the elec-

trodes are the constituents of water, namely one volume of

oxygen and two volumes of hydrogen. There is also an in-

crease of sulphuric acid at the anode, but its amount is not

equal to an equivalent.

It is doubtful whether pure water is an electrolyte or not.

The greater the purity of the water, the greater the resistance to

electrolytic conduction. The minutest traces of foreign matter

are sufficient to produce a great diminution of the electrical

resistance of water. The electric resistance of water as deter-

mined by different observers has values so different that we

cannot consider it as a determined quantity. The purer the

water the greater its resistance, and if we could obtain really

pure water it is doubtful whether it would conduct at all *.

* {See F. Kohlrausch, 'Die Elektrische Leitungsfahigkeit des im Vacuum dis-

tillirten Wassers.' Wied. Ann. 24, p. 48. Bleekrode Wied. Ann. 3, p. 161, has

shewn that pure hydrochloric acid is a non-conductor.}
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As long as water was considered an electrolyte, and was,
indeed, taken as the type of electrolytes, there was a strong

reason for maintaining that it is a binary compound, and that

two volumes of hydrogen are chemically equivalent to one
volume of oxygen. If, however, we admit that water is not an
electrolyte, we are free to suppose that equal volumes of oxygen
and of hydrogen are chemically equivalent.

The dynamical theory of gases leads us to suppose that in

perfect gases equal volumes always contain an equal number of

molecules, and that the principal part of the specific heat, that,

namely, which depends on the motion of agitation of the mole-
cules among each other, is the same for equal numbers of

molecules of all gases. Hence we are led to prefer a chemical
system in which equal volumes of oxygen and of hydrogen are

regarded as equivalent, and in which water is regarded as a
compound of two equivalents of hydrogen and one of oxygen,
and therefore probably not capable of direct electrolysis.

While electrolysis fully establishes the close relationship be-

tween electrical phenomena and those of chemical combination,
the fact that every chemical compound is not an electrolyte

shews that chemical combination is a process of a higher order
of complexity than any purely electrical phenomenon. Thus the
combinations of the metals with each other, though they are

good conductors, and their components stand at different points

of the scale of electrification by contact, are not, even when in a
fluid state, decomposed by the current *. Most of the combina-
tions of the substances which act as anions are not conductors,

and therefore are not electrolytes. Besides these we have many
compounds, containing the same components as electrolytes, but
not in equivalent proportions, and these are also non-conductors,
and therefore not electrolytes.

On the Conservation of Energy in Electrolysis.

262.] Consider any voltaic circuit consisting partly of a
battery, partly of a wire, and partly of an electrolytic cell.

During the passage of unit of electricity through any section

of the circuit, one electrochemical equivalent of each of the
substances in the cells, whether voltaic or electrolytic, is elec-

trolysed.

* {See Roberts-Austen, B. A. Report, 1887.}
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The amount of mechanical energy equivalent to any given

chemical process can be ascertained by converting the whole

energy due to the process into heat, and then expressing the

heat in dynamical measure by multiplying the number of

thermal units by Joule's mechanical equivalent of heat.

Where this direct method is not applicable, if we can estimate

the heat given out by the substances taken first in the state

before the process and then in the state after the process during

their reduction to a final state, which is the same in both cases,

then the thermal equivalent of the process is the difference of

the two quantities of heat.

In the case in which the chemical action maintains a voltaic

circuit, Joule found that the heat developed in the voltaic cells

is less than that due to the chemical process within the cell, and

that the remainder of the heat is developed in the connecting

wire, or, when there is an electromagnetic engine in the circuit,

part of the heat may be accounted for by the mechanical work

of the engine.

For instance, if the electrodes of the voltaic cell are first con-

nected by a short thick wire, and afterwards by a long thin

wire, the heat developed in the cell for each grain of zinc

dissolved is greater in the first case than in the second, but the

heat developed in the wire is greater in the second case than in

the first. The sum of the heat developed in the cell and in the

wire for each grain of zinc dissolved is the same in both cases.

This has been established by Joule by direct experiment.

The ratio of the heat generated in the cell to that generated

in the wire is that of the resistance of the cell to that of the wire,

so that if the wire were made of sufficient resistance nearly the

whole of the heat would be generated in the wire, and if it were

made of sufficient conducting power nearly the whole of the heat

would be generated in the cell.

Let the wire be made so as to have great resistance, then the

heat generated in it is equal in dynamical measure to the product

of the quantity of electricity which is transmitted, multiplied by

the electromotive force under which it is made to pass through

the wire.

263.] Now during the time in which an electrochemical equi-

valent of the substance in the cell undergoes the chemical process

which gives rise to the current, one unit of electricity passes
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through the wire. Hence, the heat developed by the passage of
one unit of electricity is in this case measured by the electro-

motive force. But this heat is that which one electrochemical

equivalent of the substance generates, whether in the cell or in
the wire, while undergoing the given chemical process.

Hence the following important theorem, first proved by Thom-
son (Phil. Mag., Dec. 1851) :

—

' The electromotive force of an electrochemical apparatus is

in absolute measure equal to the mechanical equivalent of the
chemical action on one electrochemical equivalent of the sub-
stance *.'

The thermal equivalents of many chemical actions have been
determined by Andrews, Hess, Favre and Silbermann, Thomsen,
&c, and from these their mechanical equivalents can be deduced
by multiplication by the mechanical equivalent of heat.

This theorem not only enables us to calculate from purely
thermal data the electromotive forces of different voltaic arrange-
ments, and the electromotive forces required to effect electrolysis

in different cases, but affords the means of actually measuring
chemical affinity.

It has long been known that chemical affinity, or the tendency
which exists towards the going on of a certain chemical change,
is stronger in some cases than in others, but no proper measure
of this tendency could be made till it was shewn that this

tendency in certain cases is exactly equivalent to a certain

electromotive force, and can therefore be measured according to

the very same principles used in the measurement of electro-

motive forces.

Chemical affinity being therefore, in certain cases, reduced to

the form of a measurable quantity, the whole theory of chemical

processes, of the rate at which they go on, of the displacement of

one substance by another, &c, becomes much more intelligible

than when chemical affinity was regarded as a quality sui generis,

and irreducible to numerical measurement.

* {This theorem only applies when there are no reversible thermal effects in
the cell; when these exist the relation between the electromotive force p and the
mechanical equivalent of the chemical action, w, is expressed by the relation

where is the absolute temperature of the cell. v. Helmholtz, ' Die Thermodynamik
chemischer Vorgange.' Wissenschaftliche Abhandlungen, ii. p. 958.}
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When the volume of the products of electrolysis is greater than

that of the electrolyte, work is done during the electrolysis in

overcoming the pressure. If the volume of an electrochemical

equivalent of the electrolyte is increased by a volume v when

electrolysed under a pressure p, then the work done during the

passage of a unit of electricity in overcoming pressure is vp, and

the electromotive force required for electrolysis must include a

part equal to vp, which is spent in performing this mechanical

work.

If the products of electrolysis are gases which, like oxygen and

hydrogen, are much rarer than the electrolyte, and fulfil Boyle's

law very exactly, vp will be very nearly constant for the same

temperature; and the electromotive force required for electrolysis

will not depend in any sensible degree on the pressure *. Hence

it has been found impossible to check the electrolytic decom-

position of dilute sulphuric acid by confining the decomposed

gases in a small space.

When the products of electrolysis are liquid or solid the

quantity vp will increase as the pressure increases, so that if v

is positive an increase of pressure will increase the electromotive

force required for electrolysis.

In the same way, any other kind of work done during electro-

lysis will have an effect on the value of the electromotive force,

as, for instance, if a vertical current passes between two zinc

electrodes in a solution of sulphate of zinc a greater electromotive

force will be required when the current in the solution flows

upwards than when it flows downwards, for, in the first case, it

carries zinc from the lower to the upper electrode, and in the

second from the upper to the lower. The electromotive force

required for this purpose is less than the millionth part of that

of a Daniell's cell per foot.

* (This result is inconsistent with the Second Law of Thermodynamics ;
according

to this Law an increase in the pressure increases the Electromotive force required for

Electrolysis. See J. J. Thomson's ' Applications of Dynamics to Physics and Chemistry,

p. 86. v. Helmholtz, ' Weitere Untersuchungen die Electrolyse des Wassers betreffend.

Wied. Ann. 34, p. 737.}



CHAPTER V.

ELECTROLYTIC POLARIZATION.

264.] When an electric current is passed through an electro-

lyte bounded by metal electrodes, the accumulation of the ions

at the electrodes produces the phenomenon called Polarization,

which consists in an electromotive force acting in the opposite

direction to the current, and producing an apparent increase of

the resistance.

When a continuous current is employed, the resistance appears

to increase rapidly from the commencement of the current, and
at last reaches a value nearly constant. If the form of the vessel

in which the electrolyte is contained is changed, the resistance is

altered in the same way as a similar change of form of a metallic

conductor would alter its resistance, but an additional apparent

resistance, depending on the nature of the electrodes, has always

to be added to the true resistance of the electrolyte.

265.] These phenomena have led some to suppose that there is

a finite electromotive force required for a current to pass through

an electrolyte. It has been shewn, however, by the researches of

Lenz, Neumann, Beetz, Wiedemann *, Paalzow f , and recently by
those of MM. F. Kohlrausch and W. A. Nippoldt J , Fitzgerald

and Trouton §, that the conduction in the electrolyte itself obeys

Ohm's Law with the same precision as in metallic conductors,

and that the apparent resistance at the bounding surface of the

electrolyte and the electrodes is entirely due to polarization.

266.] The phenomenon called polarization manifests itself in

the case of a continuous current by a diminution in the current,

indicating a force opposed to the current. Resistance is also

* Elektricitat, 5. 568, bd. 5. f Berlin. MonaUlericM, July, 1868.

t Pogg. Ann. bd. exxxviii. s. 286 (October, 1869). § B. A. Report, 1887.
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perceived as a force opposed to the current, but we can distin-

guish between the two phenomena by instantaneously removing

or reversing the electromotive force.

The resisting force is always opposite in direction to the

current, and the external electromotive force required to over-

come it is proportional to the strength of the current, and

changes its direction when the direction of the current is

changed. If the external electromotive force becomes zero the

current simply stops.

The electromotive force due to polarization, on the other hand,

is in a fixed direction, opposed to the current which produced

it. If the electromotive force which produced the current is

removed, the polarization produces a current in the opposite

direction.

The difference between the two phenomena may be compared

with the difference between forcing a current of water through

a long capillary tube, and forcing water through a tube of

moderate bore up into a cistern. In the first case if we

remove the pressure which produces the flow the current will

simply stop. In the second case, if we remove the pressure the

water will begin to flow down again from the cistern.

To make the mechanical illustration more complete, we have

only to suppose that the cistern is of moderate depth, so that

when a certain amount of water is raised into it, it begins to

overflow. This will represent the fact that the total electro-

motive force due to polarization has a maximum limit.

267.] The cause of polarization appears to be the existence at

the electrodes of the products of the electrolytic decomposition

of the fluid between them. The surfaces of the electrodes are

thus rendered electrically different, and an electromotive force

between them is called into action, the direction of which is

opposite to that of the current which caused the polarization.

The ions, which by their presence at the electrodes produce

the phenomena of polarization, are not in a perfectly free state,

but are in a condition in which they adhere to the surface of the

electrodes with considerable force.

The electromotive force due to polarization depends upon the

density with which the electrode is covered with the ion, but it

is not proportional to this density, for the electromotive force

does not increase so rapidly as this density.
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This deposit of the ion is constantly tending to become free,

and either to diffuse into the liquid, to escape as a gas, or to be

precipitated as a solid.

The rate of this dissipation of the polarization is exceedingly

small for slight degrees of polarization, and exceedingly rapid

near the limiting value of polarization.

268.] We have seen, Art. 262, that the electromotive force

acting in any electrolytic process is numerically equal to the

mechanical equivalent of the result of that process on one

electrochemical equivalent of the substance. If the process

involves a diminution of the intrinsic energy of the substances

which take part in it, as in the voltaic cell, then the electro-

motive force is in the direction of the current. If the process

involves an increase of the intrinsic energy of the substances,

as in the case of the electrolytic cell, the electromotive force is in

the direction opposite to that of the current, and this electro-

motive force is called polarization.

In the case of a steady current in which electrolysis goes on
continuously, and the ions are separated in a free state at the

electrodes, we have only by a suitable process to measure the

intrinsic energy of the separated ions, and compare it with that

of the electrolyte in order to calculate the electromotive force

required for the electrolysis. This will give the maximum
polarization.

But during the first instants of the process of electrolysis the

ions when deposited at the electrodes are not in a free state, and
their intrinsic energy is less than their energy in a free state,

though greater than their energy when combined in the electro-

lyte. In fact, the ion in contact with the electrode is in a state

which when the deposit is very thin may be compared with that

of chemical combination with the electrode, but as the deposit

increases in density, the succeeding portions are no longer so

intimately combined with the electrode, but simply adhere to it,

and at last the deposit, if gaseous, escapes in bubbles, if liquid,

diffuses through the electrolyte, and if solid, forms a precipitate.

In studying polarization we have therefore to consider

(1) The superficial density of the deposit, which we may call

<r. This quantity <r represents the number of electrochemical

equivalents of the ion deposited on unit of area. Since each

electrochemical equivalent deposited corresponds to ono unit of
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electricity transmitted by the current, we may consider a as

representing either a surface-density of matter or a surface-

density of electricity.

(2) The electromotive force of polarization, which we may

call p. This quantity p is the difference between the electric

potentials of the two electrodes when the current through the

electrolyte is so feeble that the proper resistance of the electro-

lyte makes no sensible difference between these potentials.

The electromotive force p at any instant is numerically equal

to the mechanical equivalent of the electrolytic process going

on at that instant which corresponds to one electrochemical

equivalent of the electrolyte. This electrolytic process, it must

be remembered, consists in the deposit of the ions on the elec-

trodes, and the state in which they are deposited depends on

the actual state of the surfaces of the electrodes, which may be

modified by previous deposits.

Hence the electromotive force at any instant depends on the

previous history of the electrodes. It is, speaking very roughly,

a function of a, the density of the deposit, such that p — when

<r = 0, but p approaches a limiting value much sooner than 0-

does. The statement, however, that p is a function of a cannot

be considered accurate. It would be more correct to say that p
is a function of the chemical state of the superficial layer of the

deposit, and that this state depends on the density of the deposit

according to some law involving the time.

269.] (3) The third thing we must take into account is the

dissipation of the polarization. The polarization when left to

itself diminishes at a rate depending partly on the intensity of

the polarization or the density of the deposit, and partly on the

nature of the surrounding medium, and the chemical, mechanical,

or thermal action to which the surface of the electrode is exposed.

If we determine a time T such that at the rate at which the

deposit is dissipated, the whole deposit would be removed in the

time T, we may call T the modulus of the time of dissipation.

When the density of the deposit is very small, T is very large,

and may be reckoned by days or months. When the density of

the deposit approaches its limiting value T diminishes very

rapidly, and is probably a minute fraction of a second. In fact,

the rate of dissipation increases so rapidly that when the

strength of the current is maintained constant, the separated
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gas, instead of contributing to increase the density of the

deposit, escapes in bubbles as fast as it is formed.

270.] There is therefore a great difference between the state

of polarization of the electrodes of an electrolytic cell when the

polarization is feeble, and when it is at its maximum value.

For instance, if a number of electrolytic cells of dilute sulphuric

acid with platinum electrodes are arranged in series, and if a

small electromotive force, such as that of one Daniell's cell, be

made to act on the circuit, the electromotive force will produce

a current of exceedingly short duration, for after a very short

time the electromotive force arising from the polarization of the

cells will balance that of the Daniell's cell.

The dissipation will be very small in the case of so feeble a

state of polarization, and it will take place by a very slow

absorption of the gases and diffusion through the liquid. The
rate of this dissipation is indicated by the exceedingly feeble

current which still continues to flow without any visible separa-

tion of gases.

If we neglect this dissipation for the short time during which

the state of polarization is set up, and if we call Q the total

quantity of electricity which is transmitted by the current

during this time, then if A is the area of one of the electrodes,

and o- the density of the deposit, supposed unifornij

Q=A<r.
If we now disconnect the electrodes of the electrolytic ap-

paratus from the Daniell's cell, and connect them with a

galvanometer capable of measuring the whole discharge through

it, a quantity of electricity nearly equal to Q will be discharged

as the polarization disappears.

271.] Hence we may compare the action of this apparatus,

which is a form of Hitter's Secondary Pile, with that of a

Leyden jar.

Both the secondary pile and the Leyden jar are capable of

being charged with a certain amount of electricity, and of being

afterwards discharged. During the discharge a quantity of

electricity nearly equal to the charge passes in the opposite

direction. The difference between the charge and the discharge

arises partly from dissipation, a process which in the case of

small charges is very slow, but which, when the charge exceeds

a certain limit, becomes exceedingly rapid. Another part of the
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difference between the charge and the discharge arises from the

fact that after the electrodes have been connected for a time

sufficient to produce an apparently complete discharge, so that

the current has completely disappeared, if we separate the

electrodes for a time, and afterwards connect them, we obtain

a second discharge in the same direction as the original dis-

charge. This is called the residual discharge, and is a pheno-

menon of the Leyden jar as well as of the secondary pile.

The secondary pile may therefore be compared in several

respects to a Leyden jar. There are, however, certain important

differences. The charge of a Leyden jar is very exactly pro-

portional to the electromotive force of the charge, that is, to the

difference of potentials of the two surfaces, and the charge

corresponding to unit of electromotive force is called the

capacity of the jar, a constant quantity. The corresponding

quantity, which may be called the capacity of the secondary

pile, increases when the electromotive force increases.

The capacity of the jar depends on the area of the opposed

surfaces, on the distance between them, and on the nature of the

substance between them, but not on the nature of the metallic

surfaces themselves. The capacity of the secondary pile depends

on the area of the surfaces of the electrodes, but not on the

distance between them, and it depends on the nature of the

surface of the electrodes, as well as on that of the fluid between

them. The maximum difference of the potentials of the elec-

trodes in each element of a secondary pile is very small com-
pared with the maximum difference of the potentials of those of

a charged Leyden jar, so that in order to obtain much electro-

motive force a pile of many elements must be used.

On the other hand, the superficial density of the charge in the

secondary pile is immensely greater than the utmost superficial

density of the charge which can be accumulated on the surfaces

of a Leyden jar, insomuch that Mr. C. F. Varley *, in describing

the construction of a condenser of great capacity, recommends a
series of gold or platinum plates immersed in dilute acid as

preferable in point of cheapness to induction plates of tinfoil

separated by insulating material.

The form in which the energy of a Leyden jar is stored up
is the state of constraint of the dielectric between the conducting

* Specification of C. F. Varley, ' Electric Telegraphs, &c.,' Jan. 1860.
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surfaces, a state which I have already described under the name
of electric polarization, pointing out those phenomena attending

this state which are at present known, and indicating the im-

perfect state of our knowledge of what really takes place. See

Arts. 62, 111.

The form in which the energy of the secondary pile is stored

up is the chemical condition of the material stratum at the

surface of the electrodes, consisting of the ions of the electrolyte

and the substance of the electrodes in a relation varying from

chemical combination to superficial condensation, mechanical ad-

herence, or simple juxtaposition.

The seat of this energy is close to the surfaces of the elec-

trodes, and not throughout the substance of the electrolyte, and the

form in which it exists may be called electrolytic polarization.

After studying the secondary pile in connexion with the

Leyden jar, the student should again compare the voltaic battery

with some form of the electrical machine, such as that described

in Art. 211.

Mr. Varley has lately * found that the capacity of one square

inch is from 175 to 542 microfarads and upwards for platinum

plates in dilute sulphuric acid, and that the capacity increases

with the electromotive force, being about 175 for 0.02 of a

Daniell's cell, and 542 for 1.6 Daniell's cells.

But the comparison between the Leyden jar and the secondary

pile may be carried still farther, as in the following experiment,

due to Bufff . It is only when the glass of the jar is cold that

it is capable of retaining a charge. At a temperature below

100°C the glass becomes a conductor. If a test-tube containing

mercury is placed in a vessel of mercury, and if a pair of elec-

trodes are connected, one with the inner and the other with the

outer portion of mercury, the arrangement constitutes a Leyden

jar which will hold a charge at ordinary temperatures. If the

electrodes are connected with those of a voltaic battery, no

current will pass as long as the glass is cold, but if the apparatus

is gradually heated a current will begin to pass, and will increase

rapidly in intensity as the temperature rises, though the glass

remains apparently as hard as ever.

* Proc. S. S., Jan. 12, 1871. For an account of other investigations on this

subject, see Wiedemanns Elehtricitat, bd. ii. pp. 744-771.

f Annalen der Chemie und Pharmacie, bd. xc. 257 (1854).
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This current is manifestly electrolytic, for if the electrodes are

disconnected from the battery, and connected with a galvano-

meter, a considerable reverse current passes, due to polarization

of the surfaces of the glass.

If, while the battery is in action the apparatus is cooled, the

current is stopped by the cold glass as before, but the polari-

zation of the surface remains. The mercury may be removed,

the surfaces may be washed with nitric acid and with water, and

fresh mercury introduced. If the apparatus is then heated, the

current of polarization appears as soon as the glass is sufficiently

warm to conduct it.

We may therefore regard glass at 100°C, though apparently a

solid body, as an electrolyte, and there is considerable reason

to believe that in most instances in which a dielectric has a

slight degree of conductivity the conduction is electrolytic. The

existence of polarization may be regarded as conclusive evidence

of electrolysis, and if the conductivity of a substance increases as

the temperature rises, we have good grounds for suspecting that

the conduction is electrolytic.

On Constant Voltaic Elements.

272.] When a series of experiments is made with a voltaic

battery in which polarization occurs, the polarization diminishes

during the time the current is not flowing, so that when it

begins to flow again the current is stronger than after it has

flowed for some time. If, on the other hand, the resistance of

the circuit is diminished by allowing the current to flow through

a short shunt, then, when the current is again made to flow

through the ordinary circuit, it is at first weaker than its normal

strength on account of the great polarization produced by the

use of the short circuit.

To get rid of these irregularities in the current, which are

exceedingly troublesome in experiments involving exact mea-

surements, it is necessary to get rid of the polarization, or at

least to reduce it as much as possible.

It does not appear that there is much polarization at the

surface of the zinc plate when immersed in a solution of sulphate

of zinc or in dilute sulphuric acid. The principal seat of polari-

zation is at the surface of the negative metal. When the fluid

in which the negative metal is immersed is dilute sulphuric acid,
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it is seen to become covered with bubbles of hydrogen gas,

arising from the electrolytic decomposition of the fluid. Of

course these bubbles, by preventing the fluid from touching

the metal, diminish the surface of contact and increase the

resistance of the circuit. But besides the visible bubbles it is

certain that there is a thin coating of hydrogen, probably not

in a free state, adhering to the metal, and as we have seen that

this coating is able to produce an electromotive force in the

reverse direction, it must necessarily diminish the electromotive

force of the battery.

Various plans have been adopted to get rid of this coating of

hydrogen. It may be diminished to some extent by mechanical

means, such as stirring the liquid, or rubbing the surface of

the negative plate. In Smee's battery the negative plates are

vertical, and covered with finely divided platinum from which

the bubbles of hydrogen easily escape, and in their ascent

produce a current of liquid which helps to brush off other

bubbles as they are formed.

A far more efficacious method, however, is to employ chemical

means. These are of two kinds. In the batteries of Grove and

Bunsen the negative plate is immersed in a fluid rich in oxygen,

and the hydrogen, instead of forming a coating on the plate,

combines with this substance. In Grove's battery the plate is

of platinum immersed in strong nitric acid. In Bunsen's first

battery it is of carbon in the same acid. Chromic acid is also

used for the same purpose, and has the advantage of being free

from the acid fumes produced by the reduction of nitric acid.

A different mode of getting rid of the hydrogen is by using

copper as the negative metal, and covering the surface with a

coat of oxide. This,, however, rapidly disappears when it is used

as the negative electrode. To renew it Joule has proposed to

make the copper plates in the form of disks, half immersed in the

liquid, and to rotate them slowly, so that the air may act on the

parts exposed to it in turn.

The other method is by using as the liquid an electrolyte, the

cation of which is a metal highly negative to zinc.

In Daniell's battery a copper plate is immersed in a saturated

solution of sulphate of copper. When the current flows through

the solution from the zinc to the copper no hydrogen appears

on the copper plate, but copper is deposited on it. When the
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solution is saturated, and the current is not too strong, the

copper appears to act as a true cation, the anion S04 travelling

towards the zinc.

When these conditions are not fulfilled hydrogen is evolved

at the cathode, but immediately acts on the solution, throwing

down copper, and uniting with S04 to form oil of vitriol. When
this is the case, the sulphate of copper next the copper plate is

replaced by oil of vitriol, the liquid becomes colourless, and

polarization by hydrogen gas again takes place. The copper

deposited in this way is of a looser and more friable structure

than that deposited by true electrolysis.

To ensure that the liquid in contact with the copper shall

be saturated with sulphate of copper, crystals of this substance

must be placed in the liquid close to the copper, so that when
the solution is made weak by the deposition of the copper, more

of the crystals may be dissolved.

We have seen that it is necessary that the liquid next the

copper should be saturated with sulphate of copper. It is still

more necessary that the liquid in which the zinc is immersed

should be free from sulphate of copper. If any of this salt

makes its way to the surface of the zinc it is reduced, and copper

is deposited on the zinc. The zinc, copper, and fluid then form

a little circuit in which rapid electrolytic action goes on, and

the zinc is eaten away by an action which contributes nothing

to the useful effect of the battery.

To prevent this, the zinc is immersed either in dilute sulphuric

acid or in a solution of sulphate of zinc, and to prevent the

solution of sulphate of copper from mixing with this liquid, the

two liquids are separated by a division consisting of bladder or

porous earthenware, which allows electrolysis to take place

through it, but effectually prevents mixture of the fluids by

visible currents.

In some batteries sawdust is used to prevent currents. The
experiments of Graham, however, shew that the process of

diffusion goes on nearly as rapidly when two liquids are separated

by a division of this kind as when they are in direct contact,

provided there are no visible currents, and it is probable that

if a septum is employed which diminishes the diffusion, it will

increase in exactly the same ratio the resistance of the element,

because electrolytic conduction is a process the mathematical
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laws of which have the same form as those of diffusion, and

whatever interferes with one must interfere equally with the

other. The only difference is that diffusion is always going on,

whereas the current flows only when the battery is in action.

In all forms of Daniell's battery the final result is that the

sulphate of copper finds its way to the zinc and spoils the

battery. To retard this result indefinitely, Sir W. Thomson *

has constructed Daniell's battery in the following form.

^ ELECTRODES

LEVEL vSIPHON

ZnSO* > CU.SO*.

COPPER

Fig. 22.

In each cell the copper plate is placed horizontally at the

bottom and a saturated solution of sulphate of zinc is poured

over it. The zinc is in the form of a grating and is placed hori-

zontally near the surface of the solution. A glass tube is placed

vertically in the solution with its lower end just above the

surface of the copper plate. Crystals of sulphate of copper are

dropped down this tube, and, dissolving in the liquid, form a

solution of greater density than that of sulphate of zinc alone,

so that it cannot get to the zinc except by diffusion. To retard

this process of diffusion, a siphon, consisting of a glass tube

stuffed with cotton wick, is placed with one extremity midway
between the zinc and copper, and the other in a vessel outside

the cell, so that the liquid is very slowly drawn off near the

middle of its depth. To supply its place, water, or a weak

solution of sulphate of zinc, is added above when required. In

this way the greater part of the sulphate of copper rising through

the liquid by diffusion is drawn off by the siphon before it

reaches the zinc, and the zinc is surrounded by liquid nearly free

* Froc. B. S., Jan. 19, 1871.
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from sulphate of copper, and having a very slow downward

motion in the eel], which still further retards the upward motion

of the sulphate of copper. During the action of the battery

copper is deposited on the copper plate, and S04 travels slowly

through the liquid to the zinc with which it combines, forming

sulphate of zinc. Thus the liquid at the bottom becomes less

dense by the deposition of the copper, and the liquid at the top

becomes more dense by the addition of the zinc. To prevent

this action from changing the order of density of the strata, and

so producing instability and visible currents in the vessel, care

must be taken to keep the tube well supplied with crystals of

sulphate of copper, and to feed the cell above with a solution of

sulphate of zinc sufficiently dilute to be lighter than any other

stratum of the liquid in the cell.

Daniell's battery is by no means the most powerful in common

use. The electromotive force of Grove's cell is 192,000,000, of

Daniell's 107,900,000 and that of Bunsen's 188,000,000.

The resistance of Daniell's cell is in general greater than that

of Grove's or Bunsen's of the same size.

These defects, however, are more than counterbalanced in all

cases where exact measurements are required, by the fact that

Daniell's cell exceeds every other known arrangement in con-

stancy of electromotive force*. It has also the advantage of

continuing in working order for a long time, and of emitting

no gas.

* (When a standard Electromotive force is required a Clark's cell is now most

frequently used. For the precautions which must be taken in the construction and

use of such cells, see Lord Rayleigh's paper on 'The Clark Cell as a Standard of

Electromotive Force.' Phil. Trans, part ii. 1885.}



CHAPTEK VI.

LINEAR ELECTRIC CURRENTS.

On Systems of Linear Conductors.

273.] Any conductor may be treated as a linear conductor if it

is arranged so that the current must always pass in the same

manner between two portions of its surface which are called its

electrodes. For instance, a mass of metal of any form the surface

of which is entirely covered with insulating material except at

two places, at which the exposed surface of the conductor is in

metallic contact with electrodes formed of a perfectly conducting

material, may be treated as a linear conductor. For if the

current be made to enter at one of these electrodes and escape at

the other the lines of flow will be determinate, and the relation

between electromotive force, current and resistance will be ex-

pressed by Ohm's Law, for the current in every part of the mass

will be a linear function of E. But if there be more possible

electrodes than two, the conductor may have more than one

independent current through it, and these may not be conjugate

to each other. See Arts. 282 a and 282 b.

Ohm's Law.

274.] Let E be the electromotive force in a linear conductor

from the electrode A
y
to the electrode A

2 . (See Art. 69.) Let

G be the strength ofthe electric current along the conductor, that

is to say, let C units of electricity pass across every section in

the direction A
x
A 2

in unit of time, and let II be the resistance of

the conductor, then the expression of Ohm's Law is

E=CR. (1)

Linear Conductors arranged in Series.

275.] Let A lt A2 be the electrodes of the first conductor and

let the second conductor be placed with one of its electrodes in
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contact with A 2 , so that the second conductor has for its elec-

trodes A 2 , A 3 . The electrodes of the third conductor may be

denoted by A 3 and A A
.

Let the electromotive forces along these conductors be denoted

by E
12 ,E23 ,E3V and so on for the other conductors.

Let the resistances of the conductors be

-**12> -"23 » -^34' ®C"

Then, since the conductors are arranged in series so that the

same current G flows through each, we have by Ohm's Law,

Eu = GR12 , E
23
— CR23 , E^ = GR

3^ &c. (2)

If E is the resultant electromotive force, and R the resultant

resistance of the system, we must have by Ohm's Law,

E = CR. (3)

Now E = E
12 +E23 +E3i + &c, (4)

the sum of the separate electromotive forces,

= C (R
12 +R23 +Ru + &c.) by equations (2).

Comparing this result with (3), we find

R — R
12 +R23 +R3i + &c. (5)

Or, the resistance of a series of conductors is the sum of the

resistances of the conductors taken separately.

Potential at any Point of the Series.

Let A and G be the electrodes of the series, B a point between

them, a, c, and b the potentials of these points respectively. Let

R
x
be the resistance of the part from A to B, R

2 that of the part

from B to G, and R that of the whole from A to G, then, since

a— b = R
X
C, b— c = R2 C, and a— c — RG,

the potential at B is

6 = &"+£?,
<6)

which determines the potential at B when the potentials at A
and G are given.

Resistance of a Multiple Conductor.

276.] Let a number of conductors ABZ, ACZ, ADZ be arranged

side by side with their extremities in contact with the same two
points A and Z. They are then said to be arranged in multiple

arc.
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Let the resistances of these conductors be Rly
R

2 , R3
respect-

ively, and the currents C1} C2 ,C3 , and let the resistance of the

multiple conductor be R, and the total current C. Then, since

the potentials at A and Z are the same for all the conductors,

they have the same difference, which we may call E. We then

have E=C
1
R1
= C2R2 =C3R3

= OR,

*>ut c = c1+ c2+c3 ,1111 iv\whence 7? = 7T + 7?" + o
* V>

Or, the reciprocal of the resistance of a multiple conductor is the

sum of the reciprocals of the component conductors.

If we call the reciprocal of the resistance of a conductor the

conductivity of the conductor, then we may say that the con-

ductivity of a multiple conductor is the sum of the conductivities

of the component conductors.

Current in any Branch of a Multiple Conductor.

From the equations of the preceding article, it appears that if

C
L
is the current in any branch of the multiple conductor, and

R
t
the resistance of that branch,

0,-C*, (8)

where C is the total current, and R is the resistance of the

multiple conductor as previously determined.

Longitudinal Resistance of Conductors of Uniform Section.

277.,] Let the resistance of a cube of a given material to a

current parallel to one of its edges be p, the side of the cube

being unit of length, p is called the ' specific resistance of that

material for unit of volume.'

Consider next a prismatic conductor of the same material

whose length is I, and whose section is unity. This is equi-

valent to I cubes arranged in series. The resistance of the

conductor is therefore lp.

Finally, consider a conductor of length I and uniform section s.

This is equivalent to s conductors similar to the last arranged in

multiple arc. The resistance of this conductor is therefore

s
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When we know the resistance of a uniform wire we can deter-

mine the specific resistance of the material of which it is made
if we can measure its length and its section.

The sectional area of small wires is most accurately deter-

mined by calculation from the length, weight, and specific

gravity of the specimen. The determination of the specific

gravity is sometimes inconvenient, and in such cases the resist-

ance of a wire of unit length and unit mass is used as the

' specific resistance per unit of weight.'

If r is this resistance, I the length, and m the mass of a wire,

then p r

m
On the Dimensions of the Quantities involved in these

Equations.

278.] The resistance of a conductor is the ratio of the electro-

motive force acting on it to the current produced. The con-

ductivity of the conductor is the reciprocal of this quantity, or

in other words, the ratio of the current to the electromotive

force producing it.

Now we know that in the electrostatic system of measurement

the ratio of a quantity of electricity to the potential of the con-

ductor on which it is spread is the capacity of the conductor,

and is measured by a line. If the conductor is a sphere placed

in an unlimited field, this line is the radius of the sphere. The
ratio of a quantity of electricity to an electromotive force is

therefore a line, but the ratio of a quantity of electricity to

a current is the time during which the current flows to transmit

that quantity. Hence the ratio of a current to an electromotive

force is that of a line to a time, or in other words, it is a

velocity.

The fact that the conductivity of a conductor is expressed in

the electrostatic system of measurement by a velocity may
be verified by supposing a sphere of radius r charged to

potential V, and then connected with the earth by the given con-

ductor. Let the sphere contract, so that as the electricity escapes

through the conductor the potential of the sphere is always

kept equal to V. Then the charge on the sphere is rFat any

d
instant, and the current is — -jrirV), but, since V is constant,
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the current is —^-V, and the electromotive force through the
at

conductor is V.

The conductivity of the conductor is the ratio of the current

{lot*
, ,

to the electromotive force, or — -^ > that is, the velocity with

which the radius of the sphere must diminish in order to main-

tain the potential constant when the charge is allowed to pass

to earth through the conductor.

In the electrostatic system, therefore, the conductivity of a

conductor is a velocity, and so of the dimensions [ZT-1].
The resistance of the conductor is therefore of the dimensions

The specific resistance per unit of volume is of the dimension

of [T], and the specific conductivity per unit of volume is of the

dimension of [2
7-1

].

The numerical magnitude of these coefficients depends only on

the unit of time, which is the same in different countries.

The specific resistance per unit of weight is of the dimensions

[L~*MT].

279.] We shall afterwards find that in the electromagnetic

system of measurement the resistance of a conductor is expressed

by a velocity, so that in this system the dimensions of the resist-

ance of a conductor are [Z27-1].
The conductivity of the conductor is of course the reciprocal

of this.

The specific resistance per unit of volume in this system is of

the dimensions [Z2T_1
], and the specific resistance per unit

of weight is of the dimensions [Z-1 T~ lM~\.

On Linear Systems of Conductors in general.

280.] The most general case of a linear system is that of

n points, A lt A 2 ,...A n , connected together in pairs by ^n(n—\)

linear conductors. Let the conductivity (or reciprocal of the re-

sistance) of that conductor which connects any pair of points,

say Ap and A q , be called Kpq , and let the current from Ap to A
q

be Cpq . Let Ip and P
q
be the electric potentials at the points A

p

and A
q

respectively, and let the internal electromotive force,

if there be any, along the conductor from Ap to A
q
be Epq

.
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The current from Ap to A
q
is, by Ohm's Law,

Among these quantities we have the following sets of re-

lations :

The conductivity of a conductor is the same in either direc-

tion, or Kpq = Kqp . (2)

The electromotive force and the current are directed quantities,

so that Epq = -EqP , and Cpq
= -Cw . (3)

Let P
x , P2i ...Pn be the potentials at A

x , A 2i ...An respectively,

and let Q1} Q2 ,...Qn be the quantities of electricity which enter

the system in unit of time at each of these points respectively.

These are necessarily subject to the condition of ' continuity

'

Qi + Q2 ... + Q„ = o, (4)

since electricity can neither be indefinitely accumulated nor pro-

duced within the system.

The condition of ' continuity ' at any point Ap is

QP = CJJ1+ C1>2 + &c. + Cpn . (5)

Substituting the values of the currents in terms of equation

(1), this becomes

Qp = (ZA +Kn + toi. + K„)Pp-(KplP1 +KnPa + las. +Z„%)
+ (KplEpl + Scc. +KpnEpa). (6)

The symbol Kpp does not occur in this equation. Let us

therefore give it the value

Kpp = - (KPl +Kn + &c. +KJ ; (7)

that is, let Kpp be a quantity equal and opposite to the sum of

all the conductivities of the conductors which meet in A
p . We

may then write the condition of continuity for the point Ap ,

KplP1 +Kp2P2 + kc. +KppPp +&c.+KpnPn
= K

Pl
Epl + &c. +KpnEpn-Qp . (8)

By substituting 1, 2, &c. n for p in this equation we shall

obtain n equations of the same kind from which to determine
the n potentials P

x , P2 , &c, 1^.

Since, however, if we add the system of equations (8) the
result is identically zero by (3), (4) and (7), there will be only
Ti—1 independent equations. These will be sufficient to deter-

mine the differences of the potentials of the points, but not

to determine the absolute potential of any. This, however,
is not required to calculate the currents in the system.
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If we denote by D the determinant

-"-1U "•12» -^l(n-l)j

**-21' **-22' •"•2(n-l)>
(9)

^(n-l)l' -^(n-l)2» ^(n-l)(-ln)»

and by Z^, the minor of ifM , we find for the value of Pp —Pn ,

(P
p-Pn)D = (K, 2

E12 + ko.-Q l
)Dpl + (K2l

E
21 + kc.-Q2

)Dp2 + kG .

+ (Zrt
tf

fl + &c. +KqnEqn- Qq
)D

pq + &c. (10)

In the same way the excess of the potential of any other point,

say A qi over that of An may be determined. We may then de-

termine the current between A p and A
q
from equation (l), and

so solve the problem completely.

281.] We shall now demonstrate a reciprocal property of any

two conductors of the system, answering to the reciprocal

property we have already demonstrated for statical electricity

in Art. 86.

The coefficient of QQ
in the expression for Pp is -j& • That

D
of Qp in the expression for P

q
is jj-

'

Now Dpq
differs from D

qp
only by the substitution of the

symbols such as KqP for Kpq . But by equation (2), these two

symbols are equal, since the conductivity of a conductor is the

same both ways. Hence Dpq
— Dqp . (11)

It follows from this that the part of the potential at A p arising

from the introduction of a unit current at A
q

is equal to the

part of the potential at A q
arising from the introduction of a

unit current at Ap .

We may deduce from this a proposition of a more practical

form.

Let A,B, C, D be any four points of the system, and let the

effect of a current Q, made to enter the system at A and leave

it at B, be to make the potential at G exceed that at D by P.

Then, if an equal current Q be made to enter the system at C
and leave it at D, the potential at A will exceed that at B by

the same quantity P.

If an electromotive force E be introduced, acting in the con-

ductor from A to B, and if this causes a current C from X to Y,

then the same electromotive force E introduced into the con-

ductor from X to F will cause an equal current C from A to B.
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The electromotive force E may be that of a voltaic battery

introduced between the points named, care being taken that the

resistance of the conductor is the same before and after the

introduction of the battery.

282 a.] If an electromotive force Epq act along the conductor

ApA q , the current produced along another conductor of the

system A T A„ is easily found to be

Kr*KP,Epq
{Drp +Dkq-Drq-Dtp)+ D.

There will be no current if

Drp + D,
q
-Drq-Dtp = 0. (12)

But, by (11). the same equation holds if, when the electromotive

force acts along A rA s , there is no current in A,

A

q
. On account

of this reciprocal relation the two conductors referred to are said

to be conjugate.

The theory of conjugate conductors has been investigated by
Kirchhoff, who has stated the conditions of a linear system in

the following manner, in which the consideration of the potential

is avoided.

(1) (Condition of 'continuity.') At any point of the system

the sum of all the currents which flow towards that point is

zero.

(2) In any complete circuit formed by the conductors the sum
of the electromotive forces taken round the circuit is equal to

the sum of the products of the current in each conductor multi-

plied by the resistance of that conductor.

We obtain this result by adding equations of the form (1) for

the complete circuit, when the potentials necessarily disappear.

*282 6.] If the conducting wires form a simple network and if

we suppose that a current circulates round each mesh, then the

actual current in the wire which forms a thread of each of two
neighbouring meshes will be the difference between the two
currents circulating in the two meshes, the currents being

reckoned positive when they circulate in a direction opposite

to the motion of the hands of a watch. It is easy to establish

in this ease the following proposition :—Let x be the current, E
the electromotive force, and R the total resistance in any mesh

;

let also y, z,... be currents circulating in neighbouring meshes

* [Extracted from notes of Professor Maxwell's lectures by Mr. J. A. Fleming, B.A.,
St. John's College. See also a paper by Mr. Fleming in the Phil. Mag., xx. p. 221,
1885.]
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which have threads in common with that in which x circulates,

the resistances of those parts being s, t, . . . ; then

Rx— sy—tz— Scc. — E.

To illustrate the use of this rule we will take the arrangement

known as Wheatstone's Bridge, adopting the figure and notation

of Art. 347. We have then the three following equations repre-

senting the application of the rule in the case of the three

circuits OBC, OCA, OAB in which the currents x, y, z respect-

ively circulate, viz.

(a + p + y)x -yy —/3z=E,
—yx + {b + y + a)y —az=0,
~px -ay + (c + a + p)z = 0.

From these equations we may now determine the value of

z—y the galvanometer current in the branch OA, but the reader

is referred to Art. 347 et seq. where this and other questions

connected with Wheatstone's Bridge are discussed.

Heat Generated in the System.

283.] The mechanical equivalent of the quantity of heat

generated in a conductor whose resistance is R by a current C

in unit of time is, by Art. 242,

JH=RC*. (13)

We have therefore to determine the sum of such quantities as

RC2 for all the conductors of the system.

For the conductor from Ap to A
g
the conductivity is Kpq ,

and the resistance Rpq , where

Kpq
.Rpq

= l.

^

(14)

The current in this conductor is, according to Ohm's Law,

We shall suppose, however, that the value of the current is

not that given by Ohm's Law, but Xpq ,
where

X =zC +Y . (16)A PI — PQ ~ PI '

To determine the heat generated in the system we have to

find the sum of all the quantities of the form

or J£T= 2 {RpqC2
Pq+ 2RpqCpq

Y
pq + Rpq Y*Pq }. (17)

Giving Cpq its value, and remembering the relation between

K
Pq
and Rpq , this becomes

2 [(PP-Pq)(Cpq + 2YPq)+Rpq
Y>pq]. (18)
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Now since both G and X must satisfy the condition of

continuity at A p , we have

QP = Cpl + CP2
+kc. +Cpn , (19)

Qp = Xpi +Xp2 + &c. +Xpn , (20)

therefore 0=3^1 +^2 +&c. + I^. (21)

Adding together therefore all the terms of (18), we find

2 (RPqX2J = 2PPQP + 222M Y\q
. (22)

Now since R is always positive and Y2
is essentially positive,

the last term of this equation must be essentially positive.

Hence the first term is a minimum when Y is zero in every

conductor, that is, when the current in every conductor is that

given by Ohm's Law *.

Hence the following theorem :

284.] In any system of conductors in which there are no

internal electromotive forces the heat generated by currents

distributed in accordance with Ohm's Law is less than if the

currents had been distributed in any other manner consistent

with the actual conditions of supply and outflow of the current.

The heat actually generated when Ohm's Law is fulfilled is

mechanically equivalent to 2Pp Qp , that is, to the sum of the

products of the quantities of electricity supplied at the different

external electrodes, each multiplied by the potential at which it

is supplied.

* {We can prove in a similar way that when there are electromotive forces in the
different branches the currents adjust themselves so that 2.RC2— 2 S-E'C is a minimum,
where J£ is the electromotive force in the branch when the current is C. If we express
this quantity, which we shall call F, in terms of the independent currents flowing round
the circuits, the distribution of current x,y, z, ... among the conductors may be found
from the equations

dF n dF— = 0, — = 0.
ax 6y

Thus in the case of Wheatstone's Bridge considered in Art. 382,

F = ax* + by2 + cz2 + $(x-zf +y(jf-x)t + a{z-y)*-2Fx,
and the equations in that Art. are identical with

dF n dF n dF
-j- = 0, 5- = 0, — = 0.
dx dy dz

This is often the most convenient way of finding the distribution of current among
the conductors. The reciprocal properties of Art. 281 can be deduced by it with
great ease. ]
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APPENDIX TO CHAPTER VI.

The laws of the distribution of currents which are investigated in

Art. 280 may be expressed by the following rules, which are easily

remembered.

Let us take the potential of one of the points, say An , as the zero

potential, then if a quantity of electricity Qt flows into A
a
the potential

of a point A p is shewn in the text to be

— ^0
J)

V*'

The quantities D and Dps may be got by the following rules.

—

D is the

sum of the products of the conductivities taken (n— 1) at a time, omitting

all those terms which contain the products of the conductivities of

branches which form closed circuits. Dpt is the sum of the products of

the conductivities taken {n— 2) at a time, omitting all those terms which

contain the conductivities of the branches A p An or A s An , or which

contain products of conductivities of branches which form closed

circuits either by themselves or with the aid of A p An or A„ A n .

We see from equation (10) that the effect of an electromotive force

Eqr acting in the branch A
q
A r is the same as the effect due to a sink

of strength Kqr Eqr at Q and a source of the same strength at E, so that

the preceding rule will include this case. The result of the application

of this rule can however be stated more simply as follows. If an electro-

motive force Epq act along the conductor Ap A qi the current produced

along another conductor A r A t is

Y K — F

where D is got by the rule given above, and A = A
x
—

A

2 . Where A, is got

by selecting from the sum of the products of the conductivities taken

(71—2) at a time those products which contain the conductivities of both

A p A r (or the product of the conductivities of branches making

a closed circuit with Ap A r) and A q
A t (or the product of the con-

ductivities of branches making a closed circuit with A t A q),
omitting

from the terms thus selected all those which contain the conductivities

of A r A„ or Ap A q , or the product of the conductivities of branches

making closed circuits by themselves or with the help of A r A t or

A p A q \ A 2
corresponds to Alf the branches Ap A s , A q

Ar being taken

instead of A p Ar and A t A q
respectively.

If a current enters at P and leaves at Q, the ratio of the current to

the difference of potential between A p and A q
is—y
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Where A' is the sum of the products of the conductivities taken n— 2

at a time, omitting all those terms which contain the conductivity of

A p A q
or the products of the conductivities of branches forming a closed

circuit with it.

In these expressions all the terms which contain the product of the

conductivities of branches forming a closed circuit are omitted.

We may illustrate these rules by applying them to a very important

case, that of 4 points connected by 6 conductors. Let us call the points

1, 2, 3, 4.

Then D = the sum of the product of the conductivities taken 3 at a

time, leaving out, however, the 4 products K
12
K

2S
K

S1 , K12 .K2i
Kn ,

K
x%
KSi KiX , Kiz K3i Ki2 ; as these correspond to the four closed circuits

(123), (124), (134), (234).

Thus

D = (Ku +Ku+ Ksi)(Vn + KnKm +KnKn) +KHK2i (Klt +K2Z )

+ *,X4 (#,« +#23) +KnKn {K12 +Kls) +KHKnKsv

Let us suppose that an electromotive force E acts along (23), the current

through the branch (14)

_A
1
-A

2

D EKuKw

A
x
= jST

13
K2i (by definition),

^2 = ^12^43-

Hence if no current passes through (14), Kls
K

2i
—

K

12
K43 =zO, this is the

condition that (23) and (14) may be conjugate.

The current through (13)

_ Kn <Ku+Ku +K?t) +KuK2i

The conductivity of the net work when a current enters at (2) and
leaves at (3)

D

If we have 5 points, the condition that (23) and (14) are conjugate is

KnK3i (Kn +Kn +K36+K45)+ If
12K5s

Ki5+KuKnKu
= *«** <*„ +Z25+Ka5+K4S) +KXZ

K,
2KU+K2i

K
51
K

s3
.



CHAPTER VII.

CONDUCTION IN THREE DIMENSIONS.

Notation of Electric Currents.

285.] At any point let an element of area dS be taken normal

to the axis of x, and let Q units of electricity pass across this

area from the negative to the positive side in unit of time,

then, if -^ becomes ultimately equal to u when dS is indefinitely
do

diminished, u is said to be the Component of the electric current

in the direction of x at the given point.

In the same way we may determine v and u\ the components

of the current in the directions of y and z respectively.

286.] To determine the component of the current in any other

direction OR through the given point 0, let I, m, n be the

direction-cosines of OR ; then if we cut off from the axes of

x, y, z portions equal to

r r -,
r

-7 j — j and —
I m n

respectively at A, B and 0, the triangle ABC will be normal

to OR. R
The area of this triangle ABC will be c

dS=h~- ,

imn

and by diminishing r this area may be di-
° ~~^~

minished without limit. Fig. 23.

The quantity of electricity which leaves the tetrahedron ABGO
by the triangle ABC must be equal to that which enters it

through the three triangles OBC, OCA, and OAB.
r2

The area of the triangle OBC is h > and the component of° mn
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2 %7-

the current normal to its plane is u, so that the quantity which

enters through this triangle in unit time is \ r2
•

The quantities which enter through the triangles OCA and

OAB respectively in unit time are

\f*l, and lr*g.

If y is the component of the current in the direction OR, then

the quantity which leaves the tetrahedron in unit time through

ABC is

Imn
Since this is equal to the quantity which enters through the

three other triangles,

4 Imn I mn nl Imy

multiplying by—^— » we get

y = lu + mv + nw. (1)

If we put u2 + v2 + w2 = T2
,

and make V, m', n' such that

u — ZT, v = 'mT, and w = n'Y
;

then y = T(ll'+mm' + nn'). (2)

Hence, if we define the resultant current as a vector whose

magnitude is r, and whose direction-cosines are l\ m', nf

, and if

y denotes the current resolved in a direction making an angle 6

with that of the resultant current, then

y = rcos0; (3)

shewing that the law of resolution of currents is the same as

that of velocities, forces, and all other vectors.

287.] To determine the condition that a given surface may be

a surface of flow, let

F(x, y,z)=.\ ... (4)

be the equation of a family of surfaces any one of which is given

by making A constant ; then, if we make
2

1dk
dx

'dh_
dy

' +—
dz N (5)

the direction-cosines of the normal, reckoned in the direction in

which A increases, are

, ,-rCtA , T d\ -n-rdX ._v

l=.¥-r-, m = N-r-> n^N-r-' (6)
dx dy dz
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Hence, if y is the component of the current normal to the

surface '

,r f dk dk dk)
V = N

\
u
d^ + V

iry
+ W

Tz\' ^
If y = there will be no current through the surface, and

the surface may be called a Surface of Flow, because the lines of

flow are in the surface.

288.] The equation of a surface of flow is therefore

dk dk dk
dx dy dz

(8)

If this equation is true for all values of A, all the surfaces of the

family will be surfaces of flow.

289.] Let there be another family of surfaces, whose parameter

is A', then, if these are also surfaces of flow, we shall have

dk' dk' dk' n
u-^ h'y-r-+'u;-r- = 0.
dx dy dz

(9)

If there is a third family of surfaces of flow, whose parameter

is X". then dk" dk" dk" „ ,

u + v + w = 0.

If we eliminate u,

we find

dx dy ^ ^ dz

v, and w between these three equations,

dk
dx

dk'

dx
d*T

dx

dk
dy

dX
dy
dk"

dy

dk_

dz

dX
dz

dX
dz

=

or

(11)

(12)a" = 4>(a,A');

that is, k" is some function of A and A'.

290.] Now consider the four surfaces whose parameters are A,

A + 8 A, A', and A' +8 A'. These four surfaces enclose a quadri-

lateral tube, which we may call the tube 8A . 5 A'. Since this

tube is bounded by surfaces across which there is no flow, we

may call it a Tube of Flow. If we take any two sections across

the tube, the quantity which enters the tube at one section must

be equal to the quantity which leaves it at the other, and since

this quantity is therefore the same for every section of the tube,

let us call it Lbk.bk', where L is a function of A and A', the

parameters which determine the particular tube.
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291.] If bS denotes the section of a tube of flow by a plane

normal to x, we have by the theory of the change of the inde-

pendent variables,

bX.bXf=bS(~~-^~), (13)xdy dz dz dy J x

and by the definition of the components of the current

udS= LbX.bX'. (14)

,dX dx' dk d\\
Hence u = i( 1 ? r--r-) m

ydy dz dz dy -

. ., , .,. /d\ dX dX dX \
similarly v = LH—= ^ =-

)
\a/z dee. dcr. dz J \ (

15
)

^dai d.iJ dm don. A

-dz dx dx dz

rdX dx' dX dX
^dx dy dy dx

292.] It is always possible when one of the functions a or a'

is known, to determine the other so that L may be equal to

unity. For instance, let us take the plane of yz, and draw upon
it a series of equidistant lines parallel to y, to represent the

sections of the family A' by this plane. In other words, let the

function A
r
be determined by the condition that when x —

X' — z. If we then make L = 1 , and therefore (when x = 0)

=y udy,

then in the plane (x = 0) the amount of electricity which passes

through any portion will be

j I udydz— f j dXdXf
. (16)

The nature of the sections of the surfaces of flow by the plane
of yz being determined, the form of the surfaces elsewhere is

determined by the conditions (8) and (9). The two functions X
and X' thus determined are sufficient to determine the current at

every point by equations (15), unity being substituted for L.

On Lines of Floiv.

293.] Let a series of values of X and of A" be chosen, the suc-

cessive differences in each series being unity. The two series of
surfaces defined by these values will divide space into a system
of quadrilateral tubes through each of which there will be a unit

current. By assuming the unit sufficiently small, the details of

the current may be expressed by these tubes with any desired
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amount of minuteness. Then if any surface be drawn cutting

the system of tubes, the quantity of the current which passes

through this surface will be expressed by the number of tubes

which cut it, since each tube carries a unit current.

The actual intersections of the surfaces may be called Lines of

Flow, When the unit is taken sufficiently small, the number of

lines of flow which cut a surface is approximately equal to the

number of tubes of flow which cut it, so that we may consider

the lines of flow as expressing not only the direction of the

current but also its strength, since each line of flow through a

given section corresponds to a unit current.

On Current-Sheets and Current-Functions.

294.] A stratum of a conductor contained between two con-

secutive surfaces of flow of one system, say that of A', is called

a Current-Sheet. The tubes of flow within this sheet are deter-

mined by the function A. If «A^ and \P denote the values of A

at the points A and P respectively, then the current from right

to left across any line drawn on the sheet from A to P is XP—A^*.

If AP be an element, ds, of a curve drawn on the sheet, the

current which crosses this element from right to left is

<iA ,

—j- ds.
ds

This function A, from which the distribution of the current in

the sheet can be completely determined, is called the Current-

Function.

Any thin sheet of metal or conducting matter bounded on

both sides by air or some other non-conducting medium may be

treated as a current-sheet, in which the distribution of the

current may be expressed by means of a current-function. See

Art. 647.

Equation of 'Continuity.'

295.] If we differentiate the three equations (15) with respect

to x, y, z respectively, remembering that L is a function of

A and A', we find
tfu dv dw _ (l?

,

dx dy dz

* { By the ' current across AP ' is meant the current through the tube of flow

bounded by the surfaces A^ , \'j, , \' and \' + 1.

}
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The corresponding equation in Hydrodynamics is called the

Equation of ' Continuity.' The continuity which it expresses is

the continuity of existence, that is, the fact that a material sub-

stance cannot leave one part of space and arrive at another,

without going through the space between. It cannot simply

vanish in the one place and appear in the other, but it must
travel along a continuous path, so that if a closed surface be

drawn, including the one place and excluding the other, a

material substance in passing from the one place to the other

must go through the closed surface. The most general form of

the equation in hydrodynamics is

d(pu) d(pv)
j

d(Pw) +
dp ^ Q-

dx dy dz dt
'

where p signifies the ratio of the quantity of the substance to

the volume it occupies, that volume being in this case the

differential element of volume, and (pu), (pv), and (pu1

) signify

the ratio of the quantity of the substance which crosses an

element of area in unit of time to that area, these areas being

normal to the axes of x, y, and z respectively. Thus understood,

the equation is applicable to any material substance, solid or

fluid, whether the motion be continuous or discontinuous, pro-

vided the existence of the parts of that substance is continuous.

If anything, though not a substance, is subject to the condition

of continuous existence in time and space, the equation will

express this condition. In other parts of Physical Science, as,

for instance, in the theory of electric and magnetic quantities,

equations of a similar form occur. We shall call such equations

' equations of continuity ' to indicate their form, though we may
not attribute to these quantities the properties of matter, or

even continuous existence in time and space.

The equation (17), which we have arrived at in the case of

electric currents, is identical with (18) if we make p = 1, that is,

if we suppose the substance homogeneous and incompressible.

The equation, in the case of fluids, may also be established by
either of the modes of proof given in treatises on Hydrody-

namics. In one of these we trace the course and the deforma-

tion of a certain element of the fluid as it moves along. In the

other, we fix our attention on an element of space, and take

account of all that enters or leaves it. The former of these

methods cannot be applied to electric currents, as we do not
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know the velocity with which the electricity passes through the

body, or even whether it moves in the positive or the negative

direction of the current. All that we know is the algebraical

value of the quantity which crosses unit of area in unit of time,

a quantity corresponding to (pu) in the equation (18). We have

no means of ascertaining the value of either of the factors p

or u, and therefore we cannot follow a particular portion of

electricity in its course through the body. The other method of

investigation, in which we consider what passes through the

walls of an element of volume, is applicable to electric currents,

and is perhaps preferable in point of form to that which we

have given, but as it may be found in any treatise on Hydro-

dynamics we need not repeat it here.

Quantity of Electricity which passes through a given Surface.

296.] Let T be the resultant current at any point of the

surface. Let dS be an element of the surface, and let e be the

angle between T and the normal to the surface drawn outwards,

then the total current through the surface will be

//'rcos
ed/S,

the integration being extended over the surface.

As in Art. 21, we may transform this integral into the form.

ffr~-*s-fff& + % + *£)*.«* (i.)

in the case of any closed surface, the limits of the triple integra-

tion being those included by the surface. This is the expression

for the total efflux from the closed surface. Since in all cases of

steady currents this -must be zero whatever the limits of the

integration, the quantity under the integral sign must vanish,

and we obtain in this way the equation of continuity (17).



CHAPTER VIII.

RESISTANCE AND CONDUCTIVITY IN THREE DIMENSIONS.

On the most General Relations between Current and
Electromotive Force.

297.] Let the components of the current at any point be u,

v, w.

Let the components of the electromotive intensity be X, Y, Z.

The electromotive intensity at any point is the resultant force

on a unit of positive electricity placed at that point. It may arise

(l) from electrostatic action, in which case if V \s the potential,

X=~^ Y=-~ Z=-^; (l)
dx ' dy

'

dz
'

or (2) from electromagnetic induction, the laws of which we
shall afterwards examine; or (3) from thermoelectric or electro-

chemical action at the point itself, tending to produce a current

in a given direction.

We shall in general suppose that X, Y, Z represent the com-

ponents of the actual electromotive intensity at the point, what-

ever be the origin of the force, but we shall occasionally examine

the result of supposing it entirely due to variation of potential.

By Ohm's Law the current is proportional to the electro-

motive intensity. Hence X, Y, Z must be linear functions of u,

v, w. We may therefore assume as the equations of Resistance.

X = R
x
u + Q3 v + P, tu, \

Y = P
?i
u + R.tV+QiW, > (2)

Z =Q2
u + P

1
v + R.^w. )

We may call the coefficients R the coefficients of longitudinal

resistance in the directions of the axes of coordinates.

The coefficients P and Q may be called the coefficients of

transverse resistance. They indicate the electromotive intensity

in one direction required to produce a current in a different

direction.
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If we were at liberty to assume that a solid body may be

treated as a system of linear conductors, then, from the recipro-

cal property (Art. 281) of any two conductors of a linear system,

we might shew that the electromotive force along z required

to produce a unit current parallel to y must be equal to the

electromotive force along y required to produce a unit current

parallel to z. This would shew that Pl= Qu and similarly we
should find P

2
= Q2 , and P3' = Q3 . When these conditions are

satisfied the system of coefficients is said to be Symmetrical.

When they are not satisfied it is called a Skew system.

We have great reason to believe that in every actual case the

system is symmetrical*, but we shall examine some of the con-

sequences of admitting the possibility of a skew system.

298.] The quantities u, v, w may be expressed as linear

functions of X, F, Z by a system of equations, which we may
call Equations of Conductivity,

u = ^X+p^Y+q^Z,
-J

v = q3X + r
2 Y+p1

Z,
l

> (3)

w=p
2
X + qi Y+r3

Z; )

we may call the coefficients r the coefficients of Longitudinal

conductivity, and p and q those of Transverse conductivity.

The coefficients of resistance are inverse to those of conduc-

tivity. This relation may be defined as follows :

Let [PQR] be the determinant of the coefficients of resistance,

and [pqr] that of the coefficients of conductivity, then

[PQR] = P.P^ + Q&Q, +R1
R2R3

-P
1Q 1
R

1
-P

2Q2
Ri-P3Qs

R
?>

, (4)

[pqr] = p1p2p3 + q 1 qaqs + r
l
r2r3-p1 q1

r
J
-p2q>r2-p3q3rz , (5)

[PQR] [pqr] = 1, (6)

[PQR]p
± = (P^-Q^), [pqr] P

x
= {p2p,- qi rx\ (7)

&c. <fec.

The other equations may be formed by altering the symbols,

P,Q,R, p, q, r, and the suffixes 1, 2, 3 in cyclical order.

Rate of Generation of Heat.

2S9.] To find the work done by the current in unit of time

in overcoming resistance, and so generating heat, we multiply

the components of the current by the corresponding components

* {See note to Art. 303.}
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of the electromotive intensity. We thus obtain the following ex-

pressions for W, the quantity of work expended in unit of time

:

W = Xu+Yv +Zw; (8)

= R
t
u2 +R2

v2 +R3w2 + (ij + QJvw + (P
2 + Q2)wu + (P3 + Q3

)uv
; (9)

= r
1
X2 + r

2Y2 + r
3
Z2 + (pl + q1

)YZ+(p
2 + q2

)ZX + (p3 + q3
)XY. (10)

By a proper choice of axes, (9) may be deprived of the terms

involving the products of u, v, iv or else (10) of those involving

the products of X, Y, Z. The system of axes, however, which

reduces W to the form

R
xu

2 + R2 v
2 +R3w2

is not in general the same as that which reduces it to the form

r,X2 + r
2P + r

3
Z2

.

It is only when the coefficients J^,R2 , 1^ are equal respectively

to Q19 Q2 , Q3
that the two systems of axes coincide.

If with Thomson * we write

P = S+T, q = 8-T;
l

and p = s + t, q = s— t; j

then we have

[PQR] = R
1
R

2R3 + 2 S
1
S,S3-S1

2R
l
-S2

2R
2
-S3

2R3 1

+ 2(S
1
T

2
T3 + S2

T3Tx
+ S3

T
l
T

2) +R l
T1

2 +R2
T2

2 + R3T3
2
;]

{ }

and [PQR] r
x
= R

2
R3-S 2 + T 2

, ,

[PQXi81
= T

a
T

a + Si
Sa
-R

l
S

l , \ (13)

[PQR] t
x
= R

X
T

X + S2
T3 + S3T2 . >

If therefore we cause >S\, S2 , S3
to disappear, the coefficients s

will not also disappear unless the coefficients T are zero.

Condition of Stability.

300.] Since the equilibrium of electricity is stable, the work

spent in maintaining the current must always be positive. The

conditions that W must be positive are that the three coefficients

R
t , R2 , R3i and the three expressions

iR^-tf + QJ
2
,,

4E3JR
1

-(P2 + Q2)
2

, V (14)

4£
1
E

2 -(P3 + Q3)V
must all be positive.

There are similar conditions for the coefficients of conductivity.

* Trans. E. S. Edin., 1853-4, p. 165.
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Equation of Continuity in a Homogeneous Medium.

301.] If we express the components of the electromotive force

as the derivatives of the potential V, the equation of continuity

clu dv diu _ . .

dx dy dz ~~
'

becomes in a homogeneous medium

d2V d2V d2V d2V n d2V n d2V A .
v

If the medium is not homogeneous there will be terms arising

from the variation of the coefficients of conductivity in passing

from one point to another.

This equation corresponds to Laplace's equation in a non-

isotropic medium.

302.] If we put

[rs] = r
x
r
2
r
3 + 2 s

x
s
2
s3
-r^2- r.

2s2
2- r3s

2
, (1 7)

and [AB] = A 1
A 2A 3 + 2B1B2B3

-A
1Bf-A 2

B
2
2-A 3

B
3
2
, (18)

where [rs] A
x
= r

2
r3—

s

1

2
,

J

[rs] B
x
= s^-r^, !*

(
19

)

and so on, the system A, B will be inverse to the system r, s, and

if we make

A
1
x2 + A 2y

2 + A 3z
2+2B

1yz + 2B2zx + 2B3
xy=[AB]p2

, (20)

we shall find that n \V= £-1 (21)

is a solution of the equation *.

* (Suppose that by the transformation

x=a X + b T+c Z,

y = o' X + b' T+c' Z, (1)

z = a"X + b"Y+c"Z,

the left-hand side of (16) becomes

d?V cPV d*V
(2)

For this to be the case, we see that

must be identical with

(af + a'r, + a"09 + Q>£ + &'l + &"0
a
+ (<* + *V + C"W>

which we shall call U.
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In the case in which the coefficients T are zero, the coefficients

A and B become identical with the coefficients R and S of Art.

299. When T exists this is not the case.

In the case therefore of electricity flowing out from a centre

in an infinite, homogeneous, but not isotropic, medium, the equi-

potential surfaces are ellipsoids, for each of which p is constant.

The axes of these ellipsoids are in the directions of the prin-

cipal axes of conductivity, and these do not coincide with the

principal axes of resistance unless the system is symmetrical.

By a transformation of the equation (16) we may take for the

axes of a?, y, 2 the principal axes ofconductivity. The coefficients

of the forms s and B will then be reduced to zero, and each co-

efficient of the form A will be the reciprocal of the corresponding

coefficient of the form r. The expression for p will be

*l + t + t = ^l_. (22)
*1 r2 T

Z
r
i
r
2 rZ

303.] The theory of the complete system of equations of re-

sistance and of conductivity is that of linear functions of three

variables, and it is exemplified in the theory of Strains *, and in

other parts of physics. The most appropriate method of treating

it is that by which Hamilton and Tait treat a linear and vector

function of a vector. We shall not, however, expressly introduce

Quaternion notation.

The coefficients Tlt T2 , T3 may be regarded as the rectangular

components of a vector T, the absolute magnitude and direction

If we eliminate £ , rj, £ by the equations

. dU dZT d,JJ
1x = *-d£> y = *-dlf>

z =
*dc>

or x = a (a£ + a'rj + a"§ + b (b£ + b'rj + 6"0 + c (c£ + c'77 + c"0,

y=*a'(a£ + a'r] + a»0 + b>(b£ + VT) + b''0 + c'(c£ + c>T, + c"0,
\ (3)

z = a"(a£ + a'r, + o"0 + 6"(bf + b'V + V'Q + c"(c£ + c^rj + c"0»

we get, since the system AB is inverse to the system rs,

C= A1 x2 + Aa y
i + A3 z

a + 2B1yz + ....

But from equations (1) and (3) we see that

Y=b£ + b'r) + b"£,

Z=c£ + </t] + c"C;

hence TJ = X'+ Y* + Z\

But bv (2) V = — satisfies the differential equation, hence l/</U3

\ VP + P + 2'

must satisfy it.

* See Thomson and Tait's Natural Philosophy, § 154.
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of which are fixed in the body, and independent of the direction

of the axes of reference. The same is true of tu t
2 , t3 , which are

the components of another vector t.

The vectors T and t do not in general coincide in direction.

Let us now take the axis of z so as to coincide with the vector

T, and transform the equations of resistance accordingly. They

will then have the form

X = R
1
u + 8s v + S2

w~ Tv, v

Y = S3u + ll
2
v + Siw + Tu, I (23)

Z — S.2u + Sx
v +R3

iv. )

It appears from these equations that we may consider the

electromotive intensity as the resultant oftwo forces, one of them

depending only on the coefficients M and S, and the other

depending on T alone. The part depending on R and S is

related to the current in the same way that the perpendicular

on the tangent plane of an ellipsoid is related to the radius

vector. The other part, depending on T, is equal to the product

of T into the resolved part of the current perpendicular to the

axis of T, and its direction is perpendicular to T and to the

current, being always in the direction in which the resolved

part of the current would lie if turned 90° in the positive direc-

tion round T.

If we consider the current and T as vectors, the part of the

electromotive intensity due to Tis the vector part of the product,

T x current.

The coefficient T may be called the Rotatory coefficient. We
have reason to believe that it does not exist in any known
substance. It should be found, if anywhere, in magnets, which

have a polarization in one direction, probably due to a rotational

phenomenon in the substance *.

304.] Assuming then that there is no rotatory coefficient, we
shall shew how Thomson's Theorem given in Arts. 100 a-100 e

may be extended to prove that the heat generated by the

currents in the system in a given time is a unique minimum.

To simplify the algebraical work let the axes of coordinates be

chosen so as to reduce expression (9), and therefore also in this

* { Mr. Hall's discovery of the action of magnetism on a permanent electric current

{Phil. Mag. ix. p. 225 ; x. p. 301, 1880) may be described by saying that a conductor

placed in a magnetic field has a rotatory coefficient. See Hopkinson {Phil. Mag. x.

p. 430, 1880.)}
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case expression (10), to three terms; and let us consider the

general characteristic equation (16) which then reduces to

d2V dW d2V
, x

Also, let a, b
f

c be three functions of x, y, z satisfying the

condition da db dc _
dx dy dz~ '

^ '

ii. dV
\and let a = —r

x -j—f-u,

1
dV {

b = - r2
dy'

+V
'l

(26)

dV

Finally, let the triple-integral

W=fff(R1a
2 +R2b

2 + R&c
2)dxdydz (27)

be extended over spaces bounded as in the enunciation of Art.

100 a ; such viz. that over certain portions V is constant or else

the normal component of the vector a, b, c is given, the former

condition being accompanied by the further restriction that the

integral of this component over the whole bounding surface

must be zero : then W will be a minimum when

u = 0, v = 0, w = 0.

For we have in this case

rx
R

x
= 1, r

2R2
= 1, r3R3

= 1
;

and therefore, by (26),

W =JJJ^dx-
+r

>dj +**& )*"*»*>

+ Jff(Rl
u2 +R2v

2 +Rs
iv2)dxdydz

o CfCr dV
j.

dV
L dV\j ^ j- 2

JJJ («3* +v
dy-

+w
dj)

dxdydz- (
a «)

-d , . du dv dw „ , ,Butsmce _ +_ + _ =
, (29)

the third term vanishes by virtue of the conditions at the limits.

The first term of (28) is therefore the unique minimum value

of W.
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305.] As this proposition is of great importance in the theory

of electricity, it may be useful to present the following proof of

the most general case in a form free from analytical operations.

Let us consider the propagation of electricity through a con-

ductor of any form, homogeneous or heterogeneous.

Then we know that

(1) If we draw a line along the path and in the direction of

the electric current, the line must pass from places of high

potential to places of low potential.

(2) If the potential at every point of the system be altered in

a given uniform ratio, the current will be altered in the same

ratio, according to Ohm's Law.

(3) If a certain distribution of potential gives rise to a certain

distribution of currents, and a second distribution of potential

gives rise to a second distribution of currents, then a third

distribution in which the potential is the sum or difference of

those in the first and second will give rise to a third distribution

of currents, such that the total current passing through a given

finite surface in the third case is the sum or difference of the

currents passing through it in the first and second cases. For,

by Ohm's Law, the additional current due to an alteration of

potentials is independent of the original current due to the

original distribution of potentials.

(4) If the potential is constant over the whole of a closed

surface, and if there are no electrodes or intrinsic electromotive

forces within it, then there will be no currents within the closed

surface, and the potential at any point within it will be equal

to that at the surface.

If there are currents within the closed surface they must

either form closed curves, or they must begin and end either

within the closed surface or at the surface itself.

But since the current must pass from places of high to places

of low potential, it cannot flow in a closed curve.

Since there are no electrodes within the surface the current

cannot begin or end within the closed surface, and since the

potential at all points of the surface is the same, there can be

no current along lines passing from one point of the surface to

another.

Hence there are no currents within the surface, and therefore

there can be no difference of potential, as such a difference would
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produce currents, and therefore the potential within the closed

surface is everywhere the same as at the surface.

(5) If there is no electric current through any part of a closed

surface, and no electrodes or intrinsic electromotive forces

within the surface, there will be no currents within the surface,

and the potential will be uniform.

We have seen that the currents cannot form closed curves, or

begin or terminate within the surface, and since by the hypo-

thesis they do not pass through the surface, there can be no

currents, and therefore the potential is constant.

(6) If the potential is uniform over part of a closed surface,

and if there is no current through the remainder of the surface,

the potential within the surface will be uniform for the same

reasons.

(7) If over part of the surface of a body the potential of every

point is known, and if over the rest of the surface of the body

the current passing through the surface at each point is known,

then only one distribution of potential at points within the body

can exist.

For if there were two different values of the potential at any

point within the body, let these be Vx in the first case and T£ in

the second case, and let us imagine a third case in which the

potential of every point of the body is the excess of potential in

the first case over that in the second. Then on that part of the

surface for which the potential is known the potential in the

third case will be zero, and on that part of the surface through

which the currents are known the currents in the third case will

be zero, so that by (6) the potential everywhere within the surface

will be zero, or there is no excess of T^ over V2 , or the reverse.

Hence there is only one possible distribution of potentials.

This proposition is true whether the solid be bounded by one

closed surface or by several.

On the Approximate Calculation of the Resistance of a

Conductor of a given Form.

306.] The conductor here considered has its surface divided

into three portions. Over one of these portions the potential is

maintained at a constant value. Over a second portion the

potential has a constant value different from the first. The

whole of the remainder of the surface is impervious to electricity.
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We may suppose the conditions of the first and second portions

to be fulfilled by applying to the conductor two electrodes of

perfectly conducting material, and that of the remainder of the

surface by coating it with perfectly non-conducting material.

Under these circumstances the current in every part of the

conductor is simply proportional to the difference between the

potentials of the electrodes. Calling this difference the electro-

motive force, the total current from the one electrode to the other

is the product of the electromotive force by the conductivity of

the conductor as a whole, and the resistance of the conductor is

the reciprocal of the conductivity.

It is only when a conductor is approximately in the circum-

stances above defined that it can be said to have a definite

resistance or conductivity as a whole. A resistance coil, con-

sisting of a thin wire terminating in large masses of copper,

approximately satisfies these conditions, for the potential in

the massive electrodes is nearly constant, and any differences

of potential in different points of the same electrode may be

neglected in comparison with the difference of the potentials of

the two electrodes.

A very useful method of calculating the resistance of such

conductors has been given, so far as I know, for the first time,

by Lord Rayleigh, in a paper ' On the Theory of Resonance ' *
.

It is founded on the following considerations.

If the specific resistance of any portion of the conductor be
changed, that of the remainder being unchanged, the resistance

of the whole conductor will be increased if that of the portion

is increased, and diminished if that of the portion is diminished.

This principle may be regarded as self-evident, but it may
easily be shewn that the value of the expression for the re-

sistance of a system of conductors between two points selected

as electrodes, increases as the resistance of each member of the

system increases.

It follows from this that if a surface of any form be described

in the substance of the conductor, and if we further suppose this

surface to be an infinitely thin sheet of a perfectly conducting

substance, the resistance of the conductor as a whole will be

diminished unless the surface is one of the equipotential surfaces

in the natural state of the conductor, in which case no effect will

* Phil. Trans., 1871, p. 77. See Art. 102 a.
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be produced by making it a perfect conductor, as it is already in

electrical equilibrium.

If therefore we draw within the conductor a series of surfaces*

the first of which coincides with the first electrode, and the last

with the second, while the intermediate surfaces are bounded by

the non-conducting surface and do not intersect each other, and

if we suppose each of these surfaces to be an infinitely thin sheet

of perfectly conducting matter, we shall have obtained a system

the resistance of which is certainly not greater than that of the

original conductor, and is equal to it only when the surfaces we
have chosen are the natural equipotential surfaces.

To calculate the resistance of the artificial system is an opera-

tion of much less difficulty than the original problem. For the

resistance of the whole is the sum of the resistances of all

the strata contained between the consecutive surfaces, and the

resistance of each stratum can be found thus :

Let dS be an element of the surface of the stratum, v the

thickness of the stratum perpendicular to the element, p the

specific resistance, E the difference of potential of the perfectly

conducting surfaces, and dC the current through d S, then

dC = E—dS, (1)
P v

and the whole current through the stratum is

C = Eff—dS, (2)

the integration being extended over the whole stratum bounded

by the non-conducting surface of the conductor.

Hence the conductivity of the stratum is

§=//;>• <3 >

and the resistance of the stratum is the reciprocal of this

quantity.

If the stratum be that bounded by the two surfaces for which

the function F has the values F and F+dF respectively, then

dF _„ V,dF^ . sdFJ .
,dF^i

dy

and the resistance of the stratum is

dF

*-"-[£)•+&'+£?! w

CflvFdS (5)
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To find the resistance of the whole artificial conductor, we
have only to integrate with respect to F, and we find

The resistance jR of the conductor in its natural state is

greater than the value thus obtained, unless all the surfaces we
have chosen are the natural equipotential surfaces. Also, since

the true value of R is the absolute maximum of the values of R
l

which can thus be obtained, a small deviation of the chosen

surfaces from the true equipotential surfaces will produce an

error of R which is comparatively small.

This method of determining a lower limit of the value of the

resistance is evidently perfectly general, and may be applied to

conductors of any form, even when p, the specific resistance,

varies in any manner within the conductor.

The most familiar example is the ordinary method of deter-

mining the resistance of a straight wire of variable section. In

this case the surfaces chosen are planes perpendicular to the

axis of the wire, the strata have parallel faces, and the resistance

of a stratum of section S and thickness ds is

dR^*^, (7)

and that of the whole wire of length s is

*,=/**. (8)

where S is the transverse section and is a function of s.

This method in the case of wires whose section varies slowly

with the length gives a result very near the truth, but it is

really only a lower limit, for the true resistance is always
greater than this, except in the case where the section is per-

fectly uniform.

307.] To find the higher limit of the resistance, let us suppose
a surface drawn in the conductor to be rendered impermeable to

electricity. The effect of this must be to increase the resistance

of the conductor unless the surface is one of the natural surfaces

of flow. By means of two systems of surfaces we can form a
set of tubes which will completely regulate the flow, and the

effect, if there is any, of this system of impermeable surfaces

must be to increase the resistance above its natural value.
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The resistance of each of the tubes may be calculated by the

method already given for a fine wire, and the resistance of the

whole conductor is the reciprocal of the sum of the reciprocals

of the resistances of all the tubes. The resistance thus found is

greater than the natural resistance, except when the tubes follow

the natural lines of flow.

In the case already considered, where the conductor is in the

form of an elongated solid of revolution, let us measure x along

the axis, and let the radius of the section at any point be b.

Let one set of impermeable surfaces be the planes through the

axis for each of which </> is constant, and let the other set be

surfaces of revolution for which

t = *b\ (9)

where ^ is a numerical quantity between and 1.

Let us consider a portion of one of the tubes bounded by the

surfaces </> and cfi + dc}),^ and \(/ + d\j/, x and x + dx.

The section of the tube taken perpendicular to the axis is

ydyd(j>=lb2
d^d(f). (10)

If 9 be the angle which the tube makes with the axis

W = **)|. (11)

The true length of the element of the tube is dx sec 0, and its

true section is \b2d^d
cf>
cos 6,

so that its resistance is

dx „„ dx /
,
db 2

x .„ .

2p 7 ,, 7l7 sec2
fl = 2p ,,. , ,

,. (l+t-r )• (12)r
bz
dfd(l)

r
b2dfd(f> v T dx ' v '

Let A
=f£

dx, and B= 2̂ (fj dx, (13)

the integration being extended over the whole length, x, of the

conductor, then the resistance of the tube dtydcj) is

and its conductivity is

d\j/d(f)

2(A + yj,B)

To find the conductivity of the whole conductor, which is the

sum of the conductivities of the separate tubes, we must inte-

grate this expression between </> = and </> = 2ir, and between
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\/r = and \fr — 1. The result is

^=glog.(l + f). (14)

which may be less, but cannot be greater, than the true con-

ductivity of the conductor.

When -j- is always a small quantity -j will also be small, and
OLX -o-

we may expand the expression for the conductivity, thus

The first term of this expression, -j , is that which we should

have found by the former method as the superior limit of the

conductivity. Hence the true conductivity is less than the first

term but greater than the whole series. The superior value of

the resistance is the reciprocal of this, or

„, A , .B IB2 IB3
. n „„.

If, besides supposing the flow to be guided by the surfaces

and i/r, we had assumed that the flow through each tube is

proportional to d^/d(j), we should have obtained as the value of

the resistance under this additional constraint

R"= 1
{A + \B)*

i
(17)

which is evidently greater than the former value, as it ought to

be, on account of the additional constraint. In Lord Rayleigh's

paper this is the supposition made, and the superior limit of the

resistance there given has the value (17), which is a little

greater than that which we have obtained in (16).

308.] We shall now apply the same method to find the cor-

rection which must be applied to the length of a cylindrical

conductor of radius a when its extremity is placed in metallic

contact with a massive electrode, which we may suppose of a

different metal.

For the lower limit of the resistance we shall suppose that an

infinitely thin disk of perfectly conducting matter is placed be-

tween the end of the cylinder and the massive electrode, so as to

bring the end of the cylinder to one and the same potential

* Lord Rayleigh, Theory of Sound, ii. p. 171.
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throughout. The potential within the cylinder will then be a

function of its length only, and if we suppose the surface of the

electrode where the cylinder meets it to be approximately plane,

and all its dimensions to be large compared with the diameter of

the cylinder, the distribution of potential will be that due to a

conductor in the form of a disk placed in an infinite medium.
See Arts. 151, 177.

If E is the difference of the potential of the disk from that of

the distant parts of the electrode, C the current issuing from the

surface of the disk into the electrode, and p the specific re-

sistance of the electrode ; then if Q is the amount of electricity

on the disk, which we assume distributed as in Art. 151, we see

that the integral over the disk of the electromotive intensity is

p'C = i.4ffQ = 2ir— , by Art. 151,

2

= 4a#. (18)

Hence, if the length of the wire from a given point to the

electrode is L, and its specific resistance p, the resistance from

that point to any point of the electrode not near the junction is

and this may be written

R=-L-fL +£L™\ t (19)
ttcl' v p 4 /

where the second term within brackets is a quantity which

must be added to the length of the cylinder or wire in calcu-

lating its resistance, and this is certainly too small a correction.

To understand the nature of the outstanding error we may
observe, that whereas we have supposed the flow in the wire up

to the disk to be uniform throughout the section, the flow from

the disk to the electrode is not uniform, but is at any point in-

versely proportional (Art. 151) to the minimum chord through

that point. In the actual case the flow through the disk will not

be uniform, but it will not vary so much from point to point

as in this supposed case. The potential of the disk in the

actual case will not be uniform, but will diminish from the

middle to the edge.

309.] We shall next determine a quantity greater than the
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true resistance by constraining the flow through the disk to be

uniform at every point. We may suppose electromotive forces

introduced for this purpose acting perpendicular to the surface

of the disk.

The resistance within the wire will be the same as before, but

in the electrode the rate of generation of heat will be the sur-

face-integral of the product of the flow into the potential. The

G
rate of flow at any point is —^ , and the potential is the same as

that of an electrified surface whose surface-density is a, where
n '

2ircr — -V (20)

p being the specific resistance.

We have therefore to determine the potential energy of the

electrification of the disk with the uniform surface-density cr.

*The potential at the edge of a disk of uniform density o-

is easily found to be 4a<r. The work done in adding a strip of

breadth da at the circumference of the disk is 2 ita a-da . $acr,

and the whole potential energy of the disk is the integral of this,

or P = -^a8
<r
a

.
(
21

)

In the case of electrical conduction the rate at which work is

done in the electrode whose resistance is R' is C2 R'. But from

the general equation of conduction the current across the disk

per unit area is of the form

_ l^T
// dv
2tt

or —v.
P

The rate at which work is done is, if Fis the potential of the disk,

and ds an element of its surface,

C C
Vds

na^J

2GP . _= —5 — » since P = ifVads,

= ±£P(by(20)).

We have therefore

C*R'=tlp
t (22)

* See a Paper by Professor Cayley, London Math. Soc. Proc. vi. p. 38.
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whence, by (20) and (21),

3n 2a
and the correction to be added to the length of the cylinder is

P 8

this correction being greater than the true value. The true cor-

rection to be added to the length is therefore — an, where n is a

v 8 p

number lying between - and -— > or between 0-785 and 0-849.J & 4 3tt

* Lord Rayleigh, by a second approximation, has reduced the

superior limit of n to 0-8282.

* Phil. Mag. Nov. 1872, p. 344. Lord Rayleigh subsequently obtained .8242 as the
superior limit. See London Math. Soc. Proc. vii. p. 74, also Theory of Sound, vol. ii.

Appendix A. p. 291.



CHAPTER IX.

CONDUCTION THROUGH HETEROGENEOUS MEDIA.

On the Conditions to be Fulfilled at the Surface of Separation

between Two Conducting Media.

310.] There are two conditions which the distribution of

currents must fulfil in general, the condition that the potential

must be continuous, and the condition of 'continuity' of the

electric currents.

At the surface of separation between two media the first of

these conditions requires that the potentials at two points on
opposite sides of the surface, but infinitely near each other,

shall be equal. The potentials are here understood to be
measured by an electrometer put in connexion with the given
point by means of an electrode of a given metal. If the

potentials are measured by the method described in Arts. 222,

246, where the electrode terminates in a cavity of the conductor
filled with air, then the potentials at contiguous points of

different metals measured in this way will differ by a quantity

depending on the temperature and on the nature of the two
metals.

The other condition at the surface is that the current through
any element of the surface is the same when measured in either

medium.

Thus, if V
x
and V

2
are the potentials in the two media, then at

any point in the surface of separation

X= v» (i)

and if u
x , vx , wx

and u2 , v2 , w2 are the components of currents in

the two media, and I, m, n the direction-cosines of the normal to

the surface of separation

u
l
l + v

1
m +w

x
n = u

2 l + v2m +w2n. (2)

In the most general case the components u, v, w are linear
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functions of the derivatives of V, the forms of which are given

in the equations

v = q3X + r2Y+p1
Z, V (3)

w=p2X + q1
Y+r

3
Z,)

where X, Y, Z are the derivatives of V with respect to x, y, z

respectively.

Let us take the case of the surface which separates a medium
having these coefficients of conduction from an isotropic medium

having a coefficient of conduction equal to r.

Let X', Yf

, Z' be the values of X, Y, Z in the isotropic medium,

then we have at the surface

V=V, (4)

or Xdx + Ydy + Zdz = X'dx + Y'dy + Z'dz, (5)

when ldx + mdy + ndz — 0. (6)

This condition leads to

X/=X + 47rW, F/ =F+47r<rm, Z' = Z+±Tr*n, (7)

where 0- is the surface-density.

We have also in the isotropic medium

u' = rX', v'=tT, w' = rZ', (8)

and at the boundary the condition of flow is

u'l + vfvfb + w'n = ul + vm + wn, (9

)

or r(lX + mY+7iZ+4TT(r)
=l(r

1X+pJ+q2
Z) + m{qz

X + r
liY+px

Z) + n{p2X + q1Y+rzZ),{lO)

whence

lircrr = {l(r
1
— r) + 7nq3 + np2

}X+ {lp3 + m(r2
—r) + nq^Y

+ {lq2 + mpi + n(r
3
-v))Z. (11)

The quantity 0- represents the surface-density of the charge

on the surface of separation. In crystallized and organized sub-

stances it depends on the direction of the surface as well as on
the force perpendicular to it. In isotropic substances the coeffi-

cients p and q - are zero, and the coefficients r are all equal,

so that

4 W0- = (^i -l)(lX +mY+nZ), (12)

where r
x

is the conductivity of the substance, r that of the

external medium, and I, m, n the direction-cosines of the normal

drawn towards the medium whose conductivity is r.

When both media are isotropic the conditions may be greatly

simplified, for if k is the specific resistance per unit of volume,
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then ldV \dV ldV . .

u— — T
-
s
-

i v=- T -r-i w=— T -j-, (13)
k dx k dy k dz x '

and if v is the normal drawn at any point of the surface of

separation from the first medium towards the second, the con-

dition of continuity is

k
x
dv k 2 dv

If 6
X
and 62 are the angles which the lines of flow in the first

and second media respectively make with the normal to the

surface of separation, then the tangents to these lines of flow are

in the same plane with the normal and on opposite sides of it,

and jCi tan d
1
= k

2
tan 6

2
. (15)

This may be called the law of refraction of lines of flow.

311.] As an example of the conditions which must be fulfilled

when electricity crosses the surface of separation of two media,

let us suppose the surface spherical and of radius a, the specific

resistance being kx
within and k2 without the surface.

Let the potential, both within and without the surface, be ex-

panded in solid harmonics, and let the part which depends

on the surface harmonic S
t
be

V^iA^ + B^-V+^Si, (1)

F2 = (^ + 52
r-(^))^, (2)

within and without the sphere respectively.

At the surface of separation where r = a we must have

p5= r"»a iH£=ir£- (3)

From these conditions we get the equations

(4)

These equations are sufficient, when we know two of the four

quantities A x , A2 , Blt B2 , to deduce the other two.

Let us suppose A x
and B

x
known, then we find the following

expressions for A2 and B2 ,

A = {kx
{i^\) + k

2i}A x + {k
1
-k

2
){i-^\)B

1
a-^^

2 M2t+1) I (K)

_ (k
x
-k2)iA xa

2i+1+ {k
x
i + k

2
(i+l)}B

x
' {

°
}

2
~

k
x
(2i+l)
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In this way we can find the conditions which each term of the

harmonic expansion of the potential must satisfy for any number

of strata bounded by concentric spherical surfaces.

312.] Let us suppose the radius of the first spherical surface

to be als and let there be a second spherical surface of radius a2

greater than alf beyond which the specific resistance is k
3 . If

there are no sources or sinks of electricity within these spheres

there will be no infinite values of V, and we shall have B
x
— 0.

We then find for A 3 and B3 , the coefficients for the outer

medium,

A^k^i+lf—lik^i+lj + k^} {k2 (i + 1) + k3 i}

+ i(i+l)(k1
-k

2)(k2-k3)Q)
2i+i

y i

B3k1
k2

(2i + l)2 = \i{k
2-k3)

{k
x
(i + 1) + k

2i] a2
2i+1

+ i{k1-k2){k2 i + k
z{i+\))a*

Jr
'
i~\A

1
.

The value of the potential in the outer medium depends partly

on the external sources of electricity, which produce currents

independently of the existence of the sphere of heterogeneous

matter within, and partly on the disturbance caused by the

introduction of the heterogeneous sphere.

The first part must depend on solid harmonics of positive

degrees only, because it cannot have infinite values within the

sphere. The second part must depend on harmonics of negative

degrees, because it must vanish at an infinite distance from the

centre of the sphere.

Hence the potential due to the external electromotive forces

must be expanded in a series of solid harmonics of positive

degree. Let A3 be the coefficient of one of these, of the form

A3S,r\

Then we can find A lt the corresponding coefficient for the

inner sphere by equation (6), and from this deduce A
2 , B.

z ,

and B3 . Of these B3 represents the effect on the potential in

the outer medium due to the introduction of the heterogeneous

sphere.

Let us now suppose k
3
= klt so that the case is that of a hollow

shell for which k = k2 , separating an inner from an outer portion

of a medium for which k — k
x

.
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If we put

c = 2i+l

(2i+iyk
1
k2 +i(i+i)(k2-k1Y(i- (J) )

then A
1
= k

x
k2 (2 i + l)2 CA3 ,

A
2 = k2

(2i+l)(k
1
{i+l) + k2i)CA3 ,

B2 = k2i(2i+l){k1
-k2)a1

2i+l CA3 ,
f

(
7
)

The difference between A3
the undisturbed coefficient, and A

x

its value in the hollow within the spherical shell, is

^3-A=(^-^)2^+l)(l-(^f
+1
)^3. (8)

Since this quantity is always of the same sign as A
3 whatever

be the values of k
x
and k

2 , it follows that, whether the spherical

shell conducts better or worse than the rest of the medium, the

electrical action in the space occupied by the shell is less than it

would otherwise be. If the shell is a better conductor than the

rest of the medium it tends to equalize the potential all round

the inner sphere. If it is a worse conductor, it tends to prevent

the electrical currents from reaching the inner sphere at all.

The case of a solid sphere may be deduced from this by
making a

1
= 0, or it may be worked out independently.

313.] The most important term in the harmonic expansion is

that in which i — 1 , for which

C =

(9)
9^ + 2(^-^(1- (^))

A t
=z 9k

1
k2 CA3 , A 2

— 3 k2 (2kx + k
2) CA3 ,

B
2
= Sk^-k^CA^ B3

= (&2 -fc1)(2&1 + &2)(a2
3-a

1
3)C',i

3
.

The case of a solid sphere of resistance k2 may be deduced

from this by making ax
— 0. We then have

A
* = T^k.z

A
>'

B
> = °>)

(10)
_ k2~K \*

s -k1+ 2k2

a2jl
s' ]

It is easy to shew from the general expressions that the value

of B
3
in the case of a hollow sphere having a nucleus of re-

sistance kx , surrounded by a shell of resistance k
2 , is the same as
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that of a uniform solid sphere of the radius of the outer surface,

and of resistance K, where

(2 k
t
+ k

2 ) a2
3 + {k

x
- k

2) a t

3
,

*-(2lc
l + k2

)a
2
*-2(k

1
-k

2)a1

*'C*- V
'

314.] If there are n spheres of radius ax and resistance kx ,

placed in a medium whose resistance is k
2 , at such distances

from each other that their effects in disturbing the course of

the current may be taken as independent of each other, then

if these spheres are all contained within a sphere of radius a2 ,

the potential at a great distance r from the centre of this sphere

will be of the form

V=(Ar + nB\)c(me, (12)

where the value of B is

B =^k a 'A - (13)

The ratio of the volume of the n small spheres to that of the

sphere which contains them is

The value of the potential at a great distance from the sphere

may therefore be written

r=A (r+pa°£j=^±)coS e. (15)

Now if the whole sphere of radius a
2
had been made of a

material of specific resistance K, we should have had

r = Ah<£FkM eose
-

(16)

That the one expression should be equivalent to the other,

ir _ ^k
1 + k

2 +p(k1
— k2)

-. , ,

A ~2k
1 + k2-2p(k1

-k2)
*' K

'

This, therefore, is the specific resistance of a compound medium

consisting of a substance of specific resistance k2 , in which are

disseminated small spheres of specific resistance k
x , the ratio of

the volume of all the small spheres to that of the whole being p.

In order that the action of these spheres may not produce effects

depending on their interference, their radii must be small com-

pared with their distances, and therefore p must be a small

fraction.
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This result may be obtained in other ways, but that here given

involves only the repetition of the result already obtained for a
single sphere.

When the distance between the spheres is not great compared
k — k

with their radii, and when —J
—~ is considerable, then other

terms enter into the result, which we shall not now consider.

In consequence of these terms certain systems of arrangement of

the spheres cause the resistance of the compound medium to be
different in different directions.

Application of the Principle of Images.

315.] Let us take as an example the case of two media
separated by a plane surface, and let us suppose that there is

a source S of electricity at a distance a from the plane surface in

the first medium, the quantity of electricity flowing from the

source in unit of time being &
If the first medium had been infinitely extended the current

at any point P would have been in the direction SP, and the

potential at P would have been -, whereE = —\ and r, = SP.

In the actual case the conditions may be satisfied by taking
a point 7, the image of S in the second medium, such that IS
is normal to the plane of separation and is bisected by it. Let
r
2 be the distance of any point from 7, then at the surface of

separation Tl = r2i (1)

dr
i _ dr

2 ,9 x

Let the potential V
1
at any point in the first medium be that

due to a quantity of electricity E placed at S, together with an
imaginary quantity E2 at 7, and let the potential T£ at any
point of the second medium be that due to an imaginary

quantity E
x at S, then if.

If. j? + 5 .**=£. (3)

the superficial condition T£= T^ gives

E+E
2
= EV (4)

and the condition 1 dJ{ _ 1 dV% ..

k
x
dv ~ k

2 dv
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Sives

V" -"V-jfc,

-h— ^ =^£
> *. = fe|* (7)

The potential in the first medium is therefore the same as

would be produced in air by a charge E placed at S, and a

charge E
2
at I on the electrostatic theory, and the potential in

the second medium is the same as that which would be produced

in air by a charge E1
at S.

The current at any point of the first medium is the same as

would have been produced by the source S together with a

k — k
source 2— 1 g piaced at J if the first medium had been infinite,

k
t
+ lc

2

and the current at any point of the second medium is the same

2k 8
as would have been produced by a source jt—^~r-r placed at S if

the second medium had been infinite.

We have thus a complete theory of electrical images in the

case of two media separated by a plane boundary. Whatever

be the nature of the electromotive forces in the first medium,

the potential they produce in the first medium may be found by

combining their direct effect with the effect of their image.

If we suppose the second medium a perfect conductor, then

k2
= 0, and the image at I is equal and opposite to the source

at S. This is the case of electric images, as in Thomson's theory

in electrostatics.

If we suppose the second medium a perfect insulator, then

k2 = qo
, and the image at I is equal to the source at S and of

the same sign. This is the case of images in hydrokinetics

when the fluid is bounded by a rigid plane surface *.

316.] The method of inversion, which is of so much use in

electrostatics when the bounding surface is supposed to be that

of a perfect conductor, is not applicable to the more general case

of the surface separating two conductors of unequal electric

resistance. The method of inversion in two dimensions is, how-

* {A similar investigation will give the electric field due to a charge of electricity

at S placed in a dielectric whose specific inductive capacity isKlt this dielectric being

separated by a plane face from another dielectric whose specific inductive capacity is

K%. Vx and V, will represent the potentials in this case if the charge = KX E and if
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ever, applicable, as well as the more general method of trans-

formation in two dimensions given in Art. 190 *.

Conduction through a Plate separating Two Media.

317.] Let us next consider the effect of a plate of thickness

AB of a medium whose

resistance is k
2 , and *

separating two media
whose resistances are -* « »-

k
x
and ks , in altering * *

the potential due to a

source S in the first

medium.

The potential will be

equal to that due to a system of charges placed in air at certain

points along the normal to the plate through S.

Make
AI=SA, BIX = SB, AJ

X = I
X
A, BI

m
= J

x
B

t
AJ

2
= I2A,kc;

then we have two series of points at distances from each other
equal to twice the thickness of the plate.

318.] The potential in the first medium at any point P is

E I L h
ps + pi + ptx

+ pi
2

+ &c
> (

8
)

that at a point Pf
in the second

JL + JLjl IL + JsL ^*,
p's

+ ri + Ph Fh

Fig. 24.

J{
' P'J

X FJ2

and that at a point P" in the third

+ &c, (9)

+ wh + 4h + &c" (
10

)P"S ' P"J
X

T
P"h

where I, /', &c. represent the imaginary charges placed at the

points /, &c, and the accents denote that the potential is to be

taken within the plate.

* See Kirchhoff, Pogg. Ann. lxiv. 497, and lxvii. 344 ;
Quincke, Pogg. xcvii. 382

;

Smith, Proc. B. S. JEdin., 1869-70, p. 79. Holzmuller, Mnfuhrung in die Theorie
der isogonalen Verwandschqften, Leipzig, 1882. Guebhard, Journal de Physique,
t. i. p. 483, 1882. W. G. Adams, Phil. Mag. iv. 50, p. 548, 1876 ; G. C. Foster and
O. J. Lodge, Phil. Mag. iv. 49, pp. 385, 453 ; 50, p. 475, 1879 and 1880 ; O. J. Lodge,
Phil. Mag. (5), i. 373, 1876.
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Then, by Article 315, we have from the conditions for the

surface through A,

V-^ E>

=f
*K Em (u)

k
2 + k

x

' k
2 + k±

For the surface through B we find

T'^ K-K tf E»= J^*E'. (12)
1 h+ k2 h+h

Similarly for the surface through A again,

T ,_ \-h T , T _ 2k
i j> (13)

and for the surface through B,

k
3
-k2 J

., 2ks j, /
14)

,
k,— ko , , kz

—k2

If we make P =^ and /> = j^.
we find for the potential in the first medium,

+ p'{l-p2
)(pp)

n-l £-
n
+ '-( 15

)

For the potential in the third medium we find

* {These expressions may be reduced to definite integrals by the relation

7=3 =^ J {U)e—dt
fa% + V Jo

. _ I I lht\,

Va
where «7 denotes Bessel's function of zero order.

Hence if we take £ as the origin of coordinates, and the normal to the plate as

the axis of x,

^7o J°(2>t)e-
Xt
dt,

where c is the thickness of the plate,

and so on. Substituting these values in (16), we see that V equals

Jo \- PP
' e
-lct

The values of this when y = 0, x = 2nc when n is an integer can easily be found.}
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If the first medium is the same as the third, then kv= k
3 and

p = /, and the potential on the other side of the plate will be

F =< 1 -'2>4* + :4 +te+ fi +4 <17)

If the plate is a very much better conductor than the rest of

the medium, p is very nearly equal to 1. If the plate is a nearly

perfect insulator, p is nearly equal to — 1 , and if the plate differs

little in conducting power from the rest of the medium, p is a

small quantity positive or negative,

The theory of this case was first stated by Green in his

'Theory of Magnetic Induction' (Essay, p. 65). His result,

however, is correct only when p is nearly equal to 1 *. The
quantity g which he uses is connected with p by the equations

a p A!j— Kr, 3 Q tC-t — iC[)

9 = 3-p
=

k
1 + 2ka

i p = ~2+g
=
k~+k

2

'

2 TX K
If we put p = -—-— , we shall have a solution of the problem

1 +2ttk

of the magnetic induction excited by a magnetic pole in an
infinite plate whose coefficient of magnetization is k.

On Stratified Conductors.

319.] Let a conductor be composed of alternate strata of

thicknesses c and c' of two substances whose coefficients of con-

ductivity are different. Required the coefficients of resistance

and conductivity of the compound conductor.

Let the planes of the strata be normal to z. Let every symbol
relating to the strata of the second kind be accented, and let

every symbol relating to the compound conductor be marked

with a bar thus, X. Then

X = X — X\ (c + c')u — cu + c'vf,

Y=Y= T, (c + c') v = cu + cV;

(c -\-c')~Z— cZ+c'Z', w = w = w'.

We must first determine u, u/ v, v/ Z and Z' in terms of

X, Fand w from the equations of resistance, Art. 297, or those

* See Sir W. Thomson's 'Note on Induced Magnetism in a Plate,' Camb. and
Dab. Math. Journ., Nov. 1845, or Reprint, art. ix. § 156.
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of conductivity, Art. 298. If we put D for the determinant of

the coefficients of resistance, we find

ur
3
D = R2

X-Q^Y+'0}q2D,

vr3D = R1
Y-Pi

X + '8>p1D,

Zr
3
= -p2X-qrY+w.

Similar equations with the symbols accented give the values

of u'', v' and Z'. Having found u, v and u in terms of X, Y and

Z
}
we may write down the equations of conductivity of the

c c'

stratified conductor. If we make h — — and h' = —
T > we find

hpx
+h'p( _hq

1
+ h'q

1

'

^1= h + h' ' ^--TT/T'
_ hp2

+h'p2

'

_ hq
2 + h'q2

'

P*~ h + h'
' ^2 ~

fc + A' '

_ cpz + c'pj hh'^-qj) (q2-q2
')

Pz ~
c + c' (h + h') (c + c')

'

cq3 + c'q3
' hh'(p

1
-p1')(p2-p2 )

q*~
c+ c' {h + h')(c + c')

crx + c'r{ hh' (p2-p2') (q2-q2 )
T, =

T,=

c + c' (h + h')(c + c')

cr2 + c'r
2
' hh' (px -p{) (q1-

g

t
')

c + c
>

(h + h') (c + c')
'

_ c + c'
r
*-h+~hr

320.] If neither of the two substances of which the strata are

formed has the rotatory property of Art. 303, the value of any

P or p will be equal to that of its corresponding Q or q. From

this it follows that in the stratified conductor also

or there is no rotatory property developed by stratification,

unless it exists in one or both of the separate materials.

321.] If we now suppose that there is no rotatory property,

and also that the axes of x, y and z are the principal axes, then

the p and q coefficients vanish, and

cr,+c'r/ _ cr9 + c'r9
'

_ c+c'
1 c + c' c + c' JLj.—

r- r'
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If we begin with both substances isotropic, but of different

CC (¥— v\^
conductivities r and r', then, since r,— fo = ,-=—

=

'—
»13

c +c'^+ c'r)

the result of stratification will be to make the resistance greatest

in the direction of a normal to the strata, and the resistances

in all directions in the plane of the strata will be equal.

322.] Take an isotropic substance of conductivity r, cut it

into exceedingly thin slices of thickness a, and place them
alternately with slices of a substance whose conductivity is s,

and thickness k
x
a.

Let these slices be normal to x. Then cut this compound
conductor into very much thicker slices, of thickness b, normal
to y, and alternate these with slices whose conductivity is s and
thickness k2 b.

Lastly, cut the new conductor into still thicker slices, of

thickness c, normal to z, and alternate them with slices whose
conductivity is s and thickness k3 c.

The result of the three operations will be to cut the substance

whose conductivity is r into rectangular parallelepipeds whose
dimensions are a, b and c, where b is exceedingly small compared
with c, and a is exceedingly small compared with b, and to

embed these parallelepipeds in the substance whose conductivity

is s, so that they are separated from each other k
x
a in the

direction of x, k2 b in that of y, and k
3
c in that of z. The

conductivities of the conductor so formed in the directions of

x, y, and z are to be found by three applications in order of the
results of Art. 321. We thereby obtain

_ {14-^(1+ k
2) (1 + ks)}r + (k

2+ k
3 + k

2
k3 )s

(l+k
2
)(l+k

3
)(k

x
r + s)

S
'

_ (1 + k
2 + k.

2
k
3) r + (k

x + k
3 + fc, k.2 + k

x
kz + k

x
k2k3) sr*~

(l+k
3
){k

2r + (l+k1 + k
1
k2) 8 }

*'

(1 + k3 ) (r + (k
x + k2 +k^s)

3 ~~
k
3
r + ( 1 + k

x + k2 + k
2
k
3 + k3

k
x
+ k

x
k
2+ k

x
k
2
k
3
)s

'

The accuracy of this investigation depends upon the three

dimensions of the parallelepipeds being of different orders of

magnitude, so that we may neglect the conditions to be fulfilled

at their edges and angles. If we make k
x , k2

and k3 each unity, then

_ 5r+3s _3r + 5s _2r + Gs
1 4r+ 4s ' 2 2r + 6s ' 3 r+7s



448 CONDUCTION IN HETBEOGENEOTJS MEDIA. [O^o-

If r = 0, that is, if the medium of which the parallelepipeds

are made is a perfect insulator, then

If r = oo , that is, if the parallelepipeds are perfect conductors,

i"i = I s, r2 = f s, r
3 = 2s.

In every case, provided k
x
= k

2
= k3 , it may be shewn that

r
l5

r
2
and r

3
are in ascending order of magnitude, so that the

greatest conductivity is in the direction of the longest dimensions

of the parallelepipeds, and the greatest resistance in the direction

of their shortest dimensions.

323.] In a rectangular parallelepiped of a conducting solid,

let there be a conducting channel made from one angle to the

opposite, the channel being a wire covered with insulating

material, and let the lateral dimensions of the channel be so

small that the conductivity of the solid is not affected except on

account of the current conveyed along the wire.

Let the dimensions of the parallelepiped in the directions of

the coordinate axes be a, b, c, and let the conductivity of

the channel, extending from the origin to the point (abc), be

abcK.

The electromotive force acting between the extremities of the

channel is aX + bY+cZ,

and if C be the current along the channel

C = Kabc(aX+bY+cZ).

The current across the face be of the parallelepiped is bcu, and

this is made up of that due to the conductivity of the solid and

of that due to the conductivity of the channel, or

bcu = be (r
x
X +p3

Y+ q2
Z) + Kobe (aX+ bY+cZ),

or u = (r
x
+ Ka2

)X+ (p3 + Kab) Y+ (q2 + Kca) Z.

In the same way we may find the values of v and w. The

coefficients of conductivity as altered by the effect of the channel

will be

r
x + Ka\ r2 + Kb

2
,

r3 + Kc\

px + Kbc, p2 + Kca, p3 + Kab,

q1
+ Kbc, q2 + Kca, qz + Kab.

In these expressions, the additions to the values of px , &c, due

to the effect of the channel, are equal to the additions to the
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values of qv &c. Hence the values of px
and qx

cannot be

rendered unequal by the introduction of linear channels into

every element of volume of the solid, and therefore the rotatory

property of Art. 303, if it does not exist previously in a solid,

cannot be introduced by such means.

324.] To construct a framework of linear conductors which
shall have any given coefficients of conductivity forming a
symmetrical system.

Let the space be divided into equal small cubes, of which let

the figure represent one. Let the coordin-

ates of the points 0, L, M, N, and their poten-

tials be as follows :

—

x y z Potential

X+Y+Z
L l 1 X
M 1 1 Y
N 1 1 Z

Fig- 25 -

Let these four points be connected by six conductors,

OL, OM, ON, MN, NL, LM,
of which the conductivities are respectively

A, B, C, P, Qt R.

The electromotive forces along these conductors will be

Y+Z, Z+X, X+Y, Y-Z, Z-X, X~Y,
and the currents

A(Y+Z), B(Z+X), C(X + Y), P(Y-Z), Q(Z-X), JR(X-Y).
Of these currents, those which convey electricity in the positive

direction of x are those along LM, LN, OM and ON, and the
quantity conveyed is

u = (B + C+Q +R)X + (C-R)Y +(B-Q)Z.
Similarly

v = (C-R)X +(G+A + R + P)Y+(A-P)Z;
w=(B-Q)X +(A-P)Y +(A + B +P + Q)Z;

whence we find by comparison with the equations of conduction.
Art. 298,

4 A = r2 + r3-rl + 2p1 ,
4? = r2 + r3-rr 2|)1)

4 B = y3 + ri-^2 + 2 ^2» 4 Q = ^ +^-^-2^,
4 = r

1 + r2-r3 + 2p3 , 4R ^ r
x + r

2~r3-2pz .



CHAPTER X.

CONDUCTION IN DIELECTRICS.

325.] We have seen that when electromotive force acts on a

dielectric medium it produces in it a state which we have called

electric polarization, and which we have described as consisting

of electric displacement within the medium in a direction which,

in isotropic media, coincides with that of the electromotive force,

combined with a superficial charge on every element of volume

into which we may suppose the dielectric divided, which is

negative on the side towards which the force acts, and positive

on the side from which it acts.

When electromotive force acts on a conducting medium it also

produces what is called an electric current..

Now dielectric media, with very few, if any, exceptions, are

also more or less imperfect conductors, and many media which

are not good insulators exhibit phenomena of dielectric induction.

Hence we are led to study the state of a medium in which

induction and. conduction are going on at the same time.

For simplicity we shall suppose the medium isotropic at every

point, but not necessarily homogeneous at different points. In

this case, the equation of Poisson becomes, by Art. 83,

*(**?)+ *(**!) +4(^ + 4^=0, (1)
dx K dx' dy K dy ' dz^ dz J

where K is the ' specific inductive capacity.'

The ' equation of continuity ' of electric currents becomes

A (\ €K.\ A (-—\ + — (~
d—\ - ^r = o (2)

dx^-r dx' dy^rdy* dz^rdz* dt

where r is the specific resistance referred 1:0 unit of volume.

When K or r is discontinuous, these equations must be trans-

formed into those appropriate to surfaces of discontinuity.



326.] THEORY OF A CONDENSES. 451

In a strictly homogeneous medium r and K are both constant,

so that we find

&v &v ,dyv_ P _ dp
dx2 +

dy*
+

dz2 ~ ~ *K
~ rW (3 '

whence p — Ce Kr
\ (4)

Kr --
or,ifweput T = ~, p = Ce T

. (5)

This result shews that under the action of any external elec-

tric forces on a homogeneous medium, the interior of which is

originally charged in any manner with electricity, the internal

charges will die away at a rate which does not depend on the

external forces, so that at length there will be no charge of

electricity within the medium, after which no external forces

can either produce or maintain a charge in any internal portion

of the medium, provided the relation between electromotive

force, electric polarization and conduction remains the same.

When disruptive discharge occurs these relations cease to be
true, and internal charge may be produced.

On Conduction through a Condenser.

326.] Let C be the capacity of a condenser, R its resistance,

and E the electromotive force which acts on it, that is, the

difference of potentials of the surfaces of the metallic electrodes.

Then the quantity of electricity on the side from which the

electromotive force acts will be CE, and the current through the

substance of the condenser in the direction of the electromotive

E
force will be -~ •

ix

If the electrification is supposed to be produced by an electro-

motive force E acting in a circuit of which the condenser form&

dQ
part, and if -j? represents the current in that circuit, then

dQ_E dE
Tt-B + t

~dt' W
Let a battery of electromotive force E whose resistance

together with that of the wire connecting the electrodes is ri\

be introduced into this circuit, then

dQ_E -E_E dE
dt ~ rt

~ R dt' K }
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Hence, at any time t
x ,

7? h. CITlr

£ <= E^ EowhS l - e

~
Tl) wbere Tl = *+£' (8)

Next, let the circuit r
x
be broken for a time t2 ,

putting r
x

infinite, we get from (7),

E (= E2 )
= ^e" ^ where T

2
= OE. (9)

Finally, let the surfaces of the condenser be connected by

means of a wire whose resistance is r
3

for a time t
3 ,

then

putting E = 0, rx
= r

3
in (7), we get

y± CRr
E(=E

3)
= E,e ^ where ^3=:^. (10)

If Q3
is the total discharge through this wire in the time t

3 ,

-E - — (l-e TAe T*(l-e 2'»V (11)
^—"''(R + rJiR + rjy

1
) ^

. .

In this way we may find the discharge through a wire which

is made to connect the surfaces of a condenser after being charged

for a time tv and then insulated for a time t2 . If the time of

charging is sufficient, as it generally is, to develop the whole

charge, and if the time of discharge is sufficient for a complete

discharge, the discharge is

Q» = En715 ^=715 ce CR- (12)

327.] In a condenser of this kind, first charged in any way,

next discharged through a wire of small resistance, and then

insulated, no new electrification will appear. In most actual

condensers, however, we find that after discharge and insulation

a new charge is gradually developed, of the same kind as the

original charge, but inferior in intensity. This is called the

residual charge. To account for it we must admit that the

constitution of the dielectric medium is different from that which

we have just described. We shall find, however, that a medium

formed of a conglomeration of small pieces of different simple

media would possess this property.

Theory of a Composite Dielectric.

328.] We shall suppose, for the sake of simplicity, that the

dielectric consists of a number of plane strata of different

materials and of area unity, and that the electric forces act in

the direction of the normal to the strata.
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Let alt a2 , &c. be the thicknesses of the different strata.

Xj, X2 , &c. the resultant electrical forces within the strata.

ply p2 , &c. the currents due to conduction through the strata.

fi,f2 > &c. the electric displacements.

ult u2 , &c. the total currents, due partly to conduction and
partly to variation of displacement.

rlf r2 , &c. the specific resistances referred to unit of volume.

Klt K2 , &c. the specific inductive capacities.

h
x , k2 , &c. the reciprocals of the specific inductive capacities.

E the electromotive force due to a voltaic battery, placed in

the part of the circuit leading from the last stratum towards the

first, which we shall suppose good conductors.

Q the total quantity of electricity which has passed through

this part of the circuit up to the time t.

R the resistance of the battery with its connecting wires.

<r
12 the surface-density of electricity on the surface which

separates the first and second strata.

Then in the first stratum we have, by Ohm's Law,

Xi = riPi- (1)

By the theory of electrical displacement,

X1
= 4*^/1- (

2
)

By the definition of the total current,

«.=*.+ §'. (3)

with similar equations for the other strata, in each of which the

quantities have the suffix belonging to that stratum.

To determine the surface-density on any stratum, we have an
equation of the form a 2 =f _/.

,

(4)

and to determine its variation we have

By differentiating (4) with respect to t, and equating the result

to (5), we obtain

Pi + ifi
=p

*
+
dt

= U
'

say
' (6)

or, by taking account of (3),

u
1
= u2

— &c. = u. (7)

That is, the total current u is the same in all the strata, and is

equal to the current through the wire and battery.
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We have also, in virtue of equations (1) and (2),

u= IZi+ J_^V, (8)
rx

1 4^ at

from which we may find Xx by the inverse operation on u,

The total electromotive force E is

E = axXx + a2
X2 + &c, (10)

« *-K + i»)"
,+

-(f,
+i5)" +tah (11)

an equation between -E', the external electromotive force, and u,

the external current.

If the ratio of r to k is the same in all the strata, the equation

reduces itself to

E+ -^- -jj- = (a^ + a2r2 + &c.)u, (12)

which is the case we have already examined in Art. 326, and in

which, as we found, no phenomenon of residual charge can take

place.

If there are n substances having different ratios of r to k, the

general equation (11), when cleared of inverse operations, will be

a linear differential equation, of the nth. order with respect to E
and of the (n-l)th. order with respect to u, t being the in-

dependent variable.

From the form of the equation it is evident that the order of

the different strata is indifferent, so that if there are several

strata of the same substance we may suppose them united into

one without altering the phenomena.

329.] Let us now suppose that at first

/

ls /2 , &o. are all zero,

and that an electromotive force E is suddenly made to act, and

let us find its instantaneous effect.

Integrating (8) with respect to t, we find

Q= fudt= - fxx dt + j^; X1 + const. (13)

Now, since X
x

is always in this case finite, / Xx
dt must be

insensible when t is insensible, and therefore, since Xx
is origin-

ally zero, the instantaneous effect will be

Xx
= ±Ttkx Q. (14)
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Hence, by equation (10),

E = 4?r(&
1
a

1 + &
2a2+ &c.)Q, (15)

and if C be the electric capacity of the system as measured in

this instantaneous way,

E ~ ^ir(k
l
a1 + k2a2 + &,c.) ^ '

This is the same result that we should have obtained if we had
neglected the conductivity of the strata.

Let us next suppose that the electromotive force E is con-

tinued uniform for an indefinitely long time, or till a uniform

current of conduction equal to p is established through the

system.

We have then X1 = r
xp, etc., and therefore by (10),

Eq = (
ri«i + r

2a2 + kc.)p. (1 7)

If R be the total resistance of the system,

V
-R= y=rlal + r

2a2 + kc. (18)

In this state we have by (2),

so that o-12 = (-^ %-)p- (19)12 Uirk2 \-nk
x
>r v '

If we now suddenly connect the extreme strata by means of a

conductor of small resistance, E will be suddenly changed from

its original value E
Q to zero, and a quantity Q of electricity will

pass through the conductor.

To determine Q we observe that if X{ be the new value ofX
x ,

then by (13), Z/= Z^iw^Q. (20)

Hence, by (10), putting E = 0,

= at
Xx + &c. + 4tt (a^ + a2

k2 + &c.) Q, (21)

or = E +±Q. (22)

Hence Q — —CE where G is the capacity, as given by

equation (16). The instantaneous discharge is therefore equal

to the instantaneous charge.

Let us next suppose the connexion broken immediately after
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this discharge. We shall then have u = 0, so that by equation (8),

X
x
= X{e~ i ',

(23)

where X{ is the initial value after the discharge.

Hence, at any time t, we have by (23) and (20)

The value of E at any time is therefore

^o|(^1-4 7raA^)«"^V(^-^aAC') e
-^ + &c.} } (24)

and the instantaneous discharge after any time t is EG. This is

called the residual discharge,

If the ratio of r to k is the same for all the strata, the value
of E will be reduced to zero. If, however, this ratio is not the

same, let the terms be arranged according to the values of this

ratio in descending order of magnitude.

The sum of all the coefficients is evidently zero, so that when
t = 0, E = 0. The coefficients are also in descending order of

magnitude, and so are the exponential terms when t is positive.

Hence, when t is positive, E will be positive *,so that the residual

discharge is always of the same sign as the primary discharge.

When t is indefinitely great all the terms disappear unless any
of the strata are perfect insulators, in which case r

x
is infinite for

that stratum, and R is infinite for the whole system, and the
final value of E is not zero but

E^E^l-^a^C), (25)

Hence, when some, but not all, of the strata are perfect in-

sulators, a residual discharge may be permanently preserved in
the system.

330.] We shall next determine the total discharge through a
wire of resistance R kept permanently in connexion with the
extreme strata of the system, supposing the system first charged
by means of a long-continued application of the electromotive

force E.

* {This is perhaps more easily seen if we write (24) as
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At any instant we have

E = a
1
r
lpl + a

2
r2p2 + kc. +RQ

u = 0, (26)

and also, by (3), u = Pi+ 4r' (
27

)

Hence (B + R )u = a.r, ^+a
2
r2

C^ + &c. (28)

Integrating with respect to t in order to find Q, we get

(R +R )Q = a
1
r
1 (//^/1) + a

2
r
2(//-/2) + &c, (29)

where/! is the initial, and// the final value of/r

In this case// = 0, and by (2) and (20) fx
= E ( * - C) •

Hence (R +R )Q = - ^(°^p + "t^ + &c + ^ Ci2
'
(30)

"

12
bs^o,^^-^)]' (31)

where the summation is extended to all quantities of this form

belonging to every pair of strata.

It appears from this that Q is always negative, that is to say,

in the opposite direction to that of the current employed in

charging the system.

This investigation shews that a dielectric composed of strata

of different kinds may exhibit the phenomena known as electric

absorption and residual discharge, although none of the sub-

stances of which it is made exhibit these phenomena when
alone. An investigation of the cases in which the materials are

arranged otherwise than in strata would lead to similar results,

though the calculations would be more complicated, so that we
may conclude that the phenomena of electric absorption may be

expected in the case of substances composed of parts of different

kinds, even though these individual parts should be micro-

scopically small*.

It by no means follows that every substance which exhibits

this phenomenon is so composed, for it may indicate a new kind

of electric polarization of which a homogeneous substance may

* {Rowland and Nichols have shewn that crystals of Iceland Spar which are very
homogeneous shew no Electric Absorption, Phil. Mag. xi. p. 414, 1881. Muraoka
found that while paraffin and xylol shewed no residual charge when separate, a layer

of xylol on a layer of paraffin did. Wied. Ann. 40, 331, 1890.}
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be capable, and this in some cases may perhaps resemble electro-

chemical polarization much more than dielectric polarization.

The object of the investigation is merely to point out the true

mathematical character of the so-called electric absorption, and

to shew how fundamentally it differs from the phenomena of

heat which seem at first sight analogous.

331.] If we take a thick plate of any substance and heat it

on one side, so as to produce a flow of heat through it, and if

we then suddenly cool the heated side to the same temperature

as the other, and leave the plate to itself, the heated side of the

plate will again become hotter than the other by conduction

from within.

Now an electrical phenomenon exactly analogous to this can

be produced, and actually occurs in telegraph cables, but its

mathematical laws, though exactly agreeing with those of heat,

differ entirely from those of the stratified condenser.

In the case of heat there is true absorption of the heat into

the substance with the result of making it hot. To produce a

truly analogous phenomenon in electricity is impossible, but we
may imitate it in the following way in the form of a lecture-

room experiment.

Let A lt A 2 , &c. be the inner conducting surfaces of a series of

condensers, of which B , Bx , B2 , &c. are the outer surfaces.

,c
r^Vr%^^

Fig. 26.

Let A
t , A 2 , &c. be connected in series by connexions of resist-

ances jR, and let a current be passed along this series from left to

right.

Let us first suppose the plates B , Blt B2 , each insulated and

free from charge. Then the total quantity of electricity on each
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of the plates B must remain zero, and since the electricity on the

plates A is in each case equal and opposite to that of the opposed

surface they will not be electrified, and no alteration of the

current -will be observed.

But let the plates B be all connected together, or let each be

connected with the earth. Then, since the potential of A x
is

positive, while that of the plates B is zero, A x will be positively

electrified and Bx
negatively.

If Plt P2 , &c. are the potentials of the plates A ly A 2y &c, and C
the capacity of each, and if we suppose that a quantity of elec-

tricity equal to Q passes through the wire on the left, Qx
through

the connexion Rx , and so on, then the quantity which exists on

the plate A
x
is Q ~Q

X , and we have

Qo-Qi = c%.

Similarly Qt-Q2
= GP2t

and so on.

But by Ohm's Law we have

We have supposed the values of C the same for each plate,

if we suppose those of R the same for each wire, we shall have

a series of equations of the form

If there are n quantities of electricity to be determined, and

if either the total electromotive force, or some other equivalent

condition be given, the differential equation for determining any

one of them will be linear and of the nth. order.

By an apparatus arranged in this way, Mr. Varley succeeded

in imitating the electrical action of a cable 12,000 miles long.

When an electromotive force is made to act along the wire on

the left hand, the electricity which flows into the system is at

first principally occupied in charging the different condensers

beginning with A
x , and only a very small fraction of the current

appears at the right hand till a considerable time has elapsed.

If galvanometers be placed in circuit at Rlt R2i &c. they will be
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affected by the current one after another, the interval between
the times of equal indications being greater as we proceed to the

right.

332.] In the case of a telegraph cable i:he conducting wire

is separated from conductors outside by a cylindrical sheath

of gutta-percha, or other insulating material. Each portion

of the cable thus becomes a condenser, the outer surface of

which is always at potential zero. Hence, in a given portion

of the cable, the quantity of free electricity at the surface

of the conducting wire is equal to the product of the potential

into the capacity of the portion of the cable considered as a

condenser.

If a
t , a2 are the outer and inner radii of the insulating sheath,

and if K is its specific dielectric capacity, the capacity of unit of

length of the cable is, by Art. 126,

c=-^_. (1)

2 log-1

Let v be the potential at any point of the wire, which we may
consider as the same at every part of the same section.

Let Q be the total quantity of electricity which has passed
through that section since the beginning of the current. Then
the quantity which at the time t exists between sections at x
and at x + bx, is

«-(«+£,„), or -f^,
and this is, by what we have said, equal to cvbx.

Hence cv = _^. (2)

Again, the electromotive force at any section is—— > and by
Ohm's Law, 7 Jri

ax

where k is the resistance of unit of length of the conductor, and
dQ . ,.

-rr is the strength of the current. Eliminating Q between (2)

and (3), we find ^
e!c s =

d^- w
This is the partial differential equation which must be solved

in order to obtain the potential at any instant at any point of



334-] HYDEOSTATICAL ILLUSTRATION. 461

the cable. It is identical with that which Fourier gives to

determine the temperature at any point of a stratum through

which heat is flowing in a direction normal to the stratum. In

the case of heat c represents the capacity of unit of volume, or

what Fourier denotes by CD, and k represents the reciprocal of

the conductivity.

If the sheath is not a perfect insulator, and if kx
is the resist-

ance of unit of length of the sheath to conduction through it in

a radial direction, then if px
is the specific resistance of the

insulating material, it is easy to shew that

K = wzPilog<jr- (
5
)

The equation (2) will no longer be true, for the electricity is

expended not only in charging the wire to the extent represented

by cv, but in escaping at a rate represented by v/kx . Hence the

rate of expenditure of electricity will be

d2Q dv 1 , v

dxdt dt &! '
w

whence, by comparison with (3), we get

h dv_ d2v k , .

Ck
~dt-dtf-\

V
' {7)

and this is the equation of conduction of heat in a rod or ring

as given by Fourier *.

333.] If we had supposed that a body when raised to a high

potential becomes electrified throughout its substance as if elec-

tricity were compressed into it, we should have arrived at equa-

tions of this very form. It is remarkable that Ohm himself,

misled by the analogy between electricity and heat, entertained

an opinion of this kind, and was thus, by means of an erroneous

opinion, led to employ the equations of Fourier to express the

true laws of conduction of electricity through a long wire, long

before the real reason of the appropriateness of these equations

had been suspected.

Mechanical Illustration of the Properties of a Dielectric.

334.] Five tubes of equal sectional area A, B,C, D and P are

arranged in circuit as in the figure. A, B, G and D are verti-

cal and equal, and P is horizontal.

* Thdorie de la Chaleur, Art. 105.
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The lower halves of A, B, C, D axe filled with mercury, their

upper halves and the horizontal tube P are filled with water.

A tube with a stopcock Q connects the lower part of A and B
with that of G and D, and a piston P is made to slide in the

horizontal tube.

Let us begin by supposing that the level of the mercury in the

four tubes is the same, and that it is indicated by A , B , C ,D0y

that the piston is at P , and that

1 I T"\ the stopcock Q is shut.

Now let the piston be moved
from P to Pj, a distance a. Then

since the sections of all the tubes

are equal, the level of the mercury

in A and C will rise a distance a,

or to A l
and C

x , and the mercury

in B and D will sink an equal

distance a, or to Bx
and Dx .

The difference of pressure on

the two sides of the piston will

be represented by 4 a.

This arrangement may serve to

represent the state of a dielectric

acted on by an electromotive force

lo 4 a.

Fig. 27. The excess of water in the tube

D may be taken to represent a

positive charge of electricity on one side of the dielectric, and

the excess of mercury in the tube A may represent the negative

charge on the other side. The excess of pressure in the tube P
on the side of the piston next D will then represent the excess of

potential on the positive side of the dielectric.

If the piston is free to move it will move back to P and be

in equilibrium there. This represents the complete discharge of

the dielectric.

During the discharge there is a reversed motion of the liquids

throughout the whole tube, and this represents that change of

electric displacement which we have supposed to take place in a

dielectric.

I have supposed every part of the system of tubes filled with

incompressible liquids, in order to represent the property of all

/
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electric displacement that there is no real accumulation of elec-

tricity at any place.

Let us now consider the effect of opening the stopcock Q while

the piston P is at P
x

.

The levels of A
x
and D

x
will remain unchanged, but those of

B and C will become the same, and will coincide with B
and C .

The opening of the stopcock Q corresponds to the existence of

a part of the dielectric which has a slight conducting power, but

which does not extend through the whole dielectric so as to form

an open channel.

The charges on the opposite sides of the dielectric remain

insulated, but their difference of potential diminishes.

In fact, the difference of pressure on the two sides of the

piston sinks from 4 a to 2a during the passage of the fluid

through Q.

If we now shut the stopcock Q and allow the piston P to

move freely, it will come to equilibrium at a point P2 > ana" *ne

discharge will be apparently only half of the charge.

The level of the mercury in A and B will be \a above its

original level, and the level in the tubes C and D will be \a
below its original level. This is indicated by the levels A

2 , B2 ,

C2
,B

2 .

If the piston is now fixed and the stopcock opened, mercury
will flow from B to C till the level in the two tubes is again at

B and G . There will then be a difference of pressure = a on
the two sides of the piston P. If the stopcock is then closed and
the piston P left free to move, it will again come to equilibrium

at a point i^, half way between P
2
and P . This corresponds to

the residual charge which is observed when a charged dielectric

is first discharged and then left to itself. It gradually recovers

part of its charge, and if this is again discharged a third charge
is formed, the successive charges diminishing in quantity. In

the case of the illustrative experiment each charge is half of

the preceding, and the discharges, which are •§-, J, &c. of the

original charge, form a series whose sum is equal to the original

charge.

If, instead of opening and closing the stopcock, we had allowed

it to remain nearly, but not quite, closed during the whole ex-

periment, we should have had a case resembling that of the
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electrification of a dielectric which is a perfect insulator and yet

exhibits the phenomenon called ' electric absorption.'

To represent the case in which there is true conduction

through the dielectric we must either make the piston leaky,

or we must establish a communication between the top of the

tube A and the top of the tube- D.

In this way we may construct a mechanical illustration of the

properties of a dielectric of any kind, in which the two elec-

tricities are represented by two real fluids, and the electric

potential is represented by fluid pressure. Charge and discharge

are represented by the motion of the piston P, and electromotive

force by the resultant force on the piston.



CHAPTEE XI.

THE MEASUREMENT OP ELECTRIC EESISTANCE.

335.] In the present state of electrical science, the deter-

mination of the electric resistance of a conductor may be con-

sidered as the cardinal operation in electricity, in the same
sense that the determination of weight is the cardinal operation

in chemistry.

The reason of this is that the determination in absolute

measure of other electrical magnitudes, such as quantities of

electricity, electromotive forces, currents, &c, requires in each

case a complicated series of operations, involving generally

observations of time, measurements of distances, and deter-

minations of moments of inertia, and these operations, or at

least some of them, must be repeated for every new deter-

mination, because it is impossible to preserve a unit of elec-

tricity, or of electromotive force, or of current, in an unchange-

able state, so as to be available for direct comparison.

But when the electric resistance of a properly shaped con-

ductor of a properly chosen material has been once determined,

it is found that it always remains the same for the same
temperature, so that the conductor may be used as a standard

of resistance, with which that of other conductors can be

compared, and the comparison of two resistances is an operation

which admits of extreme accuracy.

When the unit of electrical resistance has been fixed on,

material copies of this unit, in the form of ' Resistance Coils,'

are prepared for the use of electricians, so that in every part

of the world electrical resistances may be expressed in terms

of the same unit. These unit resistance coils are at present

the only examples of material electric standards which can

be preserved, copied, and used for the purpose of measure-

ment *. Measures of electrical capacity, which are also of great

* { The Clark's cell as a standard of Electromotive Force may now claim to be an
exception to this statement. }
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importance, are still defective, on account of the disturbing in-

fluence of electric absorption.

336.] The unit of resistance may be an entirely arbitrary one,

as in the case of Jacobi's Etalon, which was a certain copper

wire of 22-4932 grammes weight, 7-61975 metres length, and

0-667 millimetres diameter. Copies of this have been made

by Leyser of Leipsig, and are to be found in different places.

According to another method the unit may be defined as the

resistance of a portion of a definite substance of definite

dimensions. Thus, Siemens unit is defined as the resistance of

a column of mercury of one metre in length, and one square

millimetre in section, at the temperature of 0°C.

337.] Finally, the unit may be defined with reference to the

electrostatic or the electromagnetic system of units. In practice

the electromagnetic system is used in all telegraphic operations,

and therefore the only systematic units actually in use are those

of this system.

In the electromagnetic system, as we shall shew at the proper

place, a resistance is a quantity of the dimensions of a velocity,

and may therefore be expressed as a velocity. See Art. 628.

338.] The first actual measurements on this system were

made by Weber, who employed as his unit one millimetre per

second. Sir W. Thomson afterwards used one foot per second

as a unit, but a large number of electricians have now agreed

to use the unit of the British Association, which professes to

represent a resistance which, expressed as a velocity, is ten

millions of metres per second. The magnitude of this unit is

more convenient than that of Weber's unit, which is too small.

It is sometimes referred to as the B.A. unit, but in order to

connect it with the name of the discoverer of the laws of

resistance, it is called the Ohm.

339.] To recollect its value in absolute measure it is useful

to know that ten millions of metres is professedly the distance

from the pole to the equator, measured along the meridian of

Paris. A body, therefore, which in one second travels along

a meridian from the pole to the equator would have a velocity

which, on the electromagnetic system, is professedly represented

by an Ohm.
I say professedly, because, if more accurate researches should

prove that the Ohm, as constructed from the British Associa-
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tion's material standards, is not really represented by this

velocity, electricians would not alter their standards, but would

apply a correction *. In the same way the metre is professedly

one ten-millionth of a certain quadrantal arc, but though this is

found not to be exactly true, the length of the metre has

not been altered, but the dimensions of the earth are expressed

by a less simple number.

According to the system of the British Association, the ab-

solute value of the unit is originally chosen so as to represent

as nearly as possible a quantity derived from the electromagnetic

absolute system.

340.] When a material unit representing this abstract quantity

has been made, other standards are constructed by copying

this unit, a process capable of extreme

accuracy—of much greater accuracy

than, for instance, the copying of foot-

rules from a standard foot.

These copies, made of the most

permanent materials, are distributed

over all parts of the world, so that

it is not likely that any difficulty will

be found in obtaining copies of them
if the original standards should be lost.

But such units as that of Siemens
can without very great labour be re-

constructed with considerable accuracy,

so that as the relation of the Ohm to

Siemens unit is known, the Ohm can

be reproduced even without having a
standard to copy, though the labour is

much greater and the accuracy much
less than by the method of copying.

Finally, the Ohm may be reproduced

by the electromagnetic method by which
it was originally determined. This method, which is con-

siderably more laborious than the determination of a foot from

* {Lord Rayleigh's and Mrs. Sidgwick's experiments have shewn that the British
Association Unit is only -9867 earth quadrants a second, it is thus smaller than was in-
tended by nearly L3 per cent. The Congress of Electricians at Paris in 1884 adopted
a new unit of resistance, the ' Legal Ohm,' which is denned as the resistance at 0°C. of
a column of mercury 106 centimetres long and 1 square millimetre in cross section.

}

Fig. 28.
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the seconds pendulum, is probably inferior in accuracy to that

last mentioned. On the other hand, the determination of

the electromagnetic unit in terms of the Ohm with an amount
of accuracy corresponding to the progress of electrical science,

is a most important physical research and well worthy of

being repeated.

The actual resistance coils constructed to represent the Ohm
were made of an alloy of two parts of silver and one of platinum

in the form of wires from -5 millimetres to -8 millimetres

diameter, and from one to two metres in length. These wires

were soldered to stout copper electrodes. The wire itself was
covered with two layers of silk, imbedded in solid paraffin,

and enclosed in a thin brass case, so that it can be easily

brought to a temperature at which its resistance is accurately

one Ohm. This temperature is marked on the insulating sup-

port of the coil. (See Fig. 28.)

On the Forms of Resistance Coils.

341.] A Resistance Coil is a conductor capable of being easily

placed in the voltaic circuit, so as to introduce into the circuit

a known resistance.

The electrodes or ends of the coil must be such that no appre-

ciable error may arise from the mode of making the connexions.

For resistances of considerable magnitude it is sufficient that

the electrodes should be made of stout copper wires or rods well

amalgamated with mercury at the ends, and that the ends should

be made to press on flat amalgamated copper surfaces placed in

mercury cups.

For very great resistances it is sufficient that the electrodes

should be thick pieces of brass, and that the connexions should

be made by inserting a wedge of brass or copper into the interval

between them. This method is found very convenient.

The resistance coil itself consists of a wire well covered with

silk, the ends of which are soldered permanently to the electrodes.

The coil must be so arranged that its temperature may be

easily observed. For this purpose the wire is coiled on a tube

and covered with another tube, so that it may be placed in

a vessel of water, and that the water may have access to

the inside and the outside of the coil.
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To avoid the electromagnetic effects of the current in the coil

the wire is first doubled back on itself and then coiled on the

tube, so that at every part of the coil there are equal and

opposite currents in the adjacent parts of the wire.

When it is desired to keep two coils at the same temperature

the wires are sometimes placed side by side and coiled up

together. This method is especially useful when it is more

important to secure equality of resistance than to know the

absolute value of the resistance, as in the case of the equal arms

of Wheatstone's Bridge (Art. 347).

When measurements of resistance were first attempted, a resist-

ance coil, consisting of an uncovered wire coiled in a spiral

groove round a cylinder of insulating material, was much used.

It was called a Rheostat. The accuracy with which it was

found possible to compare resistances was soon found to be

inconsistent with the use of any instrument in which the

contacts are not more perfect than can be obtained in the

rheostat. The rheostat, however, is still used for adjusting

the resistance where accurate measurement is not required.

Resistance coils are generally made of those metals whose

resistance is greatest and which vary least with temperature.

German silver fulfils these conditions very well, but some

specimens are found to change their properties during the lapse

of years. Hence, for standard coils, several pure metals, and

also an alloy of platinum and silver, have been employed, and

the relative resistance of these during several years has been

found constant up to the limits of modem accuracy.

342.] For very great resistances, such as several millions of

Ohms, the wire must be either very long or very thin, and the

construction of the coil is expensive and difficult. Hence

tellurium and selenium have been proposed as materials for

constructing standards of great resistance. A very ingenious

and easy method of construction has been lately proposed by

Phillips *. On a piece of ebonite or ground glass a fine pencil-

line is drawn. The ends of this filament of plumbago are con-

nected to metallic electrodes, and the whole is then covered with

insulating varnish. If it should be found that the resistance

of such a pencil-line remains constant, this will be the best

method of obtaining a resistance of several millions of Ohms.

* Phil. Mag., July, 1870.
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343.] There are various arrangements by which resistance

coils may be easily introduced into a circuit.

For instance, a series of coils of which the resistances are 1, 2,

4, 8, 16, &c, arranged according to the powers of 2, may be

placed in a box in series.

The electrodes consist of stout brass plates, so arranged on
the outside of the box that by inserting a brass plug or wedge
between two of them as a shunt, the resistance of the corre-

sponding coil may be put out of the circuit. This arrangement

was introduced by Siemens.

Each interval between the electrodes is marked with the

resistance of the corresponding coil, so that if we wish to make

Fig. 29.

the resistance in the box equal to 107 we express 107 in the

binary scale as 64 + 32 + 8 + 2 + 1 or 1 10101 1. We then take the

plugs out of the holes corresponding to 64, 32, 8, 2 and 1, and
leave the plugs in 16 and 4.

This method, founded on the binary scale, is that in which
the smallest number of separate coils is needed, and it is also

that which can be most readily tested. For if we have another
coil equal to 1 we can test the quality of 1 and 1', then that of

1 + 1' and 2, then that of 1 + 1' + 2 and 4, and so on.

The only disadvantage of the arrangement is that it requires

a familiarity with the binary scale of notation, which is not
generally possessed by those accustomed to express every number
in the decimal scale.

344.] A box of resistance coils may be arranged in a different

way for the purpose of measuring conductivities instead of

resistances.
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Fig. 30.

The coils, are placed so that one end of each is connected with

a long thick piece of metal which forms one electrode of the box,

and the other end is connected with a stout piece of brass plate

as in the former case.

The other electrode of the box is a long brass plate, such that

by inserting brass plugs between it and the electrodes of the

coils it may be connected

to the first electrode through

any given set of coils. The

conductivity of the box is

then the sum of the conduc-

tivities of the coils.

In the figure, in which the

resistances of the coils are

1, 2, 4, &c, and the plugs are inserted at 2 and 8, the con-

ductivity of the box is -| + 1 = f, and the resistance of the box is

therefore § or 1-6.

This method of combining resistance coils for the measurement

of fractional resistances was introduced by Sir W. Thomson

under the name of the method of multiple arcs. See Art. 276.

On the Comparison of Resistances.

345.] If E is the electromotive force of a battery, and R the

resistance of the battery and its connexions, including the gal-

vanometer used in measuring the current, and if the strength of

the current is I when the battery connexions are closed, and

I
x , I2

when additional resistances rv r2 are introduced into the

circuit, then, by Ohm's Law,

E=IR = I^R + rJ = I2
(R + r2).

Eliminating E, the electromotive force of the battery, and jR

the resistance of the battery and its connexions, we get Ohm's

formula r
t _ (I— I

x )
I2

^-(/-/
2)V

This method requires a measurement of the ratios of 1, Ix and

J2 , and this implies a galvanometer graduated for absolute

measurements.

If the resistances rx
and r2 are equal, then Ix and I2 are equal,

and we can test the equality of currents by a galvanometer

which is not capable of determining their ratios.

But this is rather to be taken as an example of a faulty
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method than as a practical method of determining resistance.

The electromotive force E cannot be maintained rigorously

constant, and the internal resistance of the battery is also

exceedingly variable, so that any methods in which these are

assumed to be even for a short time constant are not to be
depended on.

346.] The comparison of resistances can be made with extreme

accuracy by either of two methods, in which the result is in-

dependent of variations of R and E.

The first of these methods depends on the use of the differ-

ential galvanometer, an instrument in which there are two coils,

the currents in which are independent of each other, so that

when the currents are made to flow in opposite directions they

act in opposite directions on the needle, and when the ratio of

these currents is that ofm to n they have no resultant effect on
the galvanometer needle.

Let Il3 12 be the currents through the two coils of the gal-

vanometer, then the deflexion of the needle may be written

8 = m/j—nl2 .

Now let the battery current I be divided between the coils of

the galvanometer, and let resistances A and B be introduced

into the first and second coils respectively. Let the remainder

of the resistances of the coils and their connexions be a and /3

respectively, and let the resistance of the battery and its con-

nexions between C and D be r, and its electromotive force E.
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Then we find, by Ohm's Law, for the difference of potentials

between C and D,

I
1
(A + a) = I

a
(B+ p) = E-Ir,

and since I
x + I2

=: J,

T T?
B + P T VA+a T yA+a +B + P1= D~' 2= ~D~

'

D
'

where D = (A+a)(B + p) + r (A + a + B + p).

The deflexion of the galvanometer needle is therefore

h = ~{m{B+p)-n(A + a)},

and if there is no observable deflexion, then we know that the

quantity enclosed in brackets cannot differ from zero by more

than a certain small quantity, depending on the power of the

battery, the suitableness of the arrangement, the delicacy of the

galvanometer, and the accuracy of the observer.

Suppose that B has been adjusted so that there is no apparent

deflexion.

Now let another conductor A' be substituted for A, and let

A' be adjusted till there is no apparent deflexion. Then evi-

dently to a first approximation A' — A.

To ascertain the degree of accuracy of this estimate, let the

altered quantities in the second observation be accented, then

m(B+ p)-n(A + a) = -^8,

J)'
<m{B + p)-n(A' + a) = -^,5'.

D D'
Hence n

(
A'- A) = -^ 8- -^, 5'.

If 8 and 8', instead of being both apparently zero, had been

only observed to be equal, then, unless we also could assert that

E = E\ the right-hand side of the equation might not be zero.

In fact, the method would be a mere modification of that already

described.

The merit of the method consists in the fact that the thing

observed is the absence of any deflexion, or in other words, the

method is a Null method, one in which the non-existence of a

force is asserted from an observation in which the force, if it

had been different from zero by more than a certain small

amount, would have produced an observable effect.
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Null methods are of great value where they can be employed,

but they can only be employed where we can cause two equal

and opposite quantities of the same kind to enter into the

experiment together.

In the case before us both 8 and 5' are quantities too small to

be observed, and therefore any change in the value of E will not

affect the accuracy of the result.

The actual degree of accuracy of this method might be ascer-

tained by making a number of observations in each of which A'
is separately adjusted, and comparing the result of each observa-

tion with the mean of the whole series.

But by putting A' out of adjustment by a known quantity,

as, for instance, by inserting at A or at B an additional resist-

ance equal to a hundredth part of A or of B, and then observing

the resulting deviation of the galvanometer needle we can esti-

mate the number of degrees corresponding to an error of one per

cent. To find the actual degree of precision we must estimate

the smallest deflexion which could not escape observation, and
compare it with the deflexion due to an error of one per cent.

*If the comparison is to be made between A and B, and if the

positions of A and B are exchanged, then the second equation

becomes ^ ,

m(A+p)-n(B + a)=-fib' }

D D'
whence (m + n)(B— A) = -=b— -™ §'.

If m and n, A and B, a and /3, E and E' are approximately

equal, then

Here 8 — 8' may be taken to be the smallest observable deflexion

of the galvanometer.

If the galvanometer wire be made longer and thinner, retaining

the same total mass, then n will vary as the length of the wire
and a as the square of the length. Hence there will be a mini-

. f (A + a)(A+a + 2r)mum value of — ' when
n

* This investigation is taken from Weber's treatise on Galvanometry. Gdttingen
Transactions, x. p. 65.



347-] wheatstone's bridge. 475

If we suppose r, the battery resistance, negligible compared

with A, this gives a = \A\

or, the resistance of each coil of the galvanometer should be

one-third of the resistance to be measured.

We then find 8 A 2

9nE K J

If we allow the current to flow through one only of the coils

of the galvanometer, and if the deflexion thereby produced is A
(supposing the deflexion strictly proportional to the deflecting

force), then

nE 3nE.„ , 1 .

A = -. = — - if r = and a = - A.
A + a + r 4 A 3

B-A 2 5-5'
Hence -—,— = —

A 3 A

In the differential galvanometer two currents are made to

produce equal and opposite effects on the suspended needle. The

force with which either current acts on the needle depends not

only on the strength of the current, but on the position of the

windings of the wire with respect to the needle. Hence, unless

the coil is very carefully wound, the ratio of m to n may change

when the position of the needle is changed, and therefore it is

necessary to determine this ratio by proper methods during each

course of experiments if any alteration of the position of the

needle is suspected.

The other null method, in which Wheatstone's Bridge is used,

requires only an ordinary galvanometer, and the observed zero

deflexion of the needle is due, not to the opposing action of

two currents, but to the non-existence of a current in the wire.

Hence we have not merely a null deflexion, but a null current

as the phenomenon observed, and no errors can arise from want
of regularity or change of any kind in the coils of the galvano-

meter. The galvanometer is only required to be sensitive enough

to detect the existence and direction of a current, without in any

way determining its value or comparing its value with that of

another current.

347.] Wheatstone's Bridge consists essentially of six con-

ductors connecting four points. An electromotive force E is

made to act between two of the points by means of a voltaic
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battery introduced between B and C. The current between the

other two points and A is measured by a galvanometer.

Under certain circumstances this current

becomes zero. The conductors BC and

A are then said to be conjugate to each

other, which implies a certain relation

between the resistances of the other four

conductors, and this relation is made use

of in measuring resistances.

If the current in OA is zero, the

potential at must be equal to that

at A. Now when we know the potentials at B and C we
can determine those at and A by the rule given in Art. 275,

provided there is no current in OA,

Fig. 32.

= By + C(3 A = Bb + Cc

b + cp + y

whence the condition is q — cy?

where b, c, /3, y are the resistances in CA, AB, BO, and OC re-

spectively.

To determine the degree of accuracy attainable by this method

we must ascertain the strength of the current in OA when this

condition is not fulfilled exactly.

Let A, B, C and be the four points. Let the currents along

BC, OA and AB be x, y and z, and the resistances of these

conductors a, b and c. Let the currents along OA, OB and OC
^e £> *?> C and the resistances a, /3 and y. Let an electromotive

force E act along BC Required the current $ along OA.
Let the potentials at the points A, B, and be denoted by

the symbols A, B, C and 0. The equations of conduction are

ax = B— C + E, a£=0-A,
by = C-A, (Sr] = 0-B,
cz = A-B, yC=0-C;

with the equations of continuity

£+y-z = 0,

r) + z—x— 0,

C+«-2/= 0.

By considering the system as made up of three circuits OBC,
OCA and OAB, in which the currents are x, y, z respectively,
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and applying Kirchhoff's rule to each cycle, we eliminate the

values of the potentials 0, A, B, G, and the currents £ 77, £ and

obtain the following equations for x, y and z,

(a + p + y)x-yy -pz = E,

— yx + (b + y + a)y— az = 0,

— fix —ay +(c + a + j3)z= 0.

Hence, if we put

D= a + p + y —y -P
—y b+y+a —a
— /3 —a C+a+P
E

we find £= —(bp— cy),

W
and x = p{(b + y)(c + p) + a(b+c + p + y)}.

348.] The value of D may be expressed in the symmetrical

form,

D — abc + be {P + y) + ca (y + a)

+ ab(a + P) + (a + b + c){py + ya + a /3) *,

or, since we suppose the battery in the conductor a and the

galvanometer in a, we may put B the battery resistance for a

and G the galvanometer resistance for a. We then find

D = £G(b + c + p + y)+B(b + y)(c + p)

+ G(b + c){p + y) + bc(p + y) + Py(b + c).

If the electromotive force E were made to act along A, the

resistance of OA being still a, and if the galvanometer were

placed in BG, the resistance of BG being still a, then the value

of D would remain the same, and the current in BG due to the

electromotive force E acting along A would be equal to the

current in OA due to the electromotive force E acting in BG.

But if we simply disconnect the battery and the galvanometer,

and without altering their respective resistances connect the

battery to and A and the galvanometer to B and G, then in

the value of D we must exchange the values of B and G. If D'

be the value of D after this exchange, we find

D-D' = (G-B){(b + c)(p + y)-(b + y)(p + c)},

= (B-G){(b-p)(c~y)}.

* { D is the sum of the products of the resistances taken 3 at a time, leaving out

the product of any three that meet in a point.

}
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Let us suppose that the resistance of the galvanometer is

greater than that of the battery.

Let us also suppose that in its original position the galvano-
meter connects the junction of the two conductors of least

resistance 0, y with the junction of the two conductors of

greatest resistance b, c, or, in other words, we shall suppose that
if the quantities 6, c, y, /3 are arranged in order of magnitude,
b and c stand together, and y and /3 stand together. Hence the

quantities b—
fi and c—y are of the same sign, so that their

product is positive, and therefore D—D'ia of the same sign as

B-G.
If therefore the galvanometer is made to connect the junction

of the two greatest resistances with that of the two least, and if

the galvanometer resistance is greater than that of the battery,

then the value of D will be less, and the value of the deflexion

of the galvanometer greater, than if the connexions are ex-

changed.

The rule therefore for obtaining the greatest galvanometer
deflexion in a given system is as follows :

Of the two resistances, that of the battery and that of the

galvanometer, connect the greater resistance so as to join the two
greatest to the two least of the four other resistances.

349.] We shall suppose that we have to determine the ratio of

the resistances of the conductors AB and AC, and that this is to

be done by finding a point on the conductor BOC, such that

when the points A and are connected by a wire, in the course

of which a galvanometer is inserted, no sensible deflexion of the

galvanometer needle occurs when the battery is made to act

between B and C.

The conductor BOC may be supposed to be a wire of uniform
resistance divided into equal parts, so that the ratio of the resist-

ances of BO and OC may be read off at once.

Instead of the whole conductor being a uniform wire, we may
make the part near of such a wire, and the parts on each side

may be coils of any form, the resistances of which are accurately

known.

We shall now use a different notation instead of the sym-
metrical notation with which we commenced.

Let the whole resistance of BAG be R.

Let c — mR and b = (1 —m)R.
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Let the whole resistance of BOG be S.

Let /3 = nS and y — (l—n)S.

The value of n is read off directly, and that of m is deduced

from it when there is no sensible deviation of the galva-

nometer.

Let the resistance of the battery and its connexions be B, and

that of the galvanometer and its connexions G.

We find as before

D = G{BR + BS+RS}+m(l-m)R2 (B + S) + n{l-n)S2 (B + R)

+ (m + n— 2mn) BRS,

and if £ is the current in the galvanometer wire

j. ERS

,

\

In order to obtain the most accurate results we must make

the deviation of the needle as great as possible compared with

the value of (n— m). This may be done by properly choosing

the dimensions of the galvanometer and the standard resistance

wire.

It will be shewn, when we come to Galvanometry, Art. 716,

that when the form of a galvanometer wire is changed while

its mass remains constant, the deviation of the needle for unit

current is proportional to the length, but the resistance increases

as the square of the length. Hence the maximum deflexion is

shewn to occur when the resistance of the galvanometer wire is

equal to the constant resistance of the rest of the circuit.

In the present case, if 8 is the deviation,

b = CVG£
:

where G is some constant, and G is the galvanometer resistance

which varies as the square of the length of the wire. Hence we

find that in the value of -D, when d is a maximum, the part

involving G must be made equal to the rest of the expression.

If we also put m = n, as is the case if we have made a correct

observation, we find the best value of G to be

G = n(l-n)(R + S).

This result is easily obtained by considering the resistance

from A to through the system, remembering that BG, being

conjugate to AO, has no effect on this resistance.

In the same way we should find that if the total area of the
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acting surfaces of the battery is given, since in this case E is

proportional to VB, the most advantageous arrangement of

the battery is when
5 = RS

R + S
Finally, we shall determine the value of 8 such that a given

change in the value of n may produce the greatest galvanometer
deflexion. By differentiating the expression for f with respect

to S we find it is a maximum when

02 _ BR
(j>, & \

° ~B +R [It + n(l-ny
If we have a great many determinations of resistance to make

in which the actual resistance has nearly the same value, then it

may be worth while to prepare a galvanometer and a battery for

this purpose. In this case we find that the best arrangement is

S=R, B = iR, G = 2n(l-n)R,
and if n = ^,G = ±R

On the Use of Wheatstone's Bridge.

350.] We have already explained the general theory of Wheat-
stone's Bridge, we shall now consider some of its applications.

Fig. 33.

The comparison which can be effected with the greatest

exactness is that of two equal resistances.

Let us suppose that /3 is a standard resistance coil, and that

we wish to adjust y to be equal in resistance to /3.

Two other coils, b and c, are prepared which are equal or

nearly equal to each other, and the four coils are placed with
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their electrodes in mercury cups so that the current of the

battery is divided between two branches, one consisting of /3

and y and the other of b and c. The coils b and c are connected

by a wire PR, as uniform in its resistance as possible, and fur-

nished with a scale of equal parts.

The galvanometer wire connects the junction of /3 and y with

a point Q of the wire PR, and the point of contact Q is made

to vary till on closing first the battery circuit and then the

galvanometer circuit, no deflexion of the galvanometer needle

is observed.

The coils /3 and y are then made to change places, and a new

position is found for Q. If this new position is the same as

the old one, then we know that the exchange of /3 and y has

produced no change in the proportions of the resistances, and

therefore y is rightly adjusted. If Q has to be moved, the

direction and amount of the change will indicate the nature

and amount of the alteration of the length of the wire of y,

which will make its resistance equal to that of /3.

If the resistances of the coils b and c, each including part of

the wire PR up to its zero reading, are equal to that of b and c

divisions of the wire respectively, then, if x is the scale reading

of Q in the first case, and y that in the second,

c + x _ /3 c + y _ y

b—x y b— y~~
ft

y
2

.
,

(b + c)(y-x)
whence — = 1 + -—-—

—

T .

/3
2 (c + x)(b-y)

Since b—y is nearly equal to c + x, and both are great with

respect to x or y, we may write this

£ = *+*%=?•
ft

2 b + c

and y==/,( 1+2 |=|).

When y is adjusted as well as we can, we substitute for b and c

other coils of (say) ten times greater resistance.

The remaining difference between j3 and y will now produce

a ten times greater difference in the position of Q than with

the original coils b and c, and in this way we can continually

increase the accuracy of the comparison.

The adjustment by means of the wire with sliding contact
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piece is more quickly made than by means of a resistance box,

and it is capable of continuous variation.

The battery must never be introduced instead of the galvano-

meter into the wire with a sliding contact, for the passage of a
powerful current at the point of contact would injure the surface

of the wire. Hence this arrangement is adapted for the case in

which the resistance of the galvanometer is greater than that of

the battery.

When y the resistance to be measured, a the resistance of the

battery, and a the resistance of the galvanometer, are given,

the best values of the other resistances have been shewn by
Mr. Oliver Heaviside {Phil. Mag., Feb. 1873) to be

c = Vaa,

ay
a + y

a + y

ay
a + y
a + y

On the Measurement of Small Resistances.

351.] When a short and thick conductor is introduced into a
circuit its resistance is so small compared with the resistance

occasioned by unavoidable faults in the connexions, such as

want of contact or imperfect soldering,

that no correct value of the resistance

can be deduced from experiments made
in the way described above.

The object of such experiments is

generally to determine the specific

resistance of the substance, and it is

resorted to in cases when the substance

cannot be obtained in the form of a

long thin wire, or when the resistance

to transverse as well as to longitudinal conduction has to be
measured.

Sir W. Thomson* has described a method applicable to such
cases, which we may take as an example of a system of nine

conductors.

* Proc. R. S., June 6, 1861.
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The most important part of the method consists in measuring

the resistance, not of the whole length of the conductor, but of

the part between two marks on the conductor at some little

distance from its ends.

The resistance which we wish to measure is that experienced

by a current whose intensity is uniform in any section of the

conductor, and which flows in a direction parallel to its axis.

Now close to the extremities, when the current is introduced

by means of electrodes, either soldered, amalgamated, or simply

pressed to the ends of the conductor, there is generally a want of

uniformity in the distribution of the current in the conductor.

At a short distance from the extremities the current becomes

sensibly uniform. The student may examine for himself the

investigation and the diagrams of Art. 193, where a current is

introduced into a strip of metal with parallel sides through one

of the sides, but soon becomes itself parallel to the sides.

The resistances of the conductors between certain marks S, &'

and T, T' are to be compared.

The conductors are placed in series, and with connexions as

perfectly conducting as possible, in a battery circuit of small

resistance. A wire SVT is made to touch the conductors

at S and T, and S'V'T' is another wire touching them at S'

and T.
The galvanometer wire connects the points V and V of these

wires.

The wires SVT and S'V'T' are of resistance so great that the

resistance due to imperfect connexion at S, T, S' or T may be

neglected in comparison with the resistance of the wire, and
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V, V are taken so that the resistances in the branches of either

wire leading to the two conductors are nearly in the ratio of the

resistances of the two conductors.

Call H and F the resistances of the conductors 88' and T'T.

„ A and G those of the branches SV and VT.

„ P and R those of the branches S'V and FT.
„ Q that of the connecting piece 8'T'.

„ B that of the battery and its connexions.

„ G that of the galvanometer and its connexions.

The symmetry of the system may be understood from the

skeleton diagram. Fig. 34.

Fig. 36.

The condition that B the battery and the galvanometer
may be conjugate conductors is, in this case *,

Q
a
F_H

(
R_I\

a a +
\ n a) = 0.A • v<7 A'P + Q + R

Now the resistance of the connector Q is as small as we can
make it. If it were zero this equation would be reduced to

F _ H
C- A'

and the ratio of the resistances of the conductors to be compared
would be that of C to A, as in Wheatstone's Bridge in the
ordinary form.

In the present case the value of Q is small compared with P
or with R, so that if we select the points V, V so that the

* {This may easily be deduced by the rule given in the Appendix to Chap, vi.}
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ratio of R to G is nearly equal to that of P to A, the last term

of the equation will vanish, and we shall have

F:H::C:A.

The success of this method depends in some degree on the

perfection of the contact between the wires and the tested con-

ductors at S, S', T and T. In the following method, employed

by Messrs. Matthiessen and Hockin *, this condition is dispensed

with.

352.] The conductors to be tested are arranged in the manner

already described, with the connexions as well made as possible,

and it is required to compare the resistance between the marks

SS' on the first conductor with the resistance between the marks
TT on the second.

Two conducting points or sharp edges are fixed in a piece of

insulating material so that the distance between them can be

accurately measured. This apparatus is laid on the conductor to

be tested, and the points of contact with the conductor are then

at a known distance SS f
. Each of these contact pieces is con-

nected with a mercury cup, into which one electrode of the

galvanometer may be plunged.

The rest of the apparatus is arranged, as in Wheatstone's

Bridge, with resistance coils or boxes A and G, and a wire PR
with a sliding contact piece Q, to which the other electrode o

the galvanometer is connected.

Now let the galvanometer be connected to S and Q, and let

A
x
and G

t
be so arranged, and the position of Q, (viz. Qx ,) so

determined, that there is no current in the galvanometer wire.

Then we know that XS A + PO
SY

=
C

1

1 + Ql
R'

where XS, PQlt &c. stand for the resistances in these conductors.

From this we get

XS _ A
1 + PQl

XY~ A^G^PR'
Now let the electrode of the galvanometer be connected to #',

and let resistance be transferred from G to A (by carrying re-

sistance coils from one side to the other) till electric equilibrium

of the galvanometer wire can be obtained by placing Q at some

* Laboratory. Matthiessen and Hockin on Alloys.
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point of the wire, say Q2 . Let the values of C and A be now
C

2
and A 2 , and let

A
2 + C2 +PR = A

1
+ C

1
+PR = R.

Then we have, as before

XS' A 2

XY~
+ PQ2
R '

Whence
SS' A

2

XY~
-A. +Q^

R
In the same way, placing

conductor at TT and again

when the electrode is in T\

the apparatus on the

transferring resistance,

second

we get,

XT A,
XY~

+PQz
R '

and when it is in T,

XT _ A 4 + PQ4

XY~ R '

Whence
TT A4-A 3 + QZ Q,wnence xy _ R

We can now deduce the ratio of the resistances SS' and TT,

for

S& A 2
-A

t + Q,Q2

TT~ A4-A* + QzQt'
When great accuracy is not required we may dispense with

the resistance coils A and C, and we then find

^ _Ql Q2

t't-q.q;
The readings of the position of Q on a wire of a metre in

length cannot be depended on to less than a tenth of a milli-

metre, and the resistance of the wire may vary considerably in

different parts owing to inequality of temperature, friction, &c.

Hence, when great accuracy is required, coils of considerable

resistance are introduced at A and C, and the ratios of the

resistances of these coils can be determined more accurately

than the ratio of the resistances of the parts into which the wire

is divided at Q.

It will be observed that in this method the accuracy of the

determination depends in no degree on the perfection of the

contacts at S, S' or T, T.
This method may be called the differential method of using
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Wheatstone's Bridge, since it depends on the comparison of

observations separately made.

An essential condition of accuracy in this method is that the

resistance of the connexions should continue the same during

the course of the four observations required to complete the

determination. Hence the series of observations ought always

to be repeated in order to detect any change in the resistances *.

On the Comparison of Great Resistances.

353.] When the resistances to be measured are very great,

the comparison of the potentials at different points of the system

may be made by means of a delicate electrometer, such as the

Quadrant Electrometer described in Art. 219.

If the conductors whose resistances are to be measured are

placed in series, and the same current passed through them by
means of a battery of great electromotive force, the difference

of the potentials at the extremities of each conductor will be

proportional to the resistance of that conductor. Hence, by
connecting the electrodes of the electrometer with the extre-

mities, first of one conductor and then of the other, the ratio of

their resistances may be determined.

This is the most direct method of determining resistances. It

involves the use of an electrometer whose readings may be

depended on, and we must also have some guarantee that the

current remains constant during the experiment.

Four conductors of great resistance may also be arranged

as in Wheatstone's Bridge, and the Bridge itself may consist of

the electrodes of an electrometer instead of those of a galvano-

meter. The advantage of this method is that no permanent

current is required to produce the deviation of the electrometer,

whereas the galvanometer cannot be deflected unless a current

passes through the wire.

354.] When the resistance of a conductor is so great that the

current which can be sent through it by any available electro-

motive force is too small to be directly measured by a galvano-

meter, a condenser may be used in order to accumulate the

electricity for a certain time, and then, by discharging the

condenser through a galvanometer, the quantity accumulated

* {For another method of comparing small resistances, see Lord Rayleigh, Pro-
ceedings of the Cambridge Philosophical Society, vol. v. p. 50.

}
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may be estimated. This is Messrs. Bright and Clark's method
of testing the joints of submarine cables.

355.] But the simplest method of measuring the resistance of

such a conductor is to charge a condenser of great capacity and
to connect its two surfaces with the electrodes of an electrometer

and also with the extremities of the conductor. If E is the

difference of potentials as shewn by the electrometer, S the

capacity of the condenser, and Q the charge on either surface,

R the resistance of the conductor and x the current in it, then,

by the theory of condensers,

Q = SE.

By Ohm's Law, E = Rx,

and by the definition of a current,

dQ
X ~~dt'

Hence -Q = RS^>
t

and Q = Q e~*~*,

where Q is the charge at first when t = 0.

1

Similarly E = E e~x*

where E is the original reading of the electrometer, and E the

same after a time t. From this we find

n _ t

^{logX-log^}'

which gives R in absolute measure. In this expression a

knowledge of the value of the unit of the electrometer scale is

not required.

If S, the capacity of the condenser, is given in electrostatic

measure as a certain number of metres, then R is also given in

electrostatic measure as the reciprocal of a velocity.

If S is given in electromagnetic measure its dimensions are

j- t
and jR is a velocity.

Since the condenser itself is not a perfect insulator it is

necessary to make two experiments. In the first we determine

the resistance of the condenser itself, R , and in the second,

that of the condenser when the conductor is made to connect its
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surfaces. Let this be R\ Then the resistance, R, of the

conductor is given by the equation

1 _ 1 1

R R R
This method has been employed by MM. Siemens.

Thomson's* Method for the Determination of the Resistance

of a Galvanometer.

356.] An arrangement similar to Wheatstone's Bridge has

been employed with advantage by Sir W. Thomson in de-

termining the resistance of the galvanometer when in actual

Galvanometer

Fig. 37.

use. It was suggested to Sir W. Thomson by Mance's Method.

See Art. 357.

Let the battery be placed, as before, between B and G in the

figure of Article 347, but let the galvanometer be placed in G

A

instead of in OA. libfi— cy is zero, then the conductor OA is

conjugate to BG, and, as there is no current produced in A by
the battery in BG, the strength of the current in any other

conductor is independent of the resistance in OA. Hence, £ the

galvanometer is placed in GA its deflexion will remain the

same whether the resistance of OA is small or great. We
therefore observe whether the deflexion of the galvanometer

remains the same when and A are joined by a conductor

* Proe. B. S., Jan. 19, 1871.
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of small resistance, as when this connexion is broken, and if, by
properly adjusting the resistances of the conductors, we obtain

this result, we know that the resistance of the galvanometer is

where c, y, and /3 are resistance coils of known resistance.

It will be observed that though this is not a null method,

in the sense of there being no current in the galvanometer, it is

so in the sense of the fact observed being the negative one, that

the deflexion of the galvanometer is not changed when a certain

contact is made. An observation of this kind is of greater

value than an observation of the equality of two different

deflexions of the same galvanometer, for in the latter case there

is time for alteration in the strength of the battery or the

sensitiveness of the galvanometer, whereas when the deflexion re-

mains constant, in spite of certain changes which we can repeat

at pleasure, we are sure that the current is quite independent of

these changes.

The determination of the resistance of the coil of a galvano-

meter can easily be effected in the ordinary way of using

Wheatstone's Bridge by placing another galvanometer in OA.
By the method now described the galvanometer itself is em-
ployed to measure its own resistance.

Mance's * Method of Determining the Resistance of a Battery.

357.] The measurement of the resistance of a battery when in

action is of a much higher order of difficulty, since the resistance

of the battery is found to change considerably for some time

after the strength of the current through it is changed. In
many of the methods commonly used to measure the resistance

of a battery such alterations of the strength of the current

through it occur in the course of the operations, and therefore

the results are rendered doubtful.

In Mance's method, which is free from this objection, the battery

is placed in BG and the galvanometer in GA. The connexion

between and B is then alternately made and broken.

Now the deflexion of the galvanometer needle will remain un-

altered, however the resistance in OB be changed, provided that

OB and AG are conjugate. This may be regarded as a particular

* Proc. B. S., Jan. 19, 1871.
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case of the result proved in Art. 347, or may be seen directly on

the elimination of z and /3 from the equations of that article,

viz. we then have

(aa— cy) x + (cy + ca + cb + ba)y = Ea.

If y is independent of x, and therefore of j3, we must have

a a = cy. The resistance of the battery is thus obtained in terms

of c, y, a.

When the condition a a = cy is fulfilled, the current y through

the galvanometer is given by

Ea Ey
y = , = i .

cb + a(a + b -+ c) ab + y(a -\-b + c)

To test the sensibility of the method let us suppose that

the condition cy = a a is nearly, but not accurately, fulfilled,

Fi?. 38.

and that y is the current through the galvanometer when
and B are connected by a conductor of no sensible resistance,

and y1
the current when and B are completely disconnected.

To find these values we must make /? equal to and to oo in

the general formula for y, and compare the results.

The general value for y is

cy + py + ya + ap „
D **

where D denotes the same expression as in Art. 348. Putting

ft = 0, we get

yE
y — '-

uo ab + y(a + b + c) + c(aa— cy)

a + c

e(cy— aa)y2
. , ,= y + y(c + a) E aPPr0Ximat^
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putting /3 = oo , we get

_ E
7 ab (aa-cy)b

a + b + c + , , f

'

>

y \y + a)y

_.._ b(cy-aa) f
y

y(y + a) E'
From these values we find

V^-Vx _ a cy— aa
_

y y(c + a)(a + y)

The resistance, c, of the conductor AB should be equal to a,

that of the battery; a and y should be equal and as small

as possible ; and b should be equal to a + y.

Since a galvanometer is most sensitive when its deflexion is

small, we should bring the needle nearly to zero by means of

fixed magnets before making contact between and B.

In this method of measuring the resistance of the battery, the

current in the galvanometer is not in any way interfered with

during the operation, so that we may ascertain the resistance of

the battery for any given strength of current in the galvanometer

so as to determine how the strength of the current affects

the resistance *.

If y is the current in the galvanometer, the actual current

through the battery is x with the key down and xx with the

key up, where

/, b ac \ /, b Ax
o = y{ 1 +-+ / „J » ^i = 2/( 1 + -7-)'

y y(a + C) / v a + y'

the resistance of the battery is

cy
a = — j

a

and the electromotive force of the battery is

E = y(b + c + -(b + y))>

The method of Art. 356 for finding the resistance of the galva-

nometer differs from this only in making and breaking contact

* [In the Philosophical Magazine for 1877, vol. i. pp. 515-525, Mr. Oliver Lodge
has pointed out as a defect in Mance's method that as the electromotive force of the
batteYy depends upon the current passing through the battery, the deflexion of the
galvanometer needle cannot be the same in the two cases when the key is down or up,

if the equation aa = cy is true. Mr. Lodge describes a modification of Mance's
method which he has employed with success.]



358-3 COMPAEISON OP ELECTROMOTIVE FORCES. 493

between and A instead of between and B, and by exchanging

a and /3, a and b, we obtain for this case

2/o-2/i _ P cy-bp

y y(c + fi)(p + y)'

On the Comparison of Electromotive Forces.

358.] The following method of comparing the electromotive

forces of voltaic and thermoelectric arrangements, when no
current passes through them, requires only a set of resistance

coils and a constant battery.

Let the electromotive force E of the battery be greater than

that of either of the electromotors to be compared, then, if a

—©«.

CD.

Pig. 39.

sufficient resistance, JR
a , be interposed between the points A

x ,

B
x
of the primary circuit EB

X
A

X
E, the electromotive force from

B
x
to A

x
may be made equal to that of the electromotor E

x
.

If the electrodes of this electromotor are now connected with

the points A
x , Bx

no current will flow through the electromotor.

By placing a galvanometer Q
x
in the circuit of the electro-

motor E1} and adjusting the resistance between A
x
and B

Y

till the galvanometer G
x
indicates no current, we obtain the

equation ^ = R^
where R

x
is the resistance between A

x
and Blf and C is the

strength of the current in the primary circuit.

In the same way, by taking a second electromotor E
2
and

placing its electrodes at A 2
and B2 , so that no current is

indicated by the galvanometer G2 ,

E
2
— R2 C,
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where R2 is the resistance between A2 and B2
. If the observa-

tions of the galvanometers O
x
and

2
are simultaneous, the

value of C, the current in the primary circuit, is the same in

both equations, and we find

E
x

:E
t

: : R
x

: R2 .

In this way the electromotive forces of two electromotors may
be compared. The absolute electromotive force of an electro-

motor may be measured either electrostatically by means of

the electrometer, or electromagnetically by means of an absolute

galvanometer.

This method, in which, at the time of the comparison, there

is no current through either of the electromotors, is a modi-

fication of Poggendorff's method, and is due to Mr. Latimer

Clark, who has deduced the following values of electromotive

forces

:

Concentrated
Volts

solution of

Daniell I. Amalgamated Zinc H2S04 + 4 aq. Cu S04
Copper = 1079

II. ., H2S04 +12aq. CuS04
Copper =0-978

III.

I.

II.

Grove

H2S04 + 12 aq. Cu (N03) 2
Copper = 1-00

„ „ HN03 Carbon =1-964

„ „ sp. g. 1-38 Carbon = 1-888

H2S04 + 4aq. HN03 Platinum = 1-956

A Volt is an electromotive f01 ce equal to 100,000,000 units of the centimetre-

gramme-second system.



CHAPTER XII.

ON THE ELECTRIC KESISTANCE OE SUBSTANCES.

359.] There are three classes in which we may place different

substances in relation to the passage of electricity through them.

The first class contains all the metals and their alloys, some

sulphurets, and other compounds containing metals, to which we
must add carbon in the form of gas-coke, and selenium in the

crystalline form.

In all these substances conduction takes place without any

decomposition, or alteration of the chemical nature of the sub-

stance, either in its interior or where the current enters and

leaves the body. In all of them the resistance increases as the

temperature rises *.

The second class consists of substances which are called elec-

trolytes, because the current is associated with a decomposition

of the substance into two components which appear at the elec-

trodes. As a rule a substance is an electrolyte only when in

the liquid form, though certain colloid substances, such as glass

at 100° C, which are apparently solid, are electrolytes f. It would

appear from the experiments of Sir B. C Brodie that certain

gases are capable of electrolysis by a powerful electromotive

force.

In all substances which conduct by electrolysis the resistance

diminishes as the temperature rises.

The third class consists of substances the resistance of which

is so great that it is only by the most refined methods that the

passage of electricity through them can be detected. These are

called Dielectrics. To this class belong a considerable number
of solid bodies, many of which are electrolytes when melted,

some liquids, such as turpentine, naphtha, melted paraffin, &c,

* | Carbon is an exception to this statement; and Feussner has lately found that

the resistance of an alloy of manganese and copper diminishes as the temperature

increases. ]

f { W. Kohlrausch has shown that the haloid salts of silver conduct electrolytically

when solid, Wied. Ann. 17. p. 642, 1882.}



496 RESISTANCE. [360.

and all gases and vapours. Carbon in tbe form of diamond, and
selenium in the amorphous form, belong to this class.

The resistance of this class of bodies is enormous compared
with that of the metals. It diminishes as the temperature rises.

It is difficult, on account of the great resistance of these sub-
stances, to determine whether the feeble current which we can
force through them is or is not associated with electrolysis.

On the Electric Resistance of Metals.

360.] There is no part of electrical research in which more
numerous or more accurate experiments have been made than in

the determination of the resistance of metals. It is of the utmost
importance in the electric telegraph that the metal of which the

wires are made should have the smallest attainable resistance.

Measurements of resistance must therefore be made before select-

ing the materials. When any fault occurs in the line, its position

is at once ascertained by measurements of resistance, and these

measurements, in which so many persons are now employed,
require the use of resistance coils, made of metal the electrical

properties of which have been carefully tested.

The electrical properties of metals and their alloys have been
studied with great care by MM. Matthiessen, Vogt, and Hockin,
and by MM. Siemens, who have done so much to introduce exact

electrical measurements into practical work.

It appears from the researches of Dr. Matthiessen, that the
effect of temperature on the resistance is nearly the same for a
considerable number of the pure metals, the resistance at 100°C
being to that at 0°C in the ratio of 1-414 to 1, or 100 to 70-7.

For pure iron the ratio is 1-6197, and for pure thallium 1-458.

The resistance of metals has been observed by Dr. C. W.
Siemens * through a much wider range of temperature, extending
from the freezing-point to 350°C, and in certain cases to 1000°C.
He finds that the resistance increases as the temperature rises,

but that the rate of increase diminishes as the temperature rises.

The formula, which he finds to agree very closely both with the
resistances observed at low temperatures by Dr. Matthiessen and
with his own observations through a range of 1000°C, is

r = an + (3T+y,

* Proc. E.S., April 27, 1871.
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where T is the absolute temperature reckoned from — 273°C, and

a, /3, y are constants. Thus, for

Platinum r- 0-039369 T* + 0-00216407 T- 0-2413*,

Copper r - 0-026577 ^ + 0-0031443 T-0-22751,

Iron r = 0-072545 ^ + 0-0038133 T- 1-23971.

From data of this kind the temperature of a furnace may
be determined by means of an observation of the resistance of

a platinum wire placed in the furnace.

Dr. Matthiessen found that when two metals are combined to

form an alloy, the resistance of the alloy is in most cases greater

than that calculated from the resistance of the component metals

and their proportions. In the case of alloys of gold and silver,

the resistance of the alloy is greater than that of either pure gold

or pure silver, and, within certain limiting proportions of the

constituents, it varies very little with a slight alteration of the

proportions. For this reason Dr. Matthiessen recommended an

alloy of two parts by weight of gold and one of silver as a

material for reproducing the unit of resistance.

The effect of change of temperature on electric resistance is

generally less in alloys than in pure metals.

Hence ordinary resistance coils are made of German silver,

on account of its great resistance and its small variation with

temperature.

An alloy of silver and platinum is also used for standard

coils.

361.] The electric resistance of some metals changes when the

metal is annealed ; and until a wire has been tested by being

repeatedly raised to a high temperature without permanently

altering its resistance, it cannot be relied on as a measure of

resistance. Some wires alter in resistance in course of time

without having been exposed to changes of temperature. Hence

it is important to ascertain the specific resistance of mercury, a

metal which being fluid has always the same molecular structure,

and which can be easily purified by distillation and treatment

* { Mr. Callendar's recent researches in the Cavendish Laboratory on the Resistance

of Platinum have shown that these expressions do not accord with the facts at high

temperatures. Siemens' formula for platinum requires the temperature coefficient of

the resistance to become constant at high temperatures and equal to -0021 ; while the

experiments seem to indicate a much slower rate of increase it not a decrease at very

high temperatures. H. L. Callendar, ' On the Practical Measurement of Temperature,'

Phil Trans. 178 A. pp. 161-230.}
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with nitric acid. Great care has been bestowed in determining

the resistance of this metal by W. and C. F. Siemens, who intro-

duced it as a standard. Their researches have been supplemented
by those of Matthiessen and Hockin.

The specific resistance of mercury was deduced from the

observed resistance of a tube of length I containing a mass
w of mercury, in the following manner.

No glass tube is of exactly equal bore throughout, but if a

small quantity of mercury is introduced into the tube and
occupies a length A of the tube, the middle point of which is

distant x from one end of the tube, then the area s of the section

C
near this point will be s = — , where C is some constant.

A

The mass of mercury which fills the whole tube is

w = Pjsdx = pC2(-)->

where n is the number of points, at equal distances along the

tube, where A has been measured, and p is the mass of unit of

volume.

The resistance of the whole tube is

J s G w n
where r is the specific resistance per unit of volume.

Hence wR = r P 2 (A) S (-)•%,
' VA' nz

and. r =
'P *W*(±)

gives the specific resistance of unit of volume.
To find the resistance of unit of length and unit of mass we

must multiply this by the density.

It appears from the experiments of Matthiessen and Hockin
that the resistance of a uniform column of mercury of one metre
in length, and weighing one gramme at 0°C,is 13-071 B.A. units,

whence it follows that if the specific gravity of mercury is

13-595, the resistance of a column of one metre in length and
one square millimetre in section is 0-96146 B.A. units.

362.] In the following table R is the resistance in B.A. units

of a column one metre long and one gramme weight at 0°C, and
t is the resistance in centimetres per second of a cube of one
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centimetre, according to the experiments of Matthiessen* as-

suming the B.A. unit to be -98677 Earth quadrants.

Percentage
increment of

Specific resistance for

gravity. B. r. 1°C at 20°C.

Silver 10-50 hard drawn 0-1689 1588 0-377

Copper 8-95 hard drawn 0-1469 1620 0-388

Gold 19-27 hard drawn 0-4150 2125 0-365

Lead 11-391 pressed 2-257 19584 0-387

Mercuryf. . . . 13-595 liquid 13-071 94874 0-072

Gold 2, Silver 1 . 15-218 hard or annealed 1-668 18326 0-065

Selenium at 100°C crystalline form 6xlOl3 l-00

On the Electric Resistance of Electrolytes.

363.] The measurement of the electric resistance of electrolytes

is rendered difficult on account of the polarization of the elec-

trodes, which causes the observed difference of potentials of

the metallic electrodes to be greater than the electromotive force

which actually produces the current.

This difficulty can be overcome in various ways. In certain

cases we can get rid of polarization by using electrodes of proper

material, as, for instance, zinc electrodes in a solution of sulphate

of zinc. By making the surface of the electrodes very large

compared with the section of the part of the electrolyte whose

resistance is to be measured, and by using only currents of short

duration in opposite directions alternately, we can make the

measurements before any considerable intensity of polarization

has been excited by the passage of the current.

Finally, by making two different experiments, in one of which

the path of the current through the electrolyte is -much longer

than in the other, and so adjusting the electromotive force that

the actual current, and the time during which it flows, are nearly

the same in each case, we can eliminate the effect of polarization

altogether.

* Phil. Mag., May, 1865.

f { More recent experiments have given a different value for the specific resistance

of mercury. The following are recent determinations of the resistance in B.A. units

of a column of mercury one metre long and one square millimetre in cross section

at0°C:—
Lord Rayleigh and Mrs. Sidgwick, Phil. Trans. Part I. 1888 . . -95412,

Glazebrook and Fitzpatrick, Phil. Trans. A. 1888 .... -95352,

Hutchinson and Wilkes, PMl. Mag. (5). 28. 17. 1889 . . . -95341.}
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364.] In the experiments of Dr. Paalzow * the electrodes were

in the form of large disks placed in separate flat vessels filled

with the electrolyte, and the connexion was made by means of

a long siphon filled with the electrolyte and dipping into both

vessels. Two such siphons of different lengths were used.

The observed resistances of the electrolyte in these siphons

being R
t
and R2> the siphons were next filled with mercury, and

their resistances when filled with mercury were found to be

R^ and R2 .

The ratio of the resistance of the electrolyte to that of a mass

of mercury at 0°C of the same form was then found from the

formula _ R^-R2

p -r/-r,;'
To deduce from the values of p the resistance of a centimetre

in length having a section of a square centimetre, we must

multiply them by the value of r for mercury at 0°C. See

Art. 361.

The results given by Paalzow are as follow :

—

Mixtures of Sulphuric Acid and Water.

m Resistance compared
P* with mercury.

H2S04 15°C 96950

H2S04 + 14H
2 19°C 14157

H2S04 + 13H
2 22°C 13310

H
2S04 + 499H2 22°C 184773

Sulphate of Zinc and Water.

ZnS04+ 33H
2

23°C 194400

ZnS04 + 24H
2 23°C 191000

ZnSO4 +107H2O 23°C 354000

Sulphate of Copper and Water.

CuS04 + 45H
2 22°C 202410

CuSO4 +105H2O 22°C 339341

Sulphate of Magnesium and Water.

MgS04 + 34H
2 22°C 199180

MgSO4 +107H2O 22°C 324600

* Berlin Monatsbericht, July, 1868.
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Hydrochloric Acid and Water.

,p Resistance compared
emP« with mercury.

HC1 + 15H
2

23°C 13626

HC1 +500ELO 23°C 86679

365.] MM. F. Kohlrausch and W. A. Nippoldt* have de-

termined the resistance of mixtures of sulphuric acid and water.

They used alternating magneto-electric currents, the electro-

motive force of which varied from \ to ^\ of that of a Grove's

cell, and by means of a thermoelectric copper-iron pair they re-

duced the electromotive force to ¥^ ?Vo-^ of that of a Grove's cell.

They found that Ohm's law was applicable to this electrolyte

throughout the range of these electromotive forces.

The resistance is a minimum in a mixture containing about

one-third of sulphuric acid.

The resistance of electrolytes diminishes as the temperature

increases. The percentage increment of conductivity for a rise

of 1°C is given in the following table :

—

Resistance of Mixtures of Sulphuric A cid and
terms of Mercury at 0°C. MM. Kohlrausch

Specific gravity

at 18°5.

0-9985

1-00

1-0504

1-0989

1-1431

1-2045

1-2631

1-3163

1-3597

1-3994

1-4482

1-5026

Percentage

ofHaS04.

0-0

0-2

8-3

14-2

20-2

28-0

35-2

41-5

46-0

50-4

55-2

60-3

Resistance

at 22°C
(Hg=l)-

746300

465100

34530

18946

14990

13133

13132

14286

15762

17726

20796

25574

Water at 22°C in

and Nippoldt.

Percentage
increment of
conductivity

for 1°C.

0-47

0-47

0-653

0-646

0-799

1-317

1-259

1-410

1-674

1-582

1-417

1-794

On the Electrical Resistance of Dielectrics.

366.] A great number of determinations of the resistance

of gutta-percha, and other materials used as insulating media,

* Pogg., Ann. cxxxviii. pp. 280, 370, 1869.
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in the manufacture of telegraphic cables, have been made in

order to ascertain the value of these materials as insulators.

The tests are generally applied to the material after it has

been used to cover the conducting wire, the wire being used

as one electrode, and the water of a tank, in which the cable is

plunged, as the other. Thus the current is made to pass through

a cylindrical coating of the insulator of great area and small

thickness.

It is found that when the electromotive force begins to act,

the current, as indicated by the galvanometer, is by no means
constant. The first effect is of course a transient current of

considerable intensity, the total quantity of electricity being

that required to charge the surfaces of the insulator with the

superficial distribution of electricity corresponding to the electro-

motive force. This first current therefore is a measure not of

the conductivity, but of the capacity of the insulating layer.

But even after this current has been allowed to subside the

residual current is not constant, and does not indicate the true

conductivity of the substance. It is found that the current

continues to decrease for at least half an hour, so that a

determination of the resistance deduced from the current will

give a greater value if a eertain time is allowed to elapse than

if taken immediately after applying the battery.

Thus, with Hooper's insulating material the apparent resist-

ance at the end of ten minutes was four times, and at the

end of nineteen hours twenty-three times that observed at the

end of one minute. When the direction of the electromotive

force is reversed, the resistance falls as low or lower than at

first and then gradually rises.

These phenomena seem to be due to a condition of the gutta-

percha, which, for want of a better name, we may call polariza-

tion, and which we may compare on the one hand with that of

a series of Leyden jars charged by cascade, and, on the other,

with Hitter's secondary pile, Art. 271.

If a number of Leyden jars of great capacity are connected

in series by means of conductors of great resistance (such as wet
cotton threads in the experiments of M. Gaugain), then an
electromotive force acting on the series will produce a current,

as indicated by a galvanometer, which will gradually diminish

till the jars are fully charged.
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The apparent resistance of such a series will increase, and

if the dielectric of the jars is a perfect insulator it will increase

without limit. If the electromotive force be removed and con-

nexion made between the ends of the series, a reverse current

will be observed, the total quantity of which, in the case of

perfect insulation, will be the same as that of the direct current.

Similar effects are observed in the case of the secondary pile,

with the difference that the final insulation is not so good,

and that the capacity per unit of surface is immensely greater.

In the case of the cable covered with gutta-percha, &c, it is

found that after applying the battery for half an hour, and then

connecting the wire with the external electrode, a reverse

current takes place, which goes on for some time, and gradually

reduces the system to its original state.

These phenomena are of the same kind with those indicated

by the ' residual discharge ' of the Leyden jar, except that the

amount of the polarization is much greater in gutta-percha, &c.

than in glass.

This state of polarization seems to be a directed property

of the material, which requires for its production not only

electromotive force, but the passage, by displacement or other-

wise, of a considerable quantity of electricity, and this passage

requires a considerable time. When the polarized state has

been set up, there is an internal electromotive force acting

in the substance in the reverse direction, which will continue

till it has either produced a reversed current equal in total

quantity to the first, or till the state of polarization has quietly

subsided by means of true conduction through the substance.

The whole theory of what has been called residual discharge,

absorption of electricity, electrification, or polarization, deserves

a careful investigation, and will probably lead to important

discoveries relating to the internal structure of bodies.

367.] The resistance of the greater number of dielectrics di-

minishes as the temperature rises.

Thus the resistance of gutta-percha is about twenty times

as great at 0°C as at 24°C. Messrs. Bright and Clark have

found that the following formula gives results agreeing with

their experiments. If r is the resistance of gutta-percha at

temperature T centigrade, then the resistance at temperature

T-Mwillbe R = rxCl

,
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where (7 varies between 0-8878 and 0-9 for different specimens of

gutta-percha.

Mr. Hockin has verified the curious fact that it is not until

some hours after the gutta-percha has taken its final temperature

that the resistance reaches its corresponding value.

The effect of temperature on the resistance of india-rubber

is not so great as on that of gutta-percha.

The resistance of gutta-percha increases considerably on the

application of pressure.

The resistance, in Ohms, of a cubic metre of various specimens

of gutta-percha used in different cables is as follows *

Name of Cable.

Red Sea -267 x 1012 to -362 x 1012

Malta-Alexandria 1-23 x 1012

Persian Gulf 1-80 x 1012

Second Atlantic 3-42 x 1012

Hooper's Persian GulfCore 74-7 x 1012

Gutta-percha at 24°C 3-53 xlO 12

368.] The following table, calculated from the experiments of

M. Buff, described in Art. 271, shews the resistance of a cubic

metre of glass in Ohms at different temperatures.

Temperature. Resistance.

200°C 227000

250° 13900

300° 1480

350° 1035

400° 735

369.] Mr. C. F. Varleyf has recently investigated the con-

ditions of the current through rarefied gases, and finds that

the electromotive force E is equal to a constant E together with

a part depending on the current according to Ohm's Law, thus

E = E + RC.

For instance, the electromotive force required to cause the

current to begin in a certain tube was that of 323 Daniell's

cells, but an electromotive force of 304 cells was just sufficient

to maintain the current. The intensity of the current, as

measured by the galvanometer, was proportional to the number

* Jenkin's Cantor Lectures. + Proc. B. S., Jan. 12, 1871.
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of cells above 304. Thus for 305 cells the deflexion was 2,

for 306 it was 4, for 307 it was 6, and so on up to 380, or

304 + 76 for which the deflexion was 150, or 76 x 1-97.

From these experiments it appears that there is a kind of

polarization of the electrodes, the electromotive force of which

is equal to that of 304 Daniell's cells, and that up to this

electromotive force the battery is occupied in establishing this

state of polarization. When the maximum polarization is

established, the excess of electromotive force above that of

304 cells is devoted to maintaining the current according to

Ohm's Law.

The law of the current in a rarefied gas is therefore very

similar to the law of the current through an electrolyte in

which we have to take account of the polarization of the

electrodes.

In connexion with this subject we should study Thomson's
results, that the electromotive force required to produce a

spark in air was found to be proportional not to the dis-

tance, but to the distance together with a constant quan-

tity. The electromotive force corresponding to this constant

quantity may be regarded as the intensity of polarization of the

electrodes.

370.] MM. Wiedemann and Ruhlmann have recently* investi-

gated the passage of electricity through gases. The electric

current was produced by Holtz's machine, and the discharge

took place between spherical electrodes within a metallic vessel

containing rarefied gas. The discharge was in general dis-

continuous, and the interval of time between successive dis-

charges was measured by means of a mirror revolving along

with the axis of Holtz's machine. The images of the series of

discharges were observed by means of a heliometer with a

divided object-glass, which was adjusted till one image of each

discharge coincided with the other image of the next discharge.

By this method very consistent results were obtained. It

was found that the quantity of electricity in each discharge

is independent of the strength of the current and of the material

of the electrodes, and that it depends on the nature and density

of the gas, and on the distance and form of the electrodes.

* Berichte der Konigl. Sachs. Gesellschaft, Leipzig, Oct. 20, 1871.
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These researches confirm the statement of Faraday* that

the electric tension (see Art. 48) required to cause a disruptive

discharge to begin at the electrified surface of a conductor is

a little less when the electrification is negative than when it

is positive, but that when a discharge does take place, much

more electricity passes at each discharge when it begins at a

positive surface. They also tend to support the hypothesis

stated in Art. 57, that the stratum of gas condensed on the

surface of the electrode plays an important part in the phe-

nomenon, and they indicate that this condensation is greatest at

the positive electrode.

* Exp. Bes., 1501.

END OF VOL. I.



PAET III.

MAGNETISM.

CHAPTER I.

ELEMENTARY THEORY OF MAGNETISM.

371.] Certain bodies, as, for instance, the iron ore called load-
stone, the earth itself, and pieces of steel which have been
subjected to certain treatment, are found to possess the following
properties, and are called Magnets.

If, near any part of the earth's surface except the Magnetic
Poles, a magnet be suspended so as to turn freely aboist a
vertical axis, it will in general tend to set itself in a certain
azimuth, and if disturbed from this position it will oscillate

about it. An unmagnetized body has no such tendency, but is

in equilibrium in all azimuths alike.

372.] It is found that the force which acts on the body tends
to cause a certain line in the body, called the Axis of the
Magnet, to become parallel to a certain line in space, called the
Direction of the Magnetic Force.

Let us suppose the magnet suspended so as to be free to

turn in all directions about a fixed point. To eliminate the action
of its weight we may suppose this point to be its centre of
gravity. Let it come to a position of equilibrium. Mark two
points on the magnet, and note their positions in space. Then
let the magnet be placed in a new position of equilibrium,
and note the positions in space of the two marked points on
the magnet.

Since the axis of the magnet coincides with the direction
of magnetic force in both positions, we have to find that line
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in the magnet which occupies the same position in space before

and after the motion. It appears, from the theory of the

motion of bodies of invariable form, that such a line always

exists, and that a motion equivalent to the actual motion might

have taken place by simple rotation round this line.

To find the line* join the first and last positions of each of

the marked points, and draw planes bisecting these lines at

right angles. The intersection of these planes will be the line

required, which indicates the direction of the axis of the magnet

and the direction of the magnetic force in space.

The method just described is not convenient for the practical

determination of these directions. We shall return to this subject

when we treat of Magnetic Measurements.

The direction of the magnetic force is found to be different

at different parts of the earth's surface. If the end of the axis

of the magnet which points in a northerly direction be marked,

it has been found that the direction in which it sets itself in

general deviates from the true meridian to a considerable extent,

and that the marked end points on the whole downwards

in the northern hemisphere and upwards in the southern.

The azimuth of the direction of the magnetic force, measured

from the true north in a westerly direction, is called the

Variation, or the Magnetic Declination. The angle between the

direction of the magnetic force and the horizontal plane is called

the Magnetic Dip. These two angles determine the direction

of the magnetic force, and, when the magnetic intensity is

also known, the magnetic force is completely determined. The

determination of the values of these three elements at different

parts of the earth's surface, the discussion of the manner in

which they vary according to the place and time of observation,

and the investigation of the causes of the magnetic force and its

variations, constitute the science of Terrestrial Magnetism.

373.] Let us now suppose that the axes of several magnets

have been determined, and the end of each which points north

marked. Then, if one of these magnets be freely suspended and

another brought near it, it is found that two marked ends repel

each other, that a marked and an unmarked end attract each

other, and that two unmarked ends repel each other.

If the magnets are in the form of long rods or wires,

uniformly and longitudinally magnetized, (see below, Art. 384,)
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it is found that the greatest manifestation of force occurs when
the end of one magnet is held near the end of the other, and
that the phenomena can be accounted for by supposing that
like ends of the magnets repel each other, that unlike ends
attract each other, and that the intermediate parts of the
magnets have -no sensible mutual action.

The ends of a long thin magnet are commonly called its Poles.

In the case of an indefinitely thin magnet, uniformly magnetized
throughout its length, the extremities act as centres of force, and
the rest of the magnet appears devoid of magnetic action. In
all actual magnets the magnetization deviates from uniformity,
so that no single points can be taken as the poles. Coulomb,
however, by using long thin rods magnetized with care, succeeded
in establishing the law of force between two like magnetic
poles* {the medium between them being air}.

The repulsion between two like magnetic poles is in the straight

line joining them, and is numerically equal to the product
of the strengths of the poles divided by the square of the dis-

tance between them.

374.] This law, of course, assumes that the strength of each
pole is measured in terms of a certain unit, the magnitude of
which may be deduced from the terms of the law.

The unit-pole is a pole which points north, and is such that,

when placed at unit distance in air from another unit-pole, it

repels it with unit of force, the unit of force being defined as in

Art. 6. A pole which points south is reckoned negative.

If m
7
and m2 are the strengths of two magnetic poles, I the

distance between them, and/ the force of repulsion, all expressed
numerically, then m

f = —*—^.

But if [m], [L] and [F] be the concrete units of magnetic pole,

length and force, then

whence it follows that

[m>] = [L*F] = [L^],
or [m] = \IAr-1 Mi].

* Coulomb, Mem. de VAcad. 1785, p. 603, and in Biot's TraiU de Physique, tome iii.
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The dimensions of the unit-pole are therefore f as regards length,

( - 1) as regards time, and £ as regards mass. These dimensions

are the same as those of the electrostatic unit of electricity,

which is specified in exactly the same way in Arts. 41, 42.

375.] The accuracy of this law may be considered to have

been established by the experiments of Coulomb with the Torsion

Balance, and confirmed by the experiments of Gauss and Weber,

and of all observers in magnetic observatories, who are every day

making measurements of magnetic quantities, and who obtain

results which would be inconsistent with each other if the law

of force had been erroneously assumed. It derives additional

support from its consistency with the laws of electromagnetic

phenomena.

376.] The quantity which we have hitherto called the strength

of a pole may also be called a quantity of ' Magnetism,' provided

we attribute no properties to 'Magnetism' except those observed

in the poles of magnets.

Since the expression of the law of force between given quan-

tities of ' Magnetism ' has exactly the same mathematical form

as the law of force between quantities of ' Electricity ' of equal

numerical value, much of the mathematical treatment of mag-

netism must be similar to that of electricity. There are, however,

other properties of magnets which must be borne in mind, and

which may throw some light on the electrical properties of bodies.

Relation between the Poles of a Magnet.

377.] The quantity of magnetism at one pole of a magnet is

always equal and opposite to that at the other, or more generally

thus :

—

In every Magnet the total quantity of Magnetism (reckoned

algebraically) is zero.

Hence in a field of force which is uniform and parallel through-

out the space occupied by the magnet, the force acting on the

marked end of the magnet is exactly equal, opposite and parallel

to that on the unmarked end, so that the resultant of the forces

is a statical couple, tending to place the axis of the magnet in a

determinate direction, but not to move the magnet as a whole in

any direction.

This may be easily proved by putting the magnet into a small

vessel and floating it in water. The vessel will turn in a certain
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direction, so as to bring the axis of the magnet as near as possible
to the direction of the earth's magnetic force, but there will be
no motion of the vessel as a whole in any direction ; so that
there can be no excess of the force towards the north over that
towards the south, or the reverse. It may also be shewn from
the fact that magnetizing a piece of steel does not alter its weight.
It does alter the apparent position of its centre of gravity, causing
it in these latitudes to shift along the axis towards the north!
The centre of inertia, as determined by the phenomena of rota-
tion, remains unaltered.

378.] If the middle of a long thin magnet be examined, it
is found to possess no magnetic properties, but if the magnet be
broken at that point, each of the pieces is found to have a mag-
netic pole at the place of fracture, and this new pole is exactfy
equal and opposite to the other pole belonging to that piece. It
is impossible, either by magnetization, or by breaking magnets, or
by any other means, to procure a magnet whose poles are unequal.

If we break the long thin magnet into a number of short
pieces we shall obtain a series of short magnets, each of which
has poles of nearly the same strength as those of the original
long magnet. This multiplication of poles is not necessarily a
creation of energy, for we must remember that after breaking
the magnet we have to do work to separate the parts, in con-
sequence of their attraction for one another.

379.] Let us now put all the pieces of the magnet together as
at first. At each point of junction there will be two poles
exactly equal and of opposite kinds, placed in contact, so that
their united action on any other pole will be null. The magnet,
thus rebuilt, has therefore the same properties as at first, namely
two poles, one at each end, equal and opposite to each other, and
the part between these poles exhibits no magnetic action.

Since, in this case, we know the long magnet to be made up of
little short magnets, and since the phenomena are the same as in
the case of the unbroken magnet, we may regard the magnet,
even before being broken, as made up of small particles, each of
which has two equal and opposite poles. If we suppose all
magnets to be made up of such particles, it is evident that since
the algebraical quantity of magnetism in eaeh particle is zero,
the quantity in the whole magnet will also be zero, or in other
words, its poles will be of equal strength but of opposite kind.
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Theory of ' Magnetic Matter:

380.] Since the form of the law of magnetic action is identical

with that of electric action, the same reasons which can be given

for attributing electric phenomena to the action of one ' fluid

'

or two ' fluids ' can also be used in favour of the existence of a

magnetic matter, or of two kinds of magnetic matter, fluid or

otherwise. In fact, a theory of magnetic matter, if used in a

purely mathematical sense, cannot fail to explain the phenomena,

provided new laws are freely introduced to account for the actual

facts. .

One of these new laws must be that the magnetic fluids cannot

pass from one molecule or particle of the magnet to another, but

that the process of magnetization consists in separating to a

certain extent the two fluids within each particle, and causing

the one fluid to be more concentrated at one end, and the other

fluid to be more concentrated at the other end of the particle.

This is the theory of Poisson.

A particle of a magnetizable body is, on this theory, analogous

to a small insulated conductor without charge, which on the

two-fluid theory contains indefinitely large but exactly equal

quantities of the two electricities. When an electromotive force

acts on the conductor, it separates the electricities, causing them

to become manifest at opposite sides of the conductor. In a

similar manner, according to this theory, the magnetizing force

causes the two kinds of magnetism, which were originally in

a neutralized state, to be separated, and to appear at opposite

sides of the magnetized particle.

In certain substances, such as soft iron and those magnetic

substances which cannot be permanently magnetized, this mag-

netic condition, like the electrification of the conductor, disappears

when the inducing force is removed *. In other substances, such

as hard steel, the magnetic condition is produced with difliculty,

and, when produced, remains after the removal of the inducing

force.

This is expressed by saying that in the latter case there is a

Coercive Force, tending to prevent alteration in the magnetiza-

tion, which must be overcome before the power of a magnet

can be either increased or diminished. In the case of the

* {See foot-note to page 48.

}
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electrified body this would correspond to a kind of electric

resistance, which, unlike the resistance observed in metals, would
be equivalent to complete insulation for electromotive forces
below a certain value.

This theory of magnetism, like the corresponding theory of
electricity, is evidently too large for the facts, and requires to be
restricted by artificial conditions. For it not only gives no
reason why one body may not differ from another on account of
having more of both fluids, but it enables us to say what would
be the properties of a body containing an excess of one magnetic
fluid. It is true that a reason is given why such a body cannot
exist, but this reason is only introduced as an after-thought
to explain this particular fact. It does not grow out of the
theory.

381.] We must therefore seek for a mode of expression which
shall not be capable of expressing too much, and which shall leave
room for the introduction of new ideas as these are developed
from new facts. This, I think, we shall obtain if we begin by
saying that the particles of a magnet are Polarized.

Meaning of the term, 'Polarization.'

When a particle of a body possesses properties related to a
certain line or direction in the body, and when the body, re-
taining these properties, is turned so that this direction is

reversed, then if as regards other bodies these properties of the
particle are reversed, the particle, in reference to these proper-
ties, is said to be polarized, and the properties are said to
constitute a particular kind of polarization.

Thus we may say that the rotation of a body about an axis
constitutes a kind of polarization, because if, while the rotation
continues, the direction of the axis is turned end for end, the
body will be rotating in the opposite direction as regards space.
A conducting particle through which there is a current of

electricity may be said to be polarized, because if it were turned
round, and if the current continued to flow in the same direc-
tion as regards the particle, its direction in space would be
reversed.

In short, if any mathematical or physical quantity is of the
nature of a vector, as defined in Art. 11, then any body or
particle to which this directed quantity or vector belongs may
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be said to be Polarized *, because it has opposite properties in

the two opposite directions or poles of the directed quantity.

The poles of the earth, for example, have reference to its

rotation, and have accordingly different names.

Meaning of the term ' Magnetic Polarization'

382.] In speaking of the state of the particles of a magnet as

magnetic polarization, we imply that each of the smallest parts

into which a magnet may be divided has certain properties

related to a definite direction through the particle, called its

Axis of Magnetization, and that the properties related to one end

of this axis are opposite to the properties related to the other

end.

The properties which we attribute to the particle are of the

same kind as those which we observe in the complete magnet,

and in assuming that the particles possess these properties, we

only assert what we can prove by breaking the magnet up into

small pieces, for each of these is found to be a magnet.

Properties of a Magnetized Particle.

383.] Let the element dx dy dz be a particle of a magnet, and

let us assume that its magnetic properties are those of a magnet

the strength of whose positive pole is m, and whose length is ds.

Then if P is any point in space distant r from the positive pole

and r' from the negative pole, the magnetic potential at P will

be — due to the positive pole, and - -^ due to the negative pole,
iv<

* r

V =™,(r'-r). (1)

If ds, the distance between the poles, is very small, we may

put r'—r — ds cos e, (2)

* The word Polarization has been used in a sense not consistent with this in

Optics where a ray of light is said to be polarized when it has properties relating

to its s'ides which are identical on opposite sides of the ray. This kind o polarization

refers to anolher kind of Directed Quantity, which may be called a Dipolar Quantity,

in opposition to the former kind, which may be called 5 Unipolar.

wE a dipolar quantity is turned end for end lt remains the same as before

Tensions and pressures in solid bodies, Extensions, Compressions, and Distortions

and most of the optical, electrical, and magnetic properties of crystallized bodies

%KoPe
q
Zproducedby magnetism in transparent bodies of twisting the plane

of PoLrSon^
P
f the inJentTght, is, like magnetism itself, a unipolar property.

The rotatory property referred to in Art. 303 is also unipolar.
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where e is the angle between the vector drawn from the magnet
to P and the axis of the magnet *, or in the limit

Tr ondsV= -^2-°os *- (3)

Magnetic Moment
384.] The product of the length of a uniformly and longitud-

inally magnetized bar magnet into the strength of its positive

pole is called its Magnetic Moment.

Intensity of Magnetization.

The intensity of magnetization of a magnetic particle is the

ratio of its magnetic moment to its volume. We shall denote it

by/.
The magnetization at any point of a magnet may be defined

by its intensity and its direction. Its direction may be defined

by its direction-cosines A, ju, v.

Components of Magnetization.

The magnetization at a point of a magnet (being a vector or

directed quantity) may be expressed in terms of its three com-
ponents referred to the axes of coordinates. Calling these

A,B,C, A = I\, £ = Ifx, C = IVf (4)

and the numerical value of I is given by the equation

i* = A* + B* + C*. (5)

385.] If the portion of the magnet which we consider is the

differential element of volume dxdydz, and if 7 denotes the

intensity of magnetization of this element, its magnetic moment
is Idxdydz. Substituting this for mds in equation (3), and
remembering that

rco8€ = \(£-x)+ [x(v -y)+ v(C-z), (6)

where f, rj, ( are the coordinates of the extremity of the vector r

drawn from the point (a, y, z), we find for the potential at the

point (£, rj, C) due to the magnetized element at (x, y, z),

{A(£-x) + B{r,-y) + C{C-z)}±dxdydz. (7)

To obtain the potential at the point (£, *), £) due to a magnet of

finite dimensions, we must find the integral of this expression for

* {The positive direction of the axis is from the negative to the positive pole.}
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every element of volume included within the space occupied by

the magnet, or

V=[f[{A(Z-x) + B(ri-y) + C((-z)}±dxdydz. (8)

Integrated by parts, this becomes

V = [[a - dydz + ffs i dzdx
+Jj

G ~ dxdV

where the double integration in the first three terms refers to

the surface of the magnet, and the triple integration in the

fourth to the space within it.

If I, m, n denote the direction-cosines of the normal drawn

outwards from the element of surface dS, we may write, as in

Art. 21, for the sum of the first three terms

ff(lA+mS + nC)-dS,

where the integration is to be extended over the whole surface

of the magnet.

If we now introduce two new symbols a- and P ,
defined by the

equations <- = lA+mB + nC,

,dA dB dCs
p ~ ~ \ dx dy dz*

'

the expression for the potential may be written

V= [["-dS+JJJ^dxdydz.

386.] This expression is identical with that for the electric

potential due to a body on the surface of which there is an

electrification whose surface-density is <r, while throughout its

substance there is a bodily electrification whose volume-density

is p. Hence, if we assume <r and p to be the surface- and volume-

densities of the distribution of an imaginary substance, which

we have called 'magnetic matter,' the potential due to this

imaginary distribution will be identical with that due to the

actual magnetization of every element of the magnet.

The surface-density a- is the resolved part of the intensity of

magnetization I in the direction of the normal to the surface
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drawn outwards, and the volume-density p is the ' convergence

'

(see Art. 25) of the magnetization at a given point in the
magnet.

This method of representing the action of a magnet as due
to a distribution of ' magnetic matter ' is very convenient, but
we must always remember that it is only an artificial method
of representing the action of a system of polarized particles.

On the Action of one Magnetic Molecule on another.

387.] If, as in the chapter on Spherical Harmonics, Art. 129 6,

we make ± = i± A A
dh~ dx dy dz' ( '

where I, m, n are the direction-cosines of the axis h, then the
potential due to a magnetic molecule at the origin, whose axis
is parallel to hls and whose magnetic moment is m

1 , is

Tr dm, m, „

where A
x is the cosine of the angle between hx and r.

Again, if a second magnetic molecule whose moment is m
2 ,

and whose axis is parallel to h2 , is placed at the extremity of
the radius vector r, the potential energy due to the action of
the one magnet on the other is

2 dh
2

1 % dh
xdh^r) ^

6
>

= -Jr
S foit-3A1Aa), (4)

where nn is the cosine of the angle which the axes make with
each other, and Al9 A

2 are the cosines of the angles which they
make with r.

Let us next determine the moment of the couple with which
the first magnet tends to turn the second round its centre.

Let us suppose the second magnet turned through an angle
d(j> in a plane perpendicular to a third axis h3 , then the work

dWdone against the magnetic forces will be -r- d(j>, and the moment

of the forces on the magnet in this plane will be

_dW__m
2
m
1(
d

l
in d\A

d$ r3
\d<l>

~ 6Al d$)' <5 )
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The actual moment acting on the second magnet may therefore

be considered as the resultant of two couples, of which the first

acts in a plane parallel to the axes of both magnets, and tends to

increase the angle between them with a couple whose moment is

while the second couple acts in the plane passing through r and

the axis of the second magnet, and tends to diminish the angle

between these directions with a couple whose moment is

—^—* cos (rh
x)

sin (rh2), (7)

where {rh
x),

(rh
2),

{hji2) denote the angles between the lines r,

h lf h2
*.

To determine the force acting on the secoud magnet in a

direction parallel to a line h3 , we have to calculate

&• (8)_ dW _ dz

dh
3

~~ x 2 d\dh2dh,

[3 t T
= -mx

m2
1=^-? , by Art. 129 c,

= 3^{^M23 + ^^i + ^Mw- 5XiM8}.byArt. 133, (9)

= 3A3^(/
x12
-5A1

X
2 ) + 3

/
x
13
-^-2 A

2 + 3 M2
3-ir

-2 A
1

. (10)

If we suppose the actual force compounded of three forces, R,

H
x
and H2 , in the directions of r, ^ and h2

respectively, then the

force in the direction of h3
is

XsB + PtoHi + PnHz. (11)

* (If 0, 0, are the angles which the axes of the magnets make with r, if the angle

between the planes containing r and the axes of the first and second magnet

respectively, then .

A*12
- 3 A-! X2

= - 2 cos X
cos 2 + sin \ Bin 2 cos ^

,

Thus the couple acting on the second magnet is equivalent to a couple whose axis

is r and whose moment -dW/dxf tending to increase \p is

1
1

sin 0, sin 62 sin if,

r

together with a couple in the plane of r and the axis of the second magnet whose

moment — dW/dO^ tending to increase 2 is

_ Vh^l
{ 2 cos e

x
sin 2 + sin 6X cos 2

cos if }

.

These couples are equivalent to those given by (6) and (7).}
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Since the direction of hs is arbitrary, we must have

The force R is a repulsion, tending to increase r; ff
1
and H

%

act on the second magnet in the directions of the axes of the

first and second magnets respectively.

This analysis of the forces acting between two small magnets
was first given in terms of the Quaternion Analysis by Professor

Tait in the Quarterly Math. Journ. for Jan. 1860. See also his

work on Quaternions, Arts. 442-443, 2nd Edition.

Particular Positions.

388.] (1) If A
1 and A2 are each equal to 1, that is, if the axes

of the magnets are in one straight line and in the same direction,

Mia = 1
j and the force between the magnets is a repulsion

E +#1 +#2
= ---L_?.

(13)

The negative sign indicates that the force is an attraction.

(2) If Aj and A
2 are zero, and /x12 unity, the axes of the magnets

are parallel to each other and perpendicular to r, and the force

is a repulsion Zm.m^-^-' (14)

In neither of these cases is there any couple.

(3) If A
x
= 1 and A

2
= 0, then /x12

= 0. (15)

The force on the second magnet will be 1—?in the direction

of its axis, and the couple will be —\-£» tending to turn it

^
DA

Fig. 1.

parallel to the first magnet. This is equivalent to a single force

3m
1
m

2——±— acting parallel to the direction of the axis of the second
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magnet, and cutting rata point two-thirds of its length

from m2
*.

Thus in the figure (l) two magnets are made to float on water,

m2 being in the direction of the axis of mx , but having its own

axis at right angles to that of m
x

. If two points, A, B, rigidly

connected with m
x
and m2

respectively, are connected by means

of a string T, the system will be in equilibrium, provided T cuts

the line m
l
mi

at right angles at a point one-third of the distance

from mx
to m2

.

(4) If we allow the second magnet to turn freely about its

centre till it comes to a position of stable equilibrium, W will

then be a minimum as regards h2 , and therefore the resolved

part of the force due to m2 , taken in the direction of hv will be

a maximum. Hence, if we wish to produce the greatest possible

magnetic force at a given point in a given direction by means of

magnets, the positions of whose centres are given, then, in order

to determine the proper directions of

the axes of these magnets to produce

this effect, we have only to place a

magnet in the given direction at the

given point, and to observe the direc-

tion of stable equilibrium of the axis

of a second magnet when its centre is

placed at each of the other given points.

The magnets must then be placed with
SE-^-DN

their axes in the directions indicated
Fig. 2. „ , i •

by that of the second magnet.

Of course, in performing this experiment we must take account

of terrestrial magnetism, if it exists.

Let the second magnet be in a position of stable equilibrium

as regards its direction, then since the couple acting on it vanishes,

the axis of the second magnet must be in the same plane with

that of the first. Hence

{h1k2)
= (h1 r) + (rh2)y (16)

* {in case (8) the first magnet is said to be 'end on' to the second, and the

second ' broadside on' to the first, we can easily prove by formulae (6) and (7) that it

the first magnet were « broadside on' to the second the couple on the second would be

m, m,/r3 Thus the couple when the deflecting magnet is ' end on is twice as great

as when it is ' broadside on.' Gauss has proved that if the law of force were in-

versely as the p'th power of the distance between the poles the couple when the

deflecting magnet is < end on ' would be p times as great as when it is ' broadside on

By comparing the couples in these positions we can verify the law of the inverse

square more accurately than is possible by the torsion balance.

}
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and the couple being

° (sin (h
x
h2)
— 3 cos (A2 r) sin (rh

2)), (17)

we find when this is zero

tan (h
x
r) = 2 tan (rh

2), (18)

or tanHxm2
R = 2 tan Rm

2'H2 . (19)

When this position has been taken up by the second magnet
the value of W becomes ^ym

*dh

Hence W—~m2 /\/ -r-
1

where h2 is in the direction of the line of force due to m
x at m2 .

(20)4- i

dy

Hence the second magnet will tend to move towards places

of greater resultant force.

The force on the second magnet may be decomposed into a

force R, which in this case is always attractive towards the first

magnet, and a force Hx parallel to the axis of the first magnet,

where

a = s S£L»-^L±L, #-3^-^ (21)
r* V3A/+1 1 r* y^A^+l

In Fig. XIV, at the end of this volume, the lines of force

and equipotential surfaces in two dimensions are drawn. The
magnets which produce them are supposed to be two long

cylindrical rods the sections of which are represented by the

circular blank spaces, and these rods are magnetized transversely

in the direction of the arrows.

If we remember that there is a tension along the lines of force,

it is easy to see that each magnet will tend to turn in the

direction of the motion of the hands of a watch.

That on the right hand will also, as a whole, tend to move
towards the top, and that on the left hand towards the bottom
of the page.

On the Potential Energy of a Magnet placed in

a Magnetic Field.

389.] Let V be the magnetic potential due to any system of

magnets acting on the magnet under consideration. We shall

call V the potential of the external magnetic force.

If a small magnet whose strength is m, and whose length
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is ds, be placed so that its positive pole is at a point where

the potential is V, and its negative pole at a point where the

potential is F, the potential energy of this magnet will be

m (V— F), or, if ds is measured from the negative pole to the

positive, dV , n x

ds

If I is the intensity of the magnetization, and A, /a, v its direc-

tion-cosines, we may write,

mds — Idxdydz,

3 dV dV
,

dF, eZF
and -y- = A -7—h a*

-j— + v -j-

1

ds dx dy dz

and, finally, if A, B, G are the components of magnetization,

A = A j, 5 = ^/, = !>/,

so that the expression (1) for the potential energy of the element

of the magnet becomes

, dV ndV ndV^j _ , /9X

(A d^
+B^ + C^ dxdydZ' (2)

To obtain the potential energy of a magnet of finite size,

we must integrate this expression for every element of the

magnet. We thus obtain

as the value of the potential energy of the magnet with respect

to the magnetic field in which it is placed.

The potential energy is here expressed in terms of the com-

ponents of magnetization and of those of the magnetic force

arising from external causes.

By integration by parts we may express it in terms of the

distribution of magnetic matter and of magnetic potential, thus,

W=ff(Al +Bm+ Cn) rd8-fffv<i£ +™ + %)d»*9*, (4)

where I, m, n are the direction-cosines of the normal at the

element of surface dS. If we substitute in this equation the

expressions for the surface- and volume-density of magnetic

matter as given in Art. 385, the expression becomes

W = ffVadS+fffVpdxdydz. (5)
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We may write equation (3) in the form

W= -fff(Aa+Bp + Cy)dxdydz, (6)

where a, ft and y are the components of the external magnetic

force.

On the Magnetic Moment and Axis of a Magnet.

390.] If throughout the whole space occupied by the magnet

the external magnetic force is uniform in direction and mag-
nitude, the components a, /3, y will be constant quantities, and
if we write

I Adx dydz—lK^ I Bdx dydz=mK, If Gdx dydz—nK, (7)

the integrations being extended over the whole substance of

the magnet, the value of W may be written

W = -K(la +mp + ny). (8)

In this expression l} m, n are the direction-cosines of the axis

of the magnet, and K is the magnetic moment of the magnet.

If e is the angle which the axis of the magnet makes with the

direction of the magnetic force «£>, the value of W may be written

W = -K$cost. (9)

If the magnet is suspended so as to be free to turn about a

vertical axis, as in the case of an ordinary compass needle,

let the azimuth of the axis of the magnet be
(f>,

and let it be

inclined at an angle to the horizontal plane. Let the force of

terrestrial magnetism be in a direction whose azimuth is 8 and
dip C> then

a = ^ cos Ccos 8, j3 = «£> cos £sin 5
} y — £ sm £ ;

(io)

Z = cos0cos#, m = cos sin <j>, n, = sin0; (11)

whence W= — !£".£)*{ cos <Tcos0 cos (<£— 8) + sin Cain 0}. (12)

The moment of the force tending to increase </> by turning

the magnet round a vertical axis is

dW— -j— —— .6T$costcos0sin(<f>— 8). (13)
€l/(p

On the Expansion of the Potential of a Magnet in Solid

Harmonics.

391.] Let V be the potential due to a unit pole placed at

the point (£, 7), £). The value of V at the point a;, y, z is

F= {(t-xy+h-yy+tf-z)*}-*. (1)
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This expression may be expanded in terms of spherical har-

monics, with their centre at the origin. We have then

F=F+F1+ F2+ &c., (2)

where V — -, r being the distance of (£ tj, () from the origin, (3)

Vi = ^±M±^, (4)

lr 3(£* + ,,y + C*JMrf + 3f + *)tt
a + '»

, + C*) ,
6
v%= ~2^> ' W

&c.

To determine the value of the potential energy when the

magnet is placed in the field of force expressed by this potential,

we have to integrate the expression for W in equation (3) of

Art. 389 with respect to x, y and z, considering £, *?, C and r as

constants.

If we consider only the terms introduced by V ,
V
x and V2 the

result will depend on the following volume-integrals,

lK= fffAdxdydz, mK^fffzdxdydz, nK=JJJCdxdydz; (6)

L=[[[Axdxdydz, M=[f[Bydxdydz, N=JjjCzdxdydz; (7)

P = fff{Bz + Gy) dx dydz, Q -JJJ i
Gx + Az)

dx dV dz>

E = [[ (Ay + Bx)dxdydz. (8)

We thus find for the value of the potential energy of the

magnet placed in presence of the unit pole at the point (£, r/, C),

W=K
T

^(2L-M-N) + y
2(2M-JN'-L) + Ci(2]Sr-L-M) + 3(PvC+QCi+R^)

(9)

+ &c.

This expression may also be regarded as the potential energy

of the unit pole in presence of the magnet, or more simply as

the potential at the point £ tj, C due to the magnet.
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On the Centre of a Magnet and its Primary and

Secondary Axes.

392.] This expression may be simplified by altering the direc-

tions of the coordinates and the position of the origin. In the

first place, we shall make the direction of the axis of x parallel

to the axis of the magnet. This is equivalent to making

1=1, ra = 0, n = 0. (10)

If we change the origin of coordinates to the point (a/, y
f

, z'),

the directions of the axes remaining unchanged, the volume-
integrals IK, mK and nK will remain unchanged, but the others

will be altered as follows :

L'=L-lKx', M'=M-<mKy', N'=N-nKz'-, (11)

P'=P-K{mz' + <ny'), Q'=Q-K{nx'+ lz'), R'=R-K(li/ + mx'). (12)

If we now make the direction of the axis of x parallel to

the axis of the magnet, and put

, 2L-M-N , R _, Q

then for the new axes M and JV have their values unchanged,
and the value of If becomes \ (M+N). P remains unchanged,
and Q and R vanish. We may therefore write the potential

thU8
' K * 4- k(^-C){M-N) + ZPnC _,_ „ A

.A-+ -
5

+.... (14)

We have thus found a point, fixed with respect to the magnet,
such that the second term of the potential assumes the most
simple form when this point is taken as origin of coordinates.

This point we therefore define as the centre of the magnet, and
the axis drawn through it in the direction formerly defined as

the direction of the magnetic axis may be defined as the prin-

cipal axis of the magnet.

We may simplify the result still more by turning the axes of

y and z round that of x through half the angle whose tangent is

P
jTr—^.« This will cause P to become zero, and the final form

of the potential may be written



20 ELEMENTARY THEORY OP MAGNETISM. [393-

This is the simplest form of the first two terms of the potential

of a magnet. When the axes of y and z are thus placed they

may be called the Secondary axes of the magnet.

"We may also determine the centre of a magnet by finding

the position of the origin of coordinates, for which the surface-

integral of the square of the second term of the potential, extended

over a sphere of unit radius, is a minimum.

The quantity which is to be made a minimum is, by Art. 141,

4(L2 +M2 + N2-MF-IfL-LM) + 3(P2 + Q2 +R2
). (16)

The changes in the values of this quantity due to a change

of position of the origin may be deduced from equations (11)

and (12). Hence the conditions of a minimum are

2 l(2L—M—N) + 3nQ + 3mR = 0, \

2m{2M-N-L) + 3l R + 3nP = 0, V (17)

2n(2N-L-M) + 3mP+3 IQ = 0. )

If we assume I = 1, m = 0, n = 0, these conditions become

2L-M-N=0, Q = 0, R = 0, (18)

which are the conditions made use of in the previous investi-

gation.

This investigation may be compared with that by which

the potential of a system of gravitating matter is expanded. In

the latter case, the most convenient point to assume as the

origin is the centre of gravity of the system, and the most con-

venient axes are the principal axes of inertia through that point.

In the case of the magnet, the point corresponding to the

centre of gravity is at an infinite distance in the direction of

the axis, and the point which we call the centre of the magnet

is a point having different properties from those of the centre of

gravity. The quantities L, M, iV correspond to the moments of

inertia, and P, Q, R to the products of inertia of a material body,

except that L, M, and JV are not necessarily positive quantities.

When the centre of the magnet is taken as the origin, the

spherical harmonic of the second order is of the sectorial form,

having its axis coinciding with that of the magnet, and this

is true of no other point.

When the magnet is symmetrical on all sides of this axis,

as in the case of a figure of revolution, the term involving the

harmonic of the second order disappears entirely.

393.] At all parts of the earth's surface, except some parts of
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the Polar regions, one end of a magnet points towards the

north, or at least in a northerly direction, and the other in a

southerly direction. In speaking of the ends of a magnet we
shall adopt the popular method of calling the end which points

to the north the north end of the magnet. When, however, we
speak in the language of the theory of magnetic fluids we shall

use the words Boreal and Austral. Boreal magnetism is an

imaginary kind of matter supposed to be most abundant in the

northern parts of the earth, and Austral magnetism is the ima-

ginary magnetic matter which prevails in the southern regions

of the earth. The magnetism of the north end of a magnet is

Austral, and that of the south end is Boreal. When therefore

we speak of the north and south ends of a magnet we do not

compare the magnet with the earth as the great magnet, but

merely express the position which the magnet endeavours to

take up when free to move. When, on the other hand, we wish

to compare the distribution of imaginary magnetic fluid in the

magnet with that in the earth we shall use the more grandilo-

quent words Boreal and Austral magnetism.

394.] In speaking of a field of magnetic force we shall use

the phrase Magnetic North to indicate the direction in which
the north end of a compass needle would point if placed in the

field of force.

In speaking of a line of magnetic force we shall always sup-

pose it to be traced from magnetic south to magnetic north, and
shall call this direction positive. In the same way the direction

of magnetization of a magnet is indicated by a line drawn from

the south end of the magnet towards the north end, and the end

of the magnet which points north is reckoned the positive end.

We shall consider Austral magnetism, that is, the magnetism

of that end of a magnet which points north, as positive. If we
denote its numerical value by m, then the magnetic potential

and the positive direction of a line of force is that in which V
diminishes.



CHAPTER II.

MAGNETIC FOECE AND MAGNETIC INDUCTION.

395.] We have already (Art. 385) determined the magnetic

potential at a given point due to a magnet, the magnetization of

which is given at every point of its substance, and we have

shewn that the mathematical result may be expressed either in

terms of the actual magnetization of every element of the

mao-net, or in terms of an imaginary distribution of ' magnetic

matter,' partly condensed on the surface of the magnet and

partly diffused throughout its substance.

The magnetic potential, as thus defined, is found by the same

mathematical process, whether the given point is outside the

magnet or within it. The force exerted on a unit magnetic pole

placed at any point outside the magnet is deduced from the

potential by the same process of differentiation as in the cor-

responding electrical problem. If the components of this force

area,/3,y, dV a dV dV m
dx dy ' dz

To determine by experiment the magnetic force at a point

within the magnet we must begin by removing part of the

magnetized substance, so as to form a cavity within which we

are to place the magnetic pole. The force acting on the pole

will depend, in general, on the form of this cavity, and on the

inclination of the walls of the cavity to the direction of mag-

netization. Hence it is necessary, in order to avoid ambiguity

in speaking of the magnetic force within a magnet, to specify

the form and position of the cavity within which the force is to

be measured. It is manifest that when the form and position

of the cavity is specified, the point within it at which the
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magnetic pole is placed must be regarded as no longer within

the substance of the magnet, and therefore the ordinary methods

of determining the force become at once applicable.

396.] Let us now consider a portion of a magnet in which

the direction and intensity of the magnetization are uniform.

Within this portion let a cavity be hollowed out in the form

of a cylinder, the axis of which is parallel to the direction of

magnetization, and let a magnetic pole of unit strength be placed

at the middle point of the axis.

Since the generating lines of this cylinder are in the direction

of magnetization, there will be no superficial distribution of

magnetism on the curved surface, and since the circular ends of

the cylinder are perpendicular to the direction of magnetization,

there will be a uniform superficial distribution, of which the

surface-density is / for the negative end, and — / for the

positive end.

Let the length of the axis of the cylinder be 2 6, and its

radius a. Then the force arising from this superficial distribu-

tion on a magnetic pole placed at the middle point of the axis

is that due to the attraction of the disk on the positive side, and

the repulsion of the disk on the negative side. These two forces

are equal and in the same direction, and their sum is

b

Vtf + b2

From this expression it appears that the force depends, not

on the absolute dimensions of the cavity, but on the ratio of the

length to the diameter of the cylinder. Hence, however small

we make the cavity, the force arising from the surface distribu-

tion on its walls will remain, in general, finite.

397.] We have hitherto supposed the magnetization to be

uniform and in the same direction throughout the whole of the

portion of the magnet from which the cylinder is hollowed out.

When the magnetization is not thus restricted, there will in

general be a distribution of imaginary magnetic matter through

the substance of the magnet. The cutting out of the cylinder

will remove part of this distribution, but since in similar solid

figures the forces at corresponding points are proportional to the

linear dimensions of the figures, the alteration of the force on

the magnetic pole due to the volume-density of magnetic matter

will diminish indefinitely as the size of the cavity is diminished,

R = ±t:I(\-
"

). (2)
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while the effect due to the surface-density on the walls of the

cavity remains, in general, finite.

If, therefore, we assume the dimensions of the cylinder so

small that the magnetization of the part removed may be

regarded as everywhere parallel to the axis of the cylinder, and

of constant magnitude /, the force on a magnetic pole placed at

the middle point of the axis of the cylindrical hollow will be

compounded of two forces. The first of these is that due to the

distribution of magnetic matter on the outer surface of the

magnet, and throughout its interior, exclusive of the portion

hollowed out. The components of this force are a, /3 and y,

derived from the potential by equations (1). The second is the

force R, acting along the axis of the cylinder in the direction of

magnetization. The value of this force depends on the ratio of

the length to the diameter of the cylindric cavity.

398.] Case I. Let this ratio be very great, or let the diameter

of the cylinder be small compared with its length. Expanding

the expression for R in powers of r » we find

r fla
2 3a4

„ ) , .*= 4 */W-i* +*°r (3)

a quantity which vanishes when the ratio of b to a is made

infinite. Hence, when the cavity is a very narrow cylinder

with its axis parallel to the direction of magnetization, the

magnetic force within the cavity is not affected by the surface

distribution on the ends of the cylinder, and the components of

this force are simply a, j3, y, where

dV n dV dV
fA

.

a = -^' * = -*? y== "di- (4)

We shall define the force within a cavity of this form as the

magnetic force within the magnet. Sir William Thomson has

called this the Polar definition of magnetic force. When we

have occasion to consider this force as a vector we shall denote

it by £.

399.] Case II. Let the length of the cylinder be very small

compared with its diameter, so that the cylinder becomes a thin

disk. Expanding the expression for R in powers of - , it becomes

*=*-'{'-M!-H' (6)
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the ultimate value of which, when the ratio of a to b is made
infinite, is 4 -nl.

Hence, when the cavity is in the form of a thin disk, whose
plane is normal to the direction of magnetization, a unit mag-
netic pole placed at the middle of the axis experiences a force

4 ttI in the direction of magnetization, arising from the super-
ficial magnetism on the circular surfaces of the disk *

Since the components of / are A, B and G, the components of
this force are 4TrA,4irB, and 4 -nC. This must be compounded
with the force whose components are a, /3, y.

400.] Let the actual force on the unit pole be denoted by the
vector 23, and its components by a, b and c, then

a = <i + 4ttA, \

& = /3 + 4tf JB,
[

(6)

We shall define the force within a hollow disk, whose plane
sides are normal to the direction of magnetization, as the Mag-
netic Induction within the magnet. Sir William Thomson has
called this the Electromagnetic definition of magnetic force.

The three vectors, the magnetization 3, the magnetic force «£),

and the magnetic induction 23, are connected by the vector
equation © = $ + 4*3. (7)

Line-Integral of Magnetic Force.

401.] Since the magnetic force, as defined in Art. 398, is that
due to the distribution of free magnetism on the surface and
through the interior of the magnet, and is not affected by the
surface-magnetism of the cavity, it may be derived directly from
the general expression for the potential of the magnet, and the

* On the force within cavities of other forms.
1. Any narrow crevasse. The force arising from the surface-magnetism is

4 wI cos f in the direction of the normal to the plane of the crevasse, where c is the
angle between this normal and the direction of magnetization. When the crevasse
is parallel to the direction of magnetization the force is the magnetic force Jjj ; when
the crevasse is perpendicular to the direction of magnetization the force is the
magnetic induction 95.

2. In an infinitely elongated cylinder, the axis of which makes an angle e with the
direction of magnetization, the force arising from the surface-magnetism is 2 wJsin «,

perpendicular to the axis in the plane containing the axis and the direction of
magnetization.

3. In a sphere the force arising from surface magnetism is $ itI in the direction of
magnetization.
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line-integral of the magnetic force taken along any curve from

the point A to the point B is

r('i +^ +'>- B - r* (8)

where VA and VB denote the potentials at A and B respectively.

Surface-Integral of Magnetic Induction.

402.] The magnetic induction through the surface 8 is denned

as the value of the integral

Q=ff%coS€dS, (9)

where 33 denotes the magnitude of the magnetic induction at the

element of surface dS, and e the angle between the direction of

the induction and the normal to the element of surface, and the

integration is to be extended over the whole surface, which may

be either closed or bounded by a closed curve.

If a, b, c denote the components of the magnetic induction, and

I, m, n the direction-cosines of the normal, the surface-integral

may be written r r-
,

. , „ ,, rtXJ Q= (la +mb + nc)dS. (10)

If we substitute for the components of the magnetic induction

their values in terms of those of the magnetic force, and the

magnetization as given in Art. 400, we find

Q= ff(la + mp + ny)dS+4:
>
lrff(lA+mB + nC)dS. (11)

We shall now suppose that the surface over which the integra-

tion extends is a closed one, and we shall investigate the value

of the two terms on the right-hand side of this equation.

Since the mathematical form of the relation between magnetic

force and free magnetism is the same as that between electric

force and free electricity, we may apply the result given in

Art. 77 to the first term in the value of Q by substituting a, /3, y,

the components of magnetic force, for X, Y, Z, the components

of electric force in Art. 77, and M, the algebraic sum of the free

magnetism within the closed surface, for e, the algebraic sum of

the free electricity.

We thus obtain the equation

ff{la + ml3 + ny)dS=4TrM. (12)
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Since every magnetic particle has two poles, which are equal

in numerical magnitude but of opposite signs, the algebraic sum
of the magnetism of the particle is zero. Hence, those particles

which are entirely within the closed surface 8 can contribute

nothing to the algebraic sum of the magnetism within 8. The
value of M must therefore depend only on those magnetic
particles which are cut by the surface 8.

Consider a small element of the magnet of length s and trans-

verse section k2
, magnetized in the direction of its length, so that

the strength of its poles is m. The moment of this small

magnet will be ras, and the intensity of its magnetization, being

the ratio of the magnetic moment to the volume, will be

Let this small magnet be cut by the surface 8, so that the

direction of magnetization makes an angle e' with the normal
drawn outwards from the surface, then if dS denotes the area of

the section, k2 = dS cost'. (14)

The negative pole —m of this magnet lies within the surface 8.

Hence, if we denote by dM the part of the free magnetism
within S which is contributed by this little magnet,

dM = -m = -Ik2
,

= — I cos c'dS. (15)

To find M, the algebraic sum of the free magnetism within the

closed surface 8, we must integrate this expression over the

closed surface, so that

Jf=- fflcose'dS,

or writing A, B, C for the components of magnetization, and I, m, n
for the direction-cosines of the normal drawn outwards,

M = - ff(lA +mB + nC)dS. (16)

This gives us the value of the integral in the second term on
the right-hand side of equation (11). The value of Q in that

equation may therefore be found from equations (12) and (16),

Q = 4ttM-4ttM = 0, (17)

or, the surface-integral of the magnetic induction through any
closed surface is zero.
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403.] If we assume as the closed surface that of the differ-

ential element of volume dxdydz, we obtain the equation

da db dc _ /
lg

\

dx dy dz

This is the solenoidal condition, which is always satisfied by

the components of the magnetic induction.

Since the distribution of magnetic induction is solenoidal, the

induction through any surface bounded by a closed curve

depends only on the form and position of the closed curve, and

not on that of the surface itself.

404.] Surfaces at every point of which

la +mb + nc = (
19

)

are called surfaces of no induction, and the intersection of two

such surfaces is called a line of induction. The conditions that

a curve, s, may be a line of induction are

I^-I^-I^. (20)
a ds b ds c ds'

A system of lines of induction drawn through every point

of a closed curve forms a tubular surface called a Tube of

induction.

The induction across any section of such a tube is the same.

If the induction is unity the tube is called a Unit tube of in-

duction.

All that Faraday* says about lines of magnetic force and

magnetic sphondyloids is mathematically true, if understood of

the lines and tubes of magnetic induction.

The magnetic force and the magnetic induction are identical

outside the magnet, but within the substance of the magnet they

must be carefully distinguished.

In a straight uniformly magnetized bar the magnetic force

due to the magnet itself is from the end which points north,

which we call the positive pole, towards the south end or negative

pole, both within the magnet and in the space without.

The magnetic induction, on the other hand, is from the

positive pole to the negative outside the magnet, and from the

negative pole to the positive within the magnet, so that the lines

and tubes of induction are re-entering or cyclic figures.

* JSxp. Res., series xxviii.
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The importance of the magnetic induction as a physical

quantity will be more clearly seen when we study electro-

magnetic phenomena. When the magnetic field is explored

by a moving wire, as in Faraday's Exp. Res. 3076, it is the
magnetic induction and not the magnetic force which is directly

measured.

The Vector-Potential of Magnetic Induction.

405.] Since, as we have shewn in Art. 403, the magnetic in-

duction through a surface bounded by a closed curve depends on
the closed curve, and not on the form of the surface which is

bounded by it, it must be possible to determine the induction

through a closed curve by a process depending only on the

nature of that curve, and not involving the construction of a
surface forming a diaphragm of the curve.

This may be done by finding a vector 21 related to S3, the
magnetic induction, in such a way that the line-integral of

21, extended round the closed curve, is equal to the surface-

integral of 33, extended over a surface bounded by the closed

curve.

If, in Art. 24, we write F, G, H for the components of 21, and
a, b, c for the components of S3, we find for the relation between
these components

a =—-~ h~—-^S -— dF
~ dy dz

3 ~ dz dx ' ° ~~dx~~dy' (
21

)

The vector 21, whose components are F, G, H, is called the
vector-potential of magnetic induction.

If a magnetic molecule whose moment is m and the direction

of whose axis of magnetization is (A, /a, v) be at the origin of
coordinates, the potential at a point (x, y, z) distance r from
the origin is, by Art. 387,

/ s
d d dU 1-m

(
K
dx

+ fX

di
+ V

d^r-'>

.-. c =m(A-7—r + ix-f-— + v—)-,v dxdz n dydz dz2Jr

which, by Laplace's equation, may be thrown into the form

d f d dy. 1 d , d d^\
dx K dz dx' r dy\ dy dz'

r

The quantities a, b may be dealt with in a similar manner.
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Hence & / d d\l

m(iJiZ— vy)

From this expression G and H may be found by symmetry.

We thus see that the vector-potential at a given point, due to

a magnetized particle placed at the origin, is numerically equal

to the magnetic moment of the particle divided by the square

of the radius vector and multiplied by the sine of the angle

between the axis of magnetization and the radius vector, and the

direction of the vector-potential is perpendicular to the plane of

the axis of magnetization and the radius vector, and is such that

to an eye looking in the positive direction along the axis of

magnetization the vector-potential is drawn in the direction of

rotation of the hands of a watch.

Hence, for a magnet of any form in which A, B, G are the

components of magnetization at the point (x, y, z), the compo-

nents of the vector-potential at the point (£, y, C), are

F
=JfJ(

Bt-ct)dxdydz'

(22)

where p is put, for conciseness, for the reciprocal of the distance

between the points (£, 77, () and (x, y, z), and the integrations are

extended over the space occupied by the magnet.

406.] The scalar, or ordinary, potential of magnetic force,

Art. 385, becomes when expressed in the same notation,

Remembering that-^ = - -£., and that the integral

Iff
A (^ +W +

d
^) dxdydZ

dy2

has the value -4n(A) when the point (f, rj, () is included

within the limits of integration, and is zero when it is not

so included, (A) being the value of A at the point (f, tj, C),
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we fiud for the value of the as-component of the magnetic
induction,

dt) dC

-fffA (If + + a£)
dxdydz

- <24 >

The first term of this expression is evidently — -^ > or, a the

component of the magnetic force.

The quantity under the integral sign in the second term
is zero for every element of volume except that in which
the point (£, rj, Q is included. If the value of A at the point

(£> V> C) is (^)i the value of the second term is easily proved
to be 4 77 (A), where (A) is evidently zero at all points outside

the magnet.

We may now write the value of the sc-component of the

magnetic induction

a = a+4Tr(A), (25)

an equation which is identical with the first of those given

in Art. 400. The equations for b and c will also agree with
those of Art. 400.

We have already seen that the magnetic force .£> is derived

from the scalar t magnetic potential V by the application of

Hamilton's operator V so that we may write, as in Art. 1 7,

£=-V7, (26)

and that this equation is true both without and within the

magnet.

It appears from the present investigation that the magnetic
induction 33 is derived from the vector-potential SI by the

application of the same operator, and that the result is true

within the magnet as well as without it.

The application of this operator to a vector-function produces,

in general, a scalar quantity as well as a vector. The scalar

part, however, which we have called the convergence of the
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vector-function, vanishes when the vector-function satisfies the

solenoidal condition

|f +^ + ^=0. (27)
d£ dr\ d{

By differentiating the expressions for F, G, H in equations (22),

we find that this equation is satisfied by these quantities.

We may therefore write the relation between the magnetic

induction and its vector-potential

23 = V2I,

which may be expressed in words by saying that the magnetic

induction is the curl of its vector-potential. See Art. 25.



CHAPTER III.

MAGNETIC SOLENOIDS AND SHELLS*.

On Particular Forms of Magnets.

407.] If a long narrow filament of magnetic matter like
a wire is magnetized everywhere in a longitudinal direction,
then the product of any transverse section of the filament
into the mean intensity of the magnetization across it is called
the strength of the magnet at that section. If the filament
were cut in two at the section without altering the magnetiza-
tion, the two surfaces, when separated, would be found to have
equal and opposite quantities of superficial magnetization, each
of which is numerically equal to the strength of the magnet
at the section.

A filament of magnetic matter, so magnetized that its strength
is the same at every section, at whatever part of its length the
section be made, is called a Magnetic Solenoid.

If m is the strength of the solenoid, ds an element of its

length, s being measured from the negative to the positive pole of
the magnet, r the distance of that element from a given point,
and e the angle which r makes with the axis of magnetization
of the element, the potential at the given point due to the
element is m'cfecose _ _ m dr

r2 ~~ r2 ds '

Integrating this expression with respect to s, so as to take
into account all the elements of the solenoid, the potential

is found to be * *

r
2
being the distance of the positive end of the solenoid, and r2

that of the negative end from the point where V is measured.

* See Sir W. Thomson's ' Mathematical Theory of Magnetism,' Phil. Trans., June
1849 and June 1850, or Reprint of Papers on Electrostatics and Magnetism, p. 840.
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[408.

Hence the potential due to a solenoid, and consequently

all its magnetic effects, depend only on its strength and the

position of its ends, and not at all on its form, whether straight

or curved, between these points.

Hence the ends of a solenoid may be called in a strict sense

its poles.

If a solenoid forms a closed curve the potential due to it

is zero at every point, so that such a solenoid can exert no

magnetic action, nor can its magnetization be discovered without

breaking it at some point and separating the ends.

If a magnet can be divided into solenoids, all of which either

form closed curves or have their extremities in the outer

surface of the magnet, the magnetization is said to be solenoidal,

and, since the action of the magnet depends entirely upon that

of the ends of the solenoids, the distribution of imaginary

magnetic matter will be entirely superficial.

Hence the condition of the magnetization being solenoidal is

dA dB dG =Q
dx dy dz

where A, B, C are the components of the magnetization at any

point of the magnet.

408.] A longitudinally magnetized filament, of which the

strength varies at different parts of its length, may be conceived

to be made up of a bundle of solenoids of different lengths,

the sum of the strengths of all the solenoids which pass through

a given section being the magnetic strength of the filament at

that section. Hence any longitudinally magnetized filament

may be called a Complex Solenoid.

If the strength of a complex solenoid at any section is m,

then the potential due to its action is

V = — / -5- ~r- ds where m is variable,
J r ds

__ mx
m2 C\ dm ,—

r
x

~ r
2 J r ds

This shews that besides the action of the two ends, which

may in this case be of different strengths, there is an action due

to the distribution of imaginary magnetic matter along the

filament with a linear density

_ dm
~~

ds



4*0-] SHELLS. 35

Magnetic Shells.

409.] If a thin shell of magnetic matter is magnetized in a
direction everywhere normal to its surface, the intensity of the

magnetization at any place multiplied by the thickness of the
shell at that place is called the Strength of the magnetic shell

at that place.

If the strength of a shell is everywhere the same, it is called a
Simple magnetic shell ; if it varies from point to point it may be
conceived to be made up of a number of simple shells superposed
and overlapping each other. It is therefore called a Complex
magnetic shell.

Let dS be an element of the surface of the shell at Q, and *
the strength of the shell, then the potential at any point, P, due
to the element of the shell, is

dV= Q-^dS cos e,

where e is the angle between the vector QP, or r, and the normal
drawn outwards from the positive side of the shell.

But if da> is the solid angle subtended by dS at the point P
r2d(o = dS cose,

whence dV=^da>,
and therefore in the case of a simple magnetic shell

or, the potential due to a magnetic shell at any point is the

product of its strength into the solid angle subtended by its edge
at the given point *.

410.] The same result may be obtained in a different way by
supposing the magnetic shell placed in any field of magnetic
force, and determining the potential energy due to the position

of the shell.

If Via the potential at the element dS, then the energy due
to this element is

. ndV dV dV, 70

or, the product of the strength of the shell into the part of the

surface-integral ofdV/dv due to the element dS of the shell.

* This theorem is due to Gauss, General Theory of Terrestrial Magnetism, § 38.
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Hence, integrating with respect to all such elements, the

energy due to the position of the shell in the field is equal to

the product of the strength of the shell and the surface-integral

of the magnetic induction taken over the surface of the shell.

Since this surface-integral is the same for any two surfaces

which have the same bounding edge and do not include between

them any centre of force, the action of the magnetic shell

depends only on the form of its edge.

Now suppose the field of force to be that due to a magnetic

pole of strength m. We have seen (Art. 76, Cor.) that the

surface-integral over a surface bounded by a given edge is the

product of the strength of the pole and the solid angle subtended

by the edge at the pole. Hence the energy due to the mutual

action of the pole and the shell is

and this, by Green's theorem, is equal to the product of the

strength of the pole into the potential due to the shell at the

pole. The potential due to the shell is therefore 4>co.

411.] If a magnetic pole m starts from a point on the negative

surface of a magnetic shell, and travels along any path in space

so as to come round the edge to a point close to where it started

but on the positive side of the shell, the solid angle will vary

continuously, and will increase by 4tt during the process. The

work done by the pole will be 47r4>m, and the potential at any

point on the positive side of the shell will exceed that at the

neighbouring point on the negative side by 4tt4>.

If a magnetic shell forms a closed surface, the potential outside

the shell is everywhere zero, and that in the space within is

everywhere 4tt<J>, being positive when the positive side of the

shell is inward. Hence such a shell exerts no action on any

magnet placed either outside or inside the shell.

412.] If a magnet can be divided into simple magnetic shells,

either closed or having their edges on the surface of the magnet,

the distribution of magnetism is called Lamellar. If </> is the sum

of the strengths of all the shells traversed by a point in passing

from a given point to a point {x, y, z) by a line drawn within

the magnet, then the conditions of lamellar magnetization are

The quantity, cf>, which thus completely determines the mag-
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netization at any point may be called the Potential of Magnet-
ization. It must be carefully distinguished from the Magnetic
Potential.

413.] A magnet which can be divided into complex magnetic
shells is said to have a complex lamellar distribution of mag-
netism. The condition of such a distribution is that the lines of
magnetization must be such that a system of surfaces can be
drawn cutting them at right angles. This condition is expressed
by the well-known equation

,dC dBs dA dC,
, n (

dB dA, n

Forms of the Potentials of Solenoidal and Lamellar Magnets.

414.] The general expression for the scalar potential of a
magnet is

where p denotes the potential at (x, y, z), due to a unit magnetic
pole placed at (£, tj, £), or in other words, the reciprocal of the
distance between (£ ij, Q, the point at which the potential is

measured, and (x, y, z), the position of the element of the
magnet to which it is due.

This quantity may be integrated by parts, as in Arts. 96, 386,

V=
ffP

(Al +Bm+ Cn)dS-fffp{^ +g +f) dxdydz<

where I, m, n are the direction-cosines of the normal drawn out-
wards from dS, an element of the surface of the magnet.
When the magnet is solenoidal the expression under the

integral sign in the second term is zero for every point within
the magnet, so that the triple integral is zero, and the scalar

potential at any point, whether outside or inside the magnet, is

given by the surface-integral in the first term.

The scalar potential of a solenoidal magnet is therefore com-
pletely determined when the normal component of the magnet-
ization at every point of the surface is known, and it is

independent of the form of the solenoids within the magnet.

415.] In the case of a lamellar magnet the magnetization is

determined by
<f>,

the potential of magnetization, so that

a _ d(
l> t> d 4> n d(f>

dx dy dz
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The expression for V may therefore be written

fff(
d±dv dfdp

+^f)dxdydz.

J J J^dxdx dy dy dz dz'

Integrating this expression by parts, we find

'-//"&**% + • to**-//!* <£

*

% + s>***
The second term is zero unless the point (£, r;, is included

in the magnet, in which case it becomes 4v(4>), where (</>) is the

value of <j) at the point (£, n, 0- Tne surface-integral may be

expressed in terms of r, the line drawn from (x, y, z) to (£, 17, C),

and the angle which this line makes with the normal drawn

outwards from dS, so that the potential may be written

V- ff\<l> cos 0<Zfl+4w(<f>),

where the second term is of course zero when the point (£, 17, Q
is not included in the substance of the magnet.

The potential, V, expressed by this equation, is continuous

even at the surface of the magnet, where
(f>

becomes suddenly

zero, for if we write
^

<Q = / -^<j> cos ddS,

and if X2
X

is the value of a at a point just within the surface,

and J22 that at a point close to the first but outside the surface,

12
2
= X21 + 47r(<^)),

or F2 =Fr
The quantity 12 is not continuous at the surface of the magnet.

The components of magnetic induction are related to 12 by

the equations ^^ 6 __^ c = --^.a ~ dx ' ~ dy ' ° dz'

416.] In the case of a lamellar distribution of magnetism we

may also simplify the vector-potential of magnetic induction.

Its sc-component may be written

By integration by parts we may put this in the form of the

surface-integral rr
(

dp dp,, q

or F= -Jfp(m^ ni*)d S.
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The other components of the vector-potential may be written

down from these expressions by making the proper substitutions.

On Solid Angles.

417.] We have already proved that at any point P the

potential due to a magnetic shell is equal to the solid angle

subtended by the edge of the shell multiplied by the strength

of the shell. As we shall have occasion to refer to solid angles

in the theory of electric currents, we shall now explain how
they may be measured.

Definition. The solid angle subtended at a given point by a
closed curve is measured by the area of a spherical surface

whose centre is the given point and whose radius is unity, the

outline of which is traced by the intersection of the radius

vector with the sphere as it traces the closed curve. This area

is to be reckoned positive or negative according as it lies on the
left or the right-hand of the path of the radius vector as seen

from the given point *.

^et (£> V, C) be the given point, and let (x, y, z) be a point on
the closed curve. The coordinates cc, y, z are functions of s, the

length of the curve reckoned from a given point. They are

periodic functions of s, recurring whenever s is increased by the

whole length of the closed curve.

We may calculate the solid angle a> directly from the defi-

nition thus. Using spherical coordinates with centre at (£, ?;, Q,
and putting

x— £=rsin0cos$, y~ 17 = r sin sin 0, z—C= rcosO,
we find the area of any curve on the sphere by integrating

to = / (1 — cosfl) d^,

or, using the rectangular coordinates,

the integration being extended round the curve s. -

If the axis of z passes once through the closed curve the first

* { If> while the point at which the solid angle subtended by a given curve is to be
determined moves about, we suppose the extremity of the radius vector always to travel
round the curve in the same direction, then the area on the sphere may be taken as
positive if it is on that side of the sphere where the motion of the end of the radius
vector looks clockwise when seen from the centre, negative if it is on the other side.

\
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term is 2 it. If the axis of z does not pass through it this term

is zero.

418.] This method of calculating a solid angle involves a

choice of axes which is to some extent arbitrary, and it does not

depend solely on the closed curve. Hence the following method,

in which no surface is supposed to be constructed, may be stated

for the sake of geometrical propriety.

As the radius vector from the giveu point traces out the

closed curve, let a plane passing through the given point roll on

the closed curve so as to be a tangent plane at each point of the

curve in succession Let a line of unit-length be drawn from

the given point perpendicular to this plane. As the plane rolls

round the closed curve the extremity of the perpendicular will

trace a second closed curve. Let the length of the second

closed curve be <r, then the solid angle subtended by the first

closed curve is

O) = 2 It— (T.

This follows from the well-known theorem that the area of a

closed curve on a sphere of unit radius, together with the

circumference of the polar curve, is numerically equal to the

circumference of a great circle of the sphere.

This construction is sometimes convenient for calculating the

solid angle subtended by a rectilinear figure. For our own

purpose, which is to form clear ideas of physical phenomena,

the following method is to be preferred, as it employs no

constructions which do not flow from the physical data of the

problem.

419.] A closed curve s is given in space, and we have to find

the solid angle subtended by s at a given point P.

If we consider the solid angle as the potential of a magnetic

shell of unit strength whose edge coincides with the closed

curve, we must define it as the work done by a unit magnetic

pole against the magnetic force while it moves from an infinite

distance to the point P. Hence, if a- is the path of the pole as it

approaches the point P, the potential must be the result of a

line-integration along this path. It must also be the result

of a line-integration along the closed curve s. The proper form

of the expression for the solid angle must therefore be that of a

double integration with respect to the two curves s and <r.

When P is at an infinite distance, the solid angle is evidently
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zero. As the point P approaches, the closed curve, as seen from
the moving point, appears to open out, and the whole solid

angle may be conceived to be generated by the apparent motion
of the different elements of the closed curve as the moving point

approaches.

As the point P moves from P to P' over the element d<r, the

element QQ' of the closed curve, which we denote by ds, will

change its position relatively to P, and the line on the unit

sphere corresponding to QQ' will sweep over an area on the

spherical surface, which we may write

d<*> = Udsda. (1)

To find 17 let us suppose P fixed while the closed curve is

moved parallel to itself through a distance da equal to PP/ but
in the opposite direction. The relative motion of the point P
will be the same as in the real case.

During this motion the element QQ' will generate an area in

the form of a parallelogram whose sides are parallel and equal
to QQ' and PPf

. If we construct

a pyramid on this parallelogram as sL.—^
base with its vertex at P, the solid /^^.\r_A.-...^\
angle of this pyramid will be the [

/'' x
\\

increment dm which we are in \f /)
search of. \ "^/
To determine the value of this

solid angle, let and 6' be the

angles which ds and da- make with ™° Fig. 8.

PQ respectively, and let <£ be the

angle between the planes of these two angles, then the area of

the projection of the parallelogram ds.da on a plane perpen-
dicular to PQ or r will be

ds da- sin sin 6' sin
(f>,

and since this is equal to r2
d(o, we find

da = ITdsda- = ^ sin 6 sin 8' sin <f>dsd<r. (2)

Hence n = —
2
sin d sin 6' sin c/>, (3)

420.] We may express the angles 6, 6', and <£ in terms of r,

and its differential coefficients with respect to s and <r, for

&r „/ dr n d2rcos0=-y-j co8d=-j-, and sin 6 sin 6 cos d> = r^—r- • U)ds da- Y
dsda- K '
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We thus find the following value for n2
,

fdr^ 2 l r\ sdr- 2 '

v-ft-®]^®]-^ (5)

A third expression for IT in terms of rectangular coordinates

may be deduced from the consideration that the volume of the

pyramid whose solid angle is da and whose side is r is

I r3da> = £ r3 YIdsd<r.

But the volume of this pyramid may also be expressed in

terms of the projections of r, ds, and do- on the axes of x, y

and z, as a determinant formed by these nine projections, of

which we must take the third part. We thus find as the value

of n*

n =—

5

da

dx

ds

v-

dv
d<r

dy

ds

y> C-z,

dC^
dcr

dz

ds

(6)

This expression gives the value of II free from the ambiguity of

sign introduced by equation (5).

421.] The value of a>, the solid angle subtended by the closed

curve at the point P, may now be written

(7)= / / Hdsd(T + (o
,

where the integration with respect to s is to be extended com-

pletely round the closed curve, and that with respect to o- from

A a fixed point on the curve to the point P. The constant co is

the value of the solid angle at the point A. It is zero if A is at

an infinite distance from the closed curve.

The value of a> at any point P is independent of the form of

the curve between A and P provided that it does not pass

through the magnetic shell itself. If the shell be supposed

infinitely thin, and if P and P' are two points close together,

but P on the positive and P' on the negative surface of the

shell, then the curves AP and APf must lie on opposite sides of

the edge of the shell, so that PAF is a line which with the

infinitely short line P,P forms a closed circuit embracing the

* {The sign of n is most easily got by considering a simple case, that of a circular

disk magnetized at right angles to its plane is very convenient for this purpose.}
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edge. The value of <o at P exceeds that at P' by 47r, that is, by
the surface of a sphere of radius unity.

Hence, if a closed curve be drawn so as to pass once through
the shell, or in other words, if it be linked once with the edge

of the shell, the value of the integral ffllds da- extended round
both curves will be 4 it.

^ •*

This integral therefore, considered as depending only on the
closed curve s and the arbitrary curve AP, is an instance of a
function of multiple values, since, if we pass from A to P along
different paths the integral will have different values according
to the number of times which the curve AP is twined round the
curve s.

If one form of the curve between A and P can be transformed
into another by continuous motion without intersecting the
curve s, the integral will have the same value for both curves,
but if during the transformation it intersects the closed curve
n times the values of the integral will differ by inn.

If s and o- are any two closed curves in space, then, if they
are not linked together, the integral extended once round both
is zero.

If they are intertwined n times in the same direction, the
value of the integral is 4-nn. It is possible, however, for two
curves to be intertwined alternately in opposite directions, so
that they are inseparably linked together

though the value of the integral is zero.

See Fig. 4.

It was the discovery by Gauss of this very
integral, expressing the work done on a
magnetic pole while describing a closed curve
in presence of a closed electric current, and
indicating the geometrical connexion between
the two closed curves, that led him to lament the small progress
made in the Geometry of Position since the time of Leibnitz,
Euler and Vandermonde. We have now, however, some progress
to report, chiefly due to Riemann, Helmholtz, and Listing.

422.] Let us now investigate the result of integrating with
respect to s round the closed curve.

One of the terms of n in equation (7) is

_ i—xdti dz drj d ,ldz^

~^dads = d^di
{<TW W
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If we now write for brevity

'-£=* *-/&* *-/£* (9 >

the integrals being taken once round the closed curve s, this

term of n may be written

<Ud2H
d<jd£ds'

and the corresponding term of / Uds will be

d-gdH
dir d£

Collecting all the terms of IT, we may now write

da- J

_AH dG^d£
, r
dF_d

!
H,dr

L .

(
dG _dF,d±

(1Q)
~Vrf^~ dc)d<r

+
\d( d^dcr^^d'i d,i>d</

y J

This quantity is evidently the rate of decrement of a, the

magnetic potential, in passing along the curve <t, or in other

words, it is the magnetic force in the direction of da.

By assuming d<r successively in the direction of the axes of

x, y and zt we obtain for the values of the components of the

magnetic force

da dH dO
d£ dq d('

__d^_ dF dH
^"~~dl

] ~dC d£'

__do>_dG _dF
y ~~ dC~di~drj'

(»)

The quantities F, G, H are the components of the vector-

potential of the magnetic shell whose strength is unity, and

whose edge is the curve s. They are not, like the scalar poten-

tial co, functions having a series of values, but are perfectly

determinate for every point in space.

The vector-potential at a point P due to a magnetic shell

bounded by a closed curve may be found by the following

geometrical construction

:

Let a point Q travel round the closed curve with a velocity

numerically equal to its distance from P, and let a second point
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R start from a fixed point A and travel with a velocity the

direction of which is always parallel to that of Q, but whose
magnitude is unity. When Q has travelled once round the
closed curve join AR, then the line AR represents in direction

and in numerical magnitude the vector-potential due to the
closed curve at P.

Potential Energy of a Magnetic Shell placed in a Magnetic Field.

423.] We have already shewn, in Art. 410, that the potential

energy of a shell of strength <£ placed in a magnetic field whose
potential is V, is

where I, m, n are the direction-cosines of the normal to the shell

drawn outwards from the positive side, and the surface-integral

is extended over the shell.

Now this surface-integral may be transformed into a line-

integral by means of the vector-potential of the magnetic field,

and we may write

where the integration is extended once round the closed curve s

which forms the edge of the magnetic shell, the direction of ds
being opposite to that of the hands of a watch when viewed
from the positive side of the shell.

If we now suppose that the magnetic field is that due to a
second magnetic shell whose strength is <//, we may determine
the value of F directly from the results of Art. 416 or from
Art. 405. If V, m', n' be the direction-cosines of the normal to

the element d& of the second shell, we have

where r is the distance between the element dS' and a point on
the boundary of the first shell.

Now this surface-integral may be converted into a line-integral

round the boundary of the second shell ; viz. it is

dP*' W*f?
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In like manner

Substituting these values in the expression for M we find

,
,rri(dxdx' dydy' dzdaf^j,, nK \M—*rjj -(%& +££ +w)**> (15)

where the integration is extended once round s and once round

s'. This expression gives the potential energy due to the mutual

action of the two shells, and is, as it ought to be, the same when

8 and s' are interchanged. This expression with its sign re-

versed, when the strength of each shell is unity, is called the

potential of the two closed curves s and /. It is a quantity of

great importance in the theory of electric currents. If we write

€ for the angle between the directions of the elements ds and ds\

the potential of s and s' may be written

ff^Adt. (16)

It is evidently a quantity of the dimension of a line.



CHAPTER IV.

INDUCED MAGNETIZATION.

424.] We have hitherto considered the actual distribution of

magnetization in a magnet as given explicitly among the data
of the investigation. We have not made any assumption as to

whether this magnetization is permanent or temporary, except in
those parts of our reasoning in which we have supposed the
magnet broken up into small portions, or small portions removed
from the magnet in such a way as not to alter the magnetization
of any part.

We have now to consider the magnetization of bodies with
respect to the mode in which it may be produced and changed.
A bar of iron held parallel to the direction of the earth's magnetic
force is found to become magnetic, with its poles turned the op-
posite way from those of the earth, or the same way as those of

a compass needle in stable equilibrium.

Any piece of soft iron placed in a magnetic field is found to

exhibit magnetic properties. If it be placed in a part of the field

where the magnetic force is great, as between the poles of a horse-

shoe magnet, the magnetism of the iron becomes intense. If the
iron is removed from the magnetic field, its magnetic properties

are greatly weakened or disappear entirely. If the magnetic
properties of the iron depend entirely on the magnetic force of
the field in which it is placed, and vanish when it is removed
from the field, it is called Soft iron. Iron which is soft in the

magnetic sense is also soft in the literal sense. It is easy to

bend it and give it a permanent set, and difficult to break it.

Iron which retains its magnetic properties when removed from
the magnetic field is called Hard iron. Such iron does not take
up the magnetic state so readily as soft iron. The operation of
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hammering, or any other kind of vibration, allows hard iron

under the influence of magnetic force to assume the magnetic

state more readily, and to part with it more readily when the

magnetizing force is removed *. Iron which is magnetically hard

is also more stiff to bend and more apt to break.

The processes of hammering, rolling, wire-drawing, and sudden

cooling tend to harden iron, and that of annealing tends to

soften it.

The magnetic as well as the mechanical "differences between

steel of hard and soft temper are much greater than those

between hard and soft iron. Soft steel is almost as easily mag-

netized and demagnetized as iron, while the hardest steel is the

best material for magnets which we wish to be permanent.

Cast iron, though it contains more carbon than steel, is not so

retentive of magnetization.

If a magnet could be constructed so that the distribution of its

magnetization is not altered by any magnetic force brought to

act upon it, it might be called a rigidly magnetized body. The

only known body which fulfils this condition is a conducting

circuit round which a constant electric current is made to flow.

Such a circuit exhibits magnetic properties, and may therefore

be called an electromagnet, but these magnetic properties are not

affected by the other magnetic forces in the field. We shall

return to this subject in Part IV.

All actual magnets, whether made of hardened steel or of load-

stone, are found to be affected by any magnetic force which is

brought to bear upon them.

It is convenient, for scientific purposes, to make a distinction

between the permanent and the temporary magnetization, defining

the permanent magnetization as that which exists independently

of the magnetic force, and the temporary magnetization as that

which depends on this force. We must observe, however, that

this distinction is not founded on a knowledge of the intimate

nature of the magnetizable substances : it is only the expression

of an hypothesis introduced for the sake of bringing calculation

to bear on the phenomena. We shall return to the physical

theory of magnetization in Chapter VI.

* {Ewing (Phil. Trans., Part ii. 1885) has shewn that soft iron free from vibrations

and demagnetizing forces can retain a larger proportion of its magnetism than the

hardest steel.

}
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425.] At present we shall investigate the temporary mao-net-

ization on the assumption that the magnetization of any particle

of the substance depends solely on the magnetic force actina on
that particle. This magnetic force may arise partly from external

causes, and partly from the temporary magnetization of neigh-

bouring particles.

A body thus magnetized in virtue of the action of magnetic
force is said to be magnetized by induction, and the magnetization
is said to be induced by the magnetizing force.

The magnetization induced by a given magnetizing force differs

in different substances. It is greatest in the purest and softest

iron, in which the ratio of the magnetization to the magnetic
force may reach the value 32, or even 45*.

Other substances, such as the metals nickel and cobalt, are

capable of an inferior degree of magnetization, and all substances
when subjected to a sufficiently strong magnetic force are found
to give indications of polarity.

When the magnetization is in the same direction as the mag-
netic force, as in iron, nickel, cobalt, &c, the substance is called

Paramagnetic, Ferromagnetic, or more simply Magnetic. When
the induced magnetization is in the direction opposite to the
magnetic force, as in bismuth, &c, the substance is said to be
Diamagnetic.

In all these diamagnetic substances the ratio of the magnetiza-
tion to the magnetic force which produces it is exceedingly
small, being only about -Wow in tne case of bismuth, which
is the most highly diamagnetic substance known.
In crystallized, strained, and organized substances the direction

of the magnetization does not always coincide with that of the

magnetic force which produces it. The relation between the

components of magnetization, referred to axes fixed in the body,
and those of the magnetic force, may be expressed by a system
of three linear equations. Of the nine coefficients involved in

these equations we shall shew that only six are independent.

The phenomena of bodies of this kind are classed under the name
of Magnecrystallic phenomena.

When placed in a field of magnetic force, crystals tend to set

* Thalen, Nova Acta, Reg. Soc. Sc, Upsal, 1863. {Ewing {Inc. cit.) has shewn
that it may be as great as 279, and that if the wire be shaken while the magnetizing
force is applied it may rise to as much as 1600.}
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themselves so that the axis of greatest paramagnetic, or of least

diamagnetic, induction is parallel to the lines of magnetic force.

See Art. 436.

In soft iron, the direction of the magnetization coincides with

that of the magnetic force at the point, and for small values of

the magnetic force the magnetization is nearly proportional to it*.

As the magnetic force increases, however, the magnetization in-

creases more slowly, and it would appear from experiments

described in Chap. VI, that there is a limiting value of the

magnetization, beyond which it cannot pass, whatever be the

value of the magnetic force.

In the following outline of the theory of induced magnetism,

we shall begin by supposing the magnetization proportional to

the magnetic force, and in the same line with it.

Definition of the Coefficient of Induced Magnetization.

426.] Let £ be the magnetic force, defined as in Art. 398, at

any point of the body, and let 3> he the magnetization at that

point, then the ratio of 3 to £ is called the Coefficient of In-

duced Magnetization.

Denoting this coefficient by k, the fundamental equation of

induced magnetism is

3 = *£.
#

(i)

The coefficient k is positive for iron and paramagnetic sub-

stances, and negative for bismuth and diamagnetic substances.

It reaches the value {1600} in iron, and it is said to be large in

the case of nickel and cobalt, but in all other cases it is a very

small quantity, not greater than 0-00001.

The force «£) arises partly from the action of magnets external

to the body magnetized by induction, and partly from the

induced magnetization of the body itself. Both parts satisfy

the condition of having a potential.

427.] Let V be the potential due to magnetism external to

the body, and let & be that due to the induced magnetization,

then if U is the actual potential due to both causes

u=v+a. (2)

Let the components of the magnetic force «£), resolved in the

* {Lord Rayleigh, Phil. Mag. 23, p. 225, 1887, has shewn that when the mag-

netizing force is less than^ of the earth's horizontal magnetic force, the magnetization

is proportional to the magnetizing force, and that it ceases to be so when the force is

greater.

}
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directions of x, y, z, be a, /3, y, and let those of the magnet-
ization 3 be A, B, G, then by equation (1),

A = na, \

B = «a,\ (3)

C=Ky.)

Multiplying these equations by dx, dy, dz respectively, and
adding, we find

A dx + Bdy + Cdz == n(adx + 8dy + ydz).

But since a, 8 and y are derived from the potential U, we
may write the second member —KdU.

Hence, if *c is constant throughout the substance, the first

member must also be a complete differential of a function of x,

y and z, which we shall call <p, and the equation becomes

d$= -KdU, (4)

where A = ^, B = ^, C =^

.

(5)dx dy dz v }

The magnetization is therefore lamellar, as defined in Art. 412.

It was shewn in Art. 385 that if p is the volume-density of

free magnetism,

_ _ ,dA dB dC.
~ ^dx dy dz'

which becomes in virtue of equations (3),

fda d8 d
dx dy dz

(da dB dy\

But, by Art. 77,

da d8 dy __

dx dy dz
~

Hence
(1 + 4*k) P = 0,

whence
p = ^

throughout the substance, and the magnetization is therefore

solenoidal as well as lamellar. See Art. 407.

There is therefore no free magnetism except on the bounding
surface of the body. If v be the normal drawn inwards from

the surface, the magnetic surface-density is
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The potential 11 due to this magnetization at any point may

therefore be found from the surface-integral

n -ff> (8)

The value of X2 will be finite and continuous everywhere, and

will satisfy Laplace's equation at every point both within and

without the surface. If we distinguish by an accent the value

of 12 outside the surface, and if v be the normal drawn outwards,

we have at the surface

Of = n
; (9)

4^+^= "4^, by Art. 786,
dv dv

= 4*|t by (7),

= _4™^,by(4),

,dV , dQ.y, , /n v

We may therefore write the second surface-condition

(l+47TK)-r- + -r-f + 4^-7- = 0. (10)
v ' dv dv dv

Hence the determination of the magnetism induced in a

homogeneous isotropic body, bounded by a surface g, and acted

upon by external magnetic forces whose potential is V, may be

reduced to the following mathematical problem.

We must find two functions 12 and &' satisfying the following

conditions

:

Within the surface 8, Q. must be finite and continuous, and

must satisfy Laplace's equation.

Outside the surface S, Of must be finite and continuous, it

must vanish at an infinite distance, and must satisfy Laplace's

equation.

At every point of the surface itself, G = i2', and the derivatives

of £2, nf and V with respect to the normal must satisfy equation

(10)-

This method of treating the problem of induced magnetism

is due to Poisson. The quantity k which he uses in his memoirs

is not the same as k, but is related to it as follows

:

4tiTK(k-l) + 3k = 0. (11)
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The coefficient k which we have here used was introduced by
F. E. Neumann.

428.] The problem of induced magnetism may be treated in

a different manner by introducing the quantity which we have

called, with Faraday, the Magnetic Induction.

The relation between 33, the magnetic induction, «£), the mag-
netic force, and 3, the magnetization, is expressed by the

equation 33 = £ + 4*3. (12)

The equation which expresses the induced magnetization in

terms of the magnetic force is

3 = *£. (13)

Hence, eliminating $, we find

33 = (1 + 47tk)£ (14)

as the relation between the magnetic induction and the magnetic
force in substances whose magnetization is induced by magnetic
force.

In the most general case k may be a function, not only of the

position of the point in the substance, but of the direction of the

vector <£), but in the case which we are now considering k is a
numerical quantity.

If we next write
F =i +4^ Kj (15)

we may define n as the ratio of the magnetic induction to the

magnetic force, and we may call this ratio the magnetic induc-

tive capacity of the substance, thus distinguishing it from k, the

coefficient of induced magnetization.

If we write TJ for the total magnetic potential compounded
of V, the potential due to external causes, and 12 that due to

the induced magnetization, we may express a, b, c, the com-
ponents of magnetic induction, and a, /3, y, the components of

magnetic force, as follows

:

dU
a = " a =-^

,

JTT I

(16)

dz J

The components a, b, c satisfy the solenoidal condition

da db do
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Hence, the potential U must satisfy Laplace's equation

d2U d2U d2U A ,10 ,^ + <^ +^ = ° (18)

at every point where \i is constant, that is, at every point within

the homogeneous substance, or in empty space.

At the surface itself, if v is a normal drawn towards the

magnetic substance, and v one drawn outwards, and if the

symbols of quantities outside the substance are distinguished by

accents, the condition of continuity of the magnetic induction is

dx ,dy dz dx
t

„dy ,dz . »

dv dv dv dv dv av

or, by equations (16),

<W ,dU' A ....^ +^d7= ' <20)

//, the coefficient of induction outside the magnet, will be

unity unless the surrounding medium be magnetic or dia-

magnetic.

If we substitute for U its value in terms of V and 12, and for

\i its value in terms of k, we obtain the same equation (10) as

we arrived at by Poisson's method.

The problem of induced magnetism, when considered with

respect to the relation between magnetic induction and magnetic

force, corresponds exactly with the problem of the conduction

of electric currents through heterogeneous media, as given in

Art. 310.

The magnetic force is derived from the magnetic potential,

precisely as the electric force is derived from the electric

potential.

The magnetic induction is a quantity of the nature of a flux,

and satisfies the same conditions of continuity as the electric

current does.

In isotropic media the magnetic induction depends on the

magnetic force in a manner which exactly corresponds with

that in which the electric current depends on the electromotive

force.

The specific magnetic inductive capacity in the one problem

corresponds to the specific conductivity in the other. Hence

Thomson, in his Theory of Induced Magnetism {Reprint, 1872,

p. 484), has called this quantity the permeability of the medium.



429.] faraday's theory of magnetic induction. 55

We are now prepared to consider the theory of induced mag-

netism from what I conceive to be Faraday's point of view.

When magnetic force acts on any medium, whether magnetic

or diamagnetic, or neutral, it produces within it a phenomenon
called Magnetic Induction.

Magnetic induction is a directed quantity of the nature of a

flux, and it satisfies the same conditions of continuity as electric

currents and other fluxes do.

In isotropic media the magnetic force and the magnetic in-

duction are in the same direction, and the magnetic induction

is the product of the magnetic force into a quantity called the

coefficient of induction, which we have expressed by fi.

In empty space the coefficient of induction is unity. In bodies

capable of induced magnetization the coefficient of induction is

1 + 4™ = 11, where k is the quantity already defined as the co-

efficient of induced magnetization.

429.] Let ju,, [t! be the values of \k on opposite sides of a surface

separating two media, then if V, V are the potentials in the two
media, the magnetic forces towards the surface in the two media

dV , dV
are -^— and —r-, •

dv dv

The quantities of magnetic induction through the element of

dV dV'
surface dS are u—-dS and uf -^—rdS in the two media respect-

ed dv r

ively reckoned towards dS.

Since the total flux towards dS is zero,

dV ,dV
dv dv

But by the theory of the potential near a surface of density a,

dV dV'
-
1- + -

7
-

? + 4ir<r = 0.
dv dv

Hence -7- (1——^ + ±t><t = 0.
dv V

fJL
/

If iq is the ratio of the superficial magnetization to the normal

force in the first medium whose coefficient is fi, we have

A f
X~^

±TtK
x
= r--

Hence k
x
will be positive or negative according as /x is greater

or less than //. If we put p = 4-itk + I and \t! = 4tjV + 1,

K— K
*
1
=

47rK'+i*
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In this expression k and k are the coefficients of induced

magnetization of the first and second media deduced from ex-

periments made in air, and k
x

is the coefficient of induced

magnetization of the first medium when surrounded by the

second medium.

If k is greater than k, then k
x

is negative, or the apparent

magnetization of the first medium is in the opposite direction

to the magnetizing force.

Thus, if a vessel containing a weak aqueous solution of a

paramagnetic salt of iron is suspended in a stronger solution

of the same salt, and acted on by a magnet, the vessel moves

as if it were magnetized in the opposite direction from that in

which a magnet would set itself if suspended in the same place.

This may be explained by the hypothesis that the solution in

the vessel is really magnetized in the same direction as the

magnetic force, but that the solution which surrounds the vessel

is magnetized more strongly in the same direction. Hence the

vessel is like a weak magnet placed between two strong ones all

magnetized in the same direction, so that opposite poles are in

contact. The north pole of the weak magnet points in the

same direction as those of the strong ones, but since it is in

contact with the south pole of a stronger magnet, there is an

excess of south magnetism in the neighbourhood of its north

pole, which causes the weak magnet to appear oppositely mag-

netized.

In some substances, however, the apparent magnetization is

negative even when they are suspended in what is called a

vacuum.

If we assume k = for a vacuum, it will be negative for

these substances. No substance, however, has been discovered

for which k has a negative value numerically greater than —

,

and therefore for all known substances fx is positive.

Substances for which k is negative, and therefore fi less than

unity, are called Diamagnetic substances. Those for which k is

positive, and ju, greater than unity, are called Paramagnetic,

Ferromagnetic, or simply magnetic, substances.

We shall consider the physical theory of the diamagnetic and

paramagnetic properties when we come to electromagnetism,

Arts. 832-845.
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430.] The mathematical theory of magnetic induction was
first given by Poisson *. The physical hypothesis on which he
founded his theory was that of two magnetic fluids, an hypothesis
which has the same mathematical advantages and physical
difficulties as the theory of two electric fluids. In order, how-
ever, to explain the fact that, though a piece of soft iron can be
magnetized by induction, it cannot be charged with unequal
quantities of the two kinds of magnetism, he supposes that the
substance in general is a non-conductor of these fluids, and that
only certain small portions of the substance contain the fluids

under circumstances in which they are free to obey the forces

which act on them. These small magnetic elements of the sub-
stance contain each precisely equal quantities of the two fluids,

and within each element the fluids move with perfect freedom,
but the fluids can never pass from one magnetic element to
another.

The problem therefore is of the same kind as that relating to
a number of small conductors of electricity disseminated through
a dielectric insulating medium. The conductors may be of any
form provided they are small and do not touch each other.

If they are elongated bodies all turned in the same general
direction, or if they are crowded more in one direction than
another, the medium, as Poisson himself shews, will not be
isotropic. Poisson therefore, to avoid useless intricacy, examines
the case in which each magnetic element is spherical, and the
elements are disseminated without regard to axes. He supposes
that the whole volume of all the magnetic elements in unit of
volume of the substance is k.

We have already considered in Art. 314 the electric conduc-
tivity of a medium in which small spheres of another medium
are distributed.

If the conductivity of the medium is nv and that of the
spheres ^2 , we have found that the conductivity of the com-
posite system is

H = u
2Mi+M2 +2&(m2 -Fi)

Putting /txj = l and /z
2
= oc , this becomes

l + 2k

* Memoires de I'Institut, 1824, p. 247.
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This quantity jx is the electric conductivity of a medium con-

sisting of perfectly conducting spheres disseminated through a

medium of conductivity unity, the aggregate volume of the

spheres in unit of volume being k.

The symbol /u also represents the coefficient of magnetic in-

duction of a medium, consisting of spheres for which the per-

meability is infinite, disseminated through a medium for which

it is unity.

The symbol k, which we shall call Poisson's Magnetic Co-

efficient, represents the ratio of the volume of the magnetic

elements to the whole volume of the substance.

The symbol k is known as Neumann's Coefficient of Magnet-

ization by Induction. It is more convenient than Poisson's.

The symbol n we shall call the Coefficient of Magnetic Induc-

tion. Its advantage is that it facilitates the transformation of

magnetic problems into problems relating to electricity and heat.

The relations of these three symbols are as follows :

47TK , _ ft—

1

H-l 3k
K =

4tt
'

4tt(1-/<;)'

1 + 2k A J_1/X=y—^-, JX=47TK+1.

If we put k = 32, the value given by Thalen's* experiments

on soft iron, we find k = £f£. This, according to Poisson's

theory, is the ratio of the volume of the magnetic molecules to

the whole volume of the iron. It is impossible to pack a space

with equal spheres so that the ratio of their volume to the whole

space shall be so nearly unity, and it is exceedingly improbable

that so large a proportion of the volume of iron is occupied by

solid molecules, whatever be their form. This is one reason

why we must abandon Poisson's hypothesis. Others will be

stated in Chapter VI. Of course the value of Poisson's mathe-

matical investigations remains unimpaired, as they do not rest

on his hypothesis, but on the experimental fact of induced

magnetization.

* Beeherches sur les proprietes magnetiques dufer, Nova Acta, Upsal, 1863.



CHAPTER V.

PARTICULAR PROBLEMS IN MAGNETIC INDUCTION.

A Hollow Spherical Shell.

431.] The first example of the complete solution of a problem
in magnetic induction was that given by Poisson for the case

of a hollow spherical shell acted on by any magnetic forces

whatever.

For simplicity we shall suppose the origin of the magnetic
forces to be in the space outside the shell.

If V denotes the potential due to the external magnetic
system, we may expand V in a series of solid harmonics of the
form V=C S + C1 S1

r + kc. + C
i
S

i
ri +..., (l)

where r is the distance from the centre of the shell, S
t

is a
surface harmonic of order i, and C

t
- is a coefficient.

This series will be convergent provided r is less than the
distance of the nearest magnet of the system which produces
this potential. Hence, for the hollow spherical shell and the

space within it, this expansion is convergent.

Let the external radius of the shell be a2 and the inner radius
av and let the potential due to its induced magnetism be 12.

The form of the function 12 will in general be different in the

hollow space, in the substance of the shell, and in the space
beyond. If we expand these functions in harmonic series, then,

confining our attention to those terms which involve the surface

harmonic Sit we shall find that if 12
x is that which corresponds

to the hollow space within the shell, the expansion of Q,
x
must

be in positive harmonics of the form A^r*, because the po-
tential must not become infinite within the sphere whose radius
is a

In the substance of the shell, where r lies between a, and aQ ,

the series may contain both positive and negative powers of r,

of the form A^ S. ri +^ S , r-(i+ iK
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Outside the shell, where r is greater than a2 , since the series

must be convergent however great r may be, we must have only

negative powers of r, of the form

B^r-^.
The conditions which must be satisfied by the function il are

:

It must be 1° finite, and 2° continuous, and 3° must vanish at

an infinite distance, and it must 4° everywhere satisfy Laplace's

equation.

On account of 1°, B, = 0.

On account of 2°, when r = a
x ,

(A
1
-A 2)a*

i"-B
2
= 0, (2)

and when r = a2 ,

(A 2-A 3)a.j»
+ i + B2

-Bs
= 0.

_
(3)

On account of 3°, A z
= 0, and the condition 4° is satisfied

everywhere, since the functions are harmonic.

But, besides these, there are other conditions to be satisfied at

the inner and outer surfaces in virtue of equation (10), Art. 427.

At the inner surface where r = ax ,

. .d£l,, dQ,-. , dV , *

( 1 + 4 ")-37-d?
!+4™* =

' (4)

and at the outer surface where r = a2 ,

. ^d£l2 d£l» . dV /K x

_(l+4„)-
a
J + -

3
J-4«

aF = 0. <«)

From these conditions we obtain the equations

(1+4™) {iA
2a1

2i+1 -(i+l)B2}-iA 1
a

1

u+1 + 4inciC
i
a*i+1 = 0, (6)

(l+^TTK){iA 2a2
ii+1 -(i + l)B2

}+{i + l)B
3+ ^KiGi

a2
2i+1 = 0;(7)

and if we put

JV< = n+1 y (
8
)

we find

A, = -(4^)^(^ + l)(l-(|)
2i+1

)^C
i5 (9)

A 2
=-^Ki[2i+l+^K(i+l)(l-Q)

t+1

)^iG^ (10)

B2
=4TTKi(2i+l)al

* i+1N
i
C

i ,
(U)

Bs
= ~^Ki{2i+l+4iTK(i+l)}(a2

2i+1 -aiii+1) î
G

i
. (12)

These quantities being substituted in the harmonic expansions

give the part of the potential due to the magnetization of the

shell. The quantity JV, is always positive, since 1 + 4™ can
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never be negative. Hence A
x

is always negative, or in other

words, the action of the magnetized shell on a point within it is

always opposed to that of the external magnetic force, whether
the shell be paramagnetic or diamagnetic. The actual value of

the resultant potential within the shell is

or (l + 4TTK)(2i+lfJST
i
C

i
S

i
ri

. (13)

432.] When k is a large number, as it is in the case of soft

iron, then, unless the shell is very thin, the magnetic force

within it is but a small fraction of the external force.

In this way Sir W. Thomson has rendered his marine galva-

nometer independent of external magnetic force by enclosing it

in a tube of soft iron.

433.] The case of greatest practical importance is that in

which i = 1. In this case

JVi = J-, (H)
9(1+4™)+2(4ttk)2 (i-(^))

^ 1 =-2(4^(l-Q)
3

)iV
1 (71J

^
2
=-4 7r,[3 + 8 7r.(-l(^)

3

)JiV1C1 , L (15)

B
2 = 12 ITKCI^^C^

B
3 = -47r K (3 + 87r/c)(a

2
3 -a

1

3)iV
1
C

1
.

The magnetic force within the hollow shell is in this case
uniform and equal in magnitude to

n , a 9(1+4wk)C
1 +A1

= i L —-rGv (16)
9(1 + 47tk) + 2(47T,c)2 (i_(^))

If we wish to determine k by measuring the magnetic force
within a hollow shell and comparing it with the external mag-
netic force, the best value of the thickness of the shell may be
found from the equation

1
_a

1
3 _ 91j-4jrK

a2
s ~ 2 (4-jTKf

'

(
17

)

cl d c A "\

{This value of -i makes — h + —H a maximum, so that fora2 a* ( Cj)

a given error m v—l——U the corresponding error in k is as

small as possible. } The magnetic force inside the shell is then
half of its value outside.
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Since, in the case of iron, k is a number between 20 and 30,

the thickness of the shell ought to be about the two hundredth

part of its radius. This method is applicable only when the value

of k is large. When it is very small the value of A
x
becomes

insensible, since it depends on the square of k.

For a nearly solid sphere with a very small spherical hollow

A
2

(
4 *")2 C1_

(3 + 47TK)(3 + 8 7ric)
x '

2 3 + 4TT/C *

3
3 + 47TK X 2

(18)

The whole of this investigation might have been deduced

directly from that of conduction through a spherical shell, as

given in Art. 312, by putting k
x
= (1 + 4ttk) Jc

2
in the expressions

there given, remembering that A
x
and A 2

in the problem of

conduction are equivalent to Cx + A x
and C

x + A2
in the problem

of magnetic induction.

434.] The corresponding solution in two dimensions is graphi-

cally represented in Fig. XV, at the end of this volume. The

lines of induction, which at a distance from the centre of the

figure are nearly horizontal, are represented as disturbed by a

cylindric rod magnetized transversely and placed in its position

of stable equilibrium. The lines which cut this system at right

angles represent the equipotential surfaces, one of which is a

cylinder. The large dotted circle represents the section of a

cylinder of a paramagnetic substance, and the dotted horizontal

straight lines within it, which are continuous with the external

lines of induction, represent the lines of induction within the

substance. The dotted vertical lines represent the internal equi-

potential surfaces, and are continuous with the external system.

It will be observed that the lines of induction are drawn nearer

together within the substance, and the equipotential surfaces

are separated farther apart by the paramagnetic cylinder, which,

in the language of Faraday, conducts the lines of induction

better than the surrounding medium.

If we consider the system of vertical lines as lines of induc-

tion, and the horizontal system as equipotential surfaces, we

have, in the first place, the case of a cylinder magnetized trans-
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versely and placed in the position of unstable equilibrium

among the lines of force, which it causes to diverge. In the
second place, considering the large dotted circle as the section

of a diamagnetic cylinder, the dotted straight lines within it,

together with the lines external to it, represent the effect of a

diamagnetic substance in separating the lines of induction and
drawing together the equipotential surfaces, such a substance
being a worse conductor of magnetic induction than the sur-

rounding medium.

Case of a Sphere in which the Coefficients of Magnetization are

Different in Different Directions.

435.] Let a, /3, y be the components of magnetic force, and
A, B, C those of the magnetization at any point, then the most
general linear relation between these quantities is given by the
equations ^ = r

2
a + p3 +& v,

)

C = p2 a + qi l3 + r
3 y, J

where the coefficients r, p, q are the nine coefficients of magnet-
ization.

Let us now suppose that these are the conditions of magnet-
ization within a sphere of radius a, and that the magnetization
at every point of the substance is uniform and in the same
direction, having the components A, B, C.

Let us also suppose that the external magnetizing force is

also uniform and parallel to one direction, and has for its com-
ponents X, Y, Z.

The value of V is therefore

V= -(Xx+Yy + Zz), (2)

and that of £2', the potential outside the sphere of the mag-
netization, is by Art. 391,

&=^(A* + By + Cz). (3)

The value of fl, the potential within the sphere of the mag-
netization, is 4-

n = ~(Ax + By + Cz). (4)

The actual potential within the sphere is V+Q., so that we
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shall have for the components of the magnetic force within the

sphere a = X— £tt A, \

p = Y-UB,\ (5)

Hence

{\+^r
x
)A + $vpa

B+ irtqa
O=r

1
X+p3 7+q2

ZA
$irq

9
A + (l+tvrJB+ $ttPi C = q3X + r

2Y+ PlZ, V (6)

$rrp
2A + i7rq1 B+(l+iTrrz

)C = p2
X+q1

Y+rz
Z.)

Solving these equations, we find

A^rSX + Pt'Y+qJZ,)
B = qs'X + r

t'Y+tiZ,\ (7)

C=pa
'X + q1

'7+r
Ji
'Z

t J

where D'r{= r
x + £w (r3 rx-p2 q2 +r^-p^) + ($ rrfD,

'

Df

Pi=Pi-^^(92qs-Piri)> I

(
8 )

&c, t

where D is the determinant of the coefficients on the right side

of equations (6), and D' that of the coefficients on the left.

The new system of coefficients p\ q\ r' will be symmetrical

only when the system p, q, r is symmetrical, that is, when the

coefficients of the form p are equal to the corresponding ones of

the form q.

436.] *The moment of the couple tending to turn the sphere

about the axis of x from y towards z is found by considering

the couples arising from an elementary volume and taking the

sum of the moments for the whole sphere. The result is

L = $va*(yB-pC)
= £*a3

{pl
'Z»-q

l
'Y* + (rJ-rs

')7Z+X(q9
'Z-pi'Y)}. (9)

* [The equality of the coefficients p and q may be shewn as follows : Let the forces

acting on the sphere turn it about a diameter whose direction-cosines are \, /*, v through

an angle 80 ; then, if W denote the energy of the sphere, we have, by Art. 436,

But if the axes of coordinates be fixed in the sphere we have in consequence of the

rotation /Tr „ . e . ,JI= (Yv— Zfx)S9, etc.

Hence we may put
-5W=$*a3 (A$X + BSY+C5Z).

That the revolving sphere may not become a source of energy, the expression on the

right-hand of the last equation must be a perfect differential. Hence, since A, B, C
are linear functions of X, Y, Z, it follows that W is a quadratic function of X, Y, Z,

and the required result ia at once deduced.

See also Sir W. Thomson's Keprint of Papers on Electrostatics and Magnetism,

pp. 480-481.]
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If we make
X= 0, 7= JFcos d, Z= Fsin 6,

this corresponds to a magnetic force F in the plane of yz, and
inclined to y at an angle 6. If we now turn the sphere while
this force remains constant the work done in turning the sphere

will be / Ldd in each complete revolution. But this is equal to

i**a*F*(p
}
'-q

1
'). (10)

Hence, in order that the revolving sphere may not become an
inexhaustible source of energy, p{ = <?/, and similarly p£ = q2

'

and pa
' = qz\

These conditions shew that in the original equations the co-

efficient of B in the third equation is equal to that of C in the

second, and so on. Hence, the system of equations is sym-
metrical, and the equations become when referred to the prin-

cipal axes of magnetization,

C=T-X— Z.

The moment of the couple tending to turn the sphere round
the axis of x is

X =s™%TXT-^T7rXl \YZ- (12)

In most cases the differences between the coefficients of

magnetization in different directions are very small, so that we
may put, if r represents the mean value of the coefficients,

L = fra\/2
~ r3

VA
FHm2d. (13)

This is the force tending to turn a crystalline sphere about
the axis of x from y towards z. It always tends to place the

axis of greatest magnetic coefficient (or least diamagnetic co-

efficient) parallel to the line of magnetic force.

The corresponding case in two dimensions is represented in

Fig. XVI.

If we suppose the upper side of the figure to be towards the

north, the figure represents the lines of force and equipotential

surfaces as disturbed by a transversely magnetized cylinder

\
(11)
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placed with the north side eastwards. The resultant force tends

to turn the cylinder from east to north. The large dotted circle

represents a section of a cylinder of a crystalline substance

which has a larger coefficient of induction along an axis from

north-east to south-west than along an axis from north-west to

south-east. The dotted lines within the circle represent the

lines of induction and the equipotential surfaces, which in this

case are not at right angles to each other. The resultant force

on the cylinder tends evidently to turn it from east to north.

437.] The case of an ellipsoid placed in a field of uniform and

parallel magnetic force has been solved in a very ingenious

manner by Poisson.

If V is the potential at the point (x, y, z), due to the gravita-

tion of a body of any form of uniform density p, then - -^

is the potential of the magnetism of the same body if uniformly

magnetized in the direction of x with the intensity / = p.

For the value of - ^8a at any point is the excess of the

value of V
y
the potential of the body, above V, the value of

the potential when the body is moved -bx in the direction

of x.

If we supposed the body shifted through the distance -bx,

and its density changed from p to -p (that is to say, made of

dV
repulsive instead of attractive matter), then - ^bx would be

the potential due to the two bodies.

Now consider any elementary portion of the body containing

a volume b v. Its quantity is pbv, and corresponding to it there

is an element of the shifted body whose quantity is -pbv at a

distance —8a;. The effect of these two elements is equivalent to

that of a magnet of strength pbv and length bx. The intensity

of magnetization is found by dividing the magnetic moment of

an element by its volume. The result is pbx.

Hence—— bx is the magnetic potential of the body mag-
dx dy

netized with the intensity p 5 x in the direction of x, and — -^

is that of the body magnetized with intensity p.

This potential may be also considered in another light. The

body was shifted through the distance —bx and made of density
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—p. Throughout that part of space common to the body in its

two positions the density is zero, for, as far as attraction is

concerned, the two equal and opposite densities annihilate each

other. There remains therefore a shell of positive matter on
one side and of negative matter on the other, and we may
regard the resultant potential as due to these. The thickness of

the shell at a point where the normal drawn outwards makes
an angle e with the axis of x is b

x

cose and its density is p.

The surface-density is therefore p b

x

cose, and, in the case in

dV
which the potential is — -=- > the surface-density is p cos e.

In this way we can find the magnetic potential of any body
uniformly magnetized parallel to a given direction. Now if

this uniform magnetization is due to magnetic induction, the

magnetizing force at all points within the body must also be

uniform and parallel.

This force consists of two parts, one due to external causes,

and the other due to the magnetization of the body. If there-

fore the external magnetic force is uniform and parallel, the

magnetic force due to the magnetization must also be uniform
and parallel for all points within the body.

Hence, in order that this method may lead to a solution of

the problem of magnetic induction, -r- must be a linear function
ctco

of the coordinates x, y, z within the body, and therefore V must
be a quadratic function of the coordinates.

Now the only cases with which we are acquainted in which V
is a quadratic function of the coordinates within the body are

those in which the body is bounded by a complete surface of

the second degree, and the only case in which such a body is of

finite dimensions is when it is an ellipsoid. We shall therefore

apply the method to the case of an ellipsoid.

^ £+£+?-» w
be the equation of the ellipsoid, and let 4> denote the definite

integral

*<*> -
(2)fJo V(a2 + <p

2)(b2 + <p*)(c* + <p*) '

See Thomson and Tait's Natural Philosophy, § 525, 2nd Edition.
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Then if we make

the value of the potential within the ellipsoid will he

V= ~-(Lx2 +My2 + Nz*) + const. (4)

If the ellipsoid is magnetized with uniform intensity 7 in a

direction making, angles whose cosines are I, m, n with the axes

of x, y, z, so that the components of magnetization are

A = 11, B = Im, C = In,

the potential due to this magnetization within the ellipsoid

will be & = -I(Llx +Mmy + Nnz). (5)

If the external magnetizing force is $, and if its components

are X, T, Z, its potential will be

V=-(Xx + Yy + Zz). (6)

The components of the actual magnetizing force at any point

within the body are therefore

X + AL, Y+BM, Z+CN. (7)

The most general relations between the magnetization and

the magnetizing force are given by three linear equations,

involving nine coefficients. It is necessary, however, in order

to fulfil the condition of the conservation of energy, that in

the case of magnetic induction three of these should be equal

respectively to other three, so that we should have

a = k 1
{x+al)+k'z

{Y+bm)+k\{z+cn);

B = k'3 (X + AL) + k 2
(Y+BM) + k\(Z+ CN)\ (8)

C = k'2 {X + AL) + k\{Y+BM) + Ks{Z+CN). i

From these equations we may determine A, B and G in terms

of X, Y, Z, and this will give the most general solution of the

problem.

The potential outside the ellipsoid will then be that due to

the magnetization of the ellipsoid together with that due to

the external magnetic force.

438.] The only case of practical importance is that in which

K>, = K' = k' = 0. (9)
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We have then j 1-^L

B= —^ F
i-jc

8jr'

1-k3N

(10)

If the ellipsoid has two axes equal, and, is of the planetary

or flattened form, a

,- ,1 >/l_ 62L = —4:tt(—? — sin 1e)T

(12)

(14)

If the ellipsoid is of the ovary or elongated form,

a=b= V\—e2 c; (13)

In the case of a sphere, when e = 0,

L = M= #* = -fir. (15)

In the case of a very flattened planetoid L becomes in the

limit equal to — 47r, and M and JV become — tt
2 --
c

In the case of a very elongated ovoid L and M approximate
to the value — 27r, while N approximates to the form

-4V(log^-l),

and vanishes when e = 1

.

It appears from these results that

—

(1) When k, the coefficient of magnetization, is very small,

whether positive or negative, the induced magnetization is

nearly equal to the magnetizing force multiplied by k, and is

almost independent of the form of the body.

(2) When k is a large positive quantity, the magnetization

depends principally on the form of the body, and is almost

independent of the precise value of k, except in the case of a
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longitudinal force acting on an ovoid so elongated that JVk is

a small quantity though k is large.
x

(3) If the value of k could be negative and equal to— we

should have an infinite value of the magnetization in the case

of a magnetizing force acting normally to a flat plate or disk.

The absurdity of this result confirms what we said in Art. 428.

Hence, experiments to determine the value of k may be made

on bodies of any form, provided k is very small, as it is in

the case of all diamagnetic bodies, and all magnetic bodies

except iron, nickel and cobalt.

If, however, as in the case of iron, k is a large number,

experiments made on spheres or flattened figures are not

suitable to determine k ; for instance, in the case of a sphere

the ratio of the magnetization to the magnetizing force is as

1 to 4-22 if k = 30, as it is in some kinds of iron, and if k were

infinite the ratio would be as 1 to 4-19, so that a very small

error in the determination of the magnetization would introduce

a very large one in the value of k.

But if we make use of a piece of iron in the form of a

very elongated ovoid, then, as long as JV/c is of moderate Value

compared with unity, we may deduce the value of k from a

determination of the magnetization, and the smaller the value

of N the more accurate will be the value of k.

In fact, if Nk be made small enough, a small error in the

value of JV itself will not introduce much error, so that we

may use any elongated body, such as a wire or long rod, instead

of an ovoid *.

We must remember, however, that it is only when the

product Nk is small compared with unity that this substitution

is allowable. In fact the distribution of magnetism on a long

cylinder with flat ends does not resemble that on a long

ovoid, for the free magnetism is very much concentrated

towards the ends of the cylinder, whereas it varies directly as

the distance from the equator in the case of the ovoid.

The distribution of electricity on a cylinder, however, is really

comparable with that on an ovoid, as we have already seen,

Art. 152.

These results also enable us to understand why the magnetic

* {If wires are used their length should be at least 300 times their diameter.}
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moment of a permanent magnet can be made so much greater

when the magnet has an elongated form. If we were to

magnetize a disk with intensity / in a direction normal to

its surface, and then leave it to itself, the interior particles

would experience a constant demagnetizing force equal to 4ir/,

and this, if not sufficient of itself to destroy part of the mag-
netization, would soon do so if aided by vibrations or changes
of temperature *.

If we were to magnetize a cylinder transversely the demag-
netizing force would be only 2ttI.

If the magnet were a sphere the demagnetizing force would
be §-nI.

In a disk magnetized transversely the demagnetizing force is

ft

tt*-I, and in an elongated ovoid magnetized longitudinally it

a2 2 c
is least of all, being 4 -n -^ i" log —

.

C (X,

Hence an elongated magnet is less likely to lose its magnetism
than a short thick one.

The moment of the force acting on an ellipsoid havino-

different magnetic coefficients for the three axes which tends

to turn it about the axis of x, is

Hence, if k
2 and k3 are small, this force will depend principally

on the crystalline quality of the body and not on its shape, pro-

vided its dimensions are not very unequal, but if k
2 and k

3 are

considerable, as in the case of iron, the force will depend
principally on the shape of the body, and it will turn so as

to set its longer axis parallel to the lines of force.

If a sufficiently strong, yet uniform, field of magnetic force

could be obtained, an elongated isotropic diamagnetic body

* {The magnetic force in the disk = X+AL
_ X~
1-kL'

and since L = — 4 it in this case, the magnetic force is

X
1 + 4ttk

Thus the magnetic induction through the disk is X, the value it would have in the air
if the disk were removed.

}
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would also set itself with its longest dimension parallel to the

lines of magnetic force *.

439.] The question of the distribution of the magnetization of

an ellipsoid of revolution under the action of any magnetic

forces has been investigated by J. Neumann f- KirchhoffJ has

extended the method to the case of a cylinder of infinite length

acted on by any force.

Green, in the 17th section of his Essay, has given an investiga-

tion of the distribution of magnetism in a cylinder of finite

length acted on by a uniform external force X parallel to its axis.

Though some of the steps of this investigation are not very

rigorous, it is probable that the result represents roughly the

actual magnetization in this most important case. It certainly

expresses very fairly the transition from the case of a cylinder

for which k is a large number to that in which it is very small,

but it fails entirely in the case in which k is negative, as in

diamagnetic substances.

Green finds that the linear density of free magnetism at a

distance x from the middle of a cylinder whose radius is a and

whose length is 2 1, is
px px

e a — e~ a

X = TTnXpa-^ -pi,

e a +e
~ a

where p is a numerical quantity to be found from the equation

0.231863-2log
e^+2^ = --^.

The following are a few of the corresponding values of p and k.

oo

336-4 0-01

62-02 0-02

48-416 0-03

29-475 0-04

20-185 0-05

14-794 0-06

k P
11-802 0-07

9-137 0-08

7-517 0-09

6-319 0-10

0-1427 1-00

0-0002 10-00

0-0000 oo

negative imaginary.

* { This effect depends on the square of «, the forces investigated in § 440 depend upon

the first power of *, thus since k is very small for diamagnetic bodies the latter forces

•will, except in exceptional cases, over-power the tendency investigated in this Art.

}

f Crelle, bd. xxxvii (1848). X Crelle, bd. xlviii (1854).
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When the length of the cylinder is great compared with its

radius, the whole quantity of free magnetism on either side of

the middle of the cylinder is, as it ought to be,

M =Tta?KX.

Of this \pM is on the flat end of the cylinder* and the distance

of the centre of gravity of the whole quantity M from the end

of the cylinder is - •

When k is very small p is large, and nearly the whole free

magnetism is on the ends of the cylinder. As /c increases p
diminishes, and the free magnetism is spread over a greater

distance from the ends. When k is infinite the free magnetism
at any point of the cylinder is simply proportional to its distance

from the middle point, the distribution being similar to that of

free electricity on a conductor in a field of uniform force.

440.] In all substances except iron, nickel, and cobalt, the

coefficient of magnetization is so small that the induced mag-
netization of the body produces only a very slight alteration of the

forces in the magnetic field. We may therefore assume, as a
first approximation, that the actual magnetic force within the

body is the same as if the body had not been there. The super-

ficial magnetization of the body is therefore, as a first approx-
. A . dV . dV.

,imation, k -t-, where -7- is the rate of increase of the magnetic

potential due to the external magnet along a normal to the
surface drawn inwards. If we now calculate the potential due
to this superficial distribution, we may use it in proceeding to a
second approximation.

To find the mechanical energy due to the distribution of

* {The quantity of free magnetism on the curved surface on the positive side of the
cylinder

-
J

\dz = ira3*Z(l-sech^Y

The quantity on the flat end, supposing the density to be the same as on the curved
surface when x = 1, is vlcX t

n * tanh ^- • va?.
2wa a

Thus the total quantity of free magnetism is

»a««xfl-Bech^ + ?tanli^
\ a 2 a)

When pl/a is large this is equal to

*H)}-



/•

74 MAGNETIC PROBLEMS. [44 1 •

magnetism on this first approximation we must find the surface-

intesral E=kffK
y<w

dS

taken over the whole surface of the body. Now we have shewn

in Art. 100 that this is equal to the volume-integral

*~»///'(g
,+a,+

si>**
_

taken through the whole space occupied by the body, or, if R is

the resultant magnetic force,

E — ~\ fffnR
2dxdydz.

Now since the work done by the magnetic force on the body

during a displacement bx is Xhx where X is the mechanical

force in the direction of x, and since

Xbx +E = constant,

*--£-»Mf*myd° - *fIf
'*-£***•

which shews that the force acting on the body is as if every part

of it tended to move from places where R2 is less to places where

it is greater, with a force which on every unit of volume is

d.R2

dx

If k is negative, as in diamagnetic bodies, this force is, as

Faraday first shewed, from stronger to weaker parts of the

magnetic field. Most of the actions observed in the case of

diamagnetic bodies depend on this property.

Ship's Magnetism.

441.] Almost every part of magnetic science finds its use in

navigation. The directive action of the earth's magnetism on

the compass-needle is the only method of ascertaining the ship's

course when the sun and stars are hid. The declination of the

needle from the true meridian seemed at first to be a hindrance

to the application of the compass to navigation, but after this

difficulty had been overcome by the construction of magnetic

charts it appeared likely that the declination itself would assist

the mariner in determining his ship's place.
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The greatest difficulty in navigation had always been to ascer-

tain the longitude; but since the declination is different at

different points on the same parallel of latitude, an observation of

the declination together with a knowledge of the latitude would
enable the mariner to find his position on the magnetic chart.

But in recent times iron is so largely used in the construction

of ships that it has become impossible to use the compass at all

without taking into account the action of the ship, as a magnetic
body, on the needle.

To determine the distribution of magnetism in a mass of iron

of any form under the influence of the earth's magnetic force,

even though not subjected to mechanical strain or other disturb-

ances, is, as we have seen, a very difficult problem.

In this case, however, the problem is simplified by the following

considerations.

The compass is supposed to be placed with its centre at a fixed

point of the ship, and so far from any iron that the magnetism
of the needle does not induce any perceptible magnetism in the

ship. The size of the compass-needle is supposed so small that

we may regard the magnetic force at every point of the needle as

the same.

The iron of the ship is supposed to be of two kinds only.

(1) Hard iron, magnetized in a constant manner.

(2) Soft iron, the magnetization of which is induced by the

earth or other magnets.

In strictness we must admit that the hardest iron is not only
capable of induction but that it may lose part of its so-called

permanent magnetization in various ways.

The softest iron is capable of retaining what is called residual

magnetization. The actual properties of iron cannot be accurately

represented by supposing it compounded of the hard iron and
the soft iron above defined. But it has been found that when a
ship is acted on only by the earth's magnetic force, and not
subjected to any extraordinary stress of weather, the supposition

that the magnetism of the ship is due partly to permanent mag-
netization and partly to induction leads to sufficiently accurate
results when applied to the correction of the compass.
The equations on which the theory of the variation of the

compass is founded were given by Poisson in the fifth volume of

the Memoires de I'lnstitut, p. 533 (1824).
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The only assumption relative to induced magnetism which is

involved in these equations is, that if a magnetic force X due to

external magnetism produces in the iron of the ship an induced

magnetization, and if this induced magnetization exerts on the

compass needle a disturbing force whose components are X', T,

Z\ then, if the external magnetic force is altered in a given ratio,

the components of the disturbing force will be altered in the

same ratio.

It is true that when the magnetic force acting on iron is very

great the induced magnetization is no longer proportional to the

external magnetic force, but this want of proportionality is

insensible for magnetic forces of the magnitude of those due to

the earth's action.

Hence, in practice we may assume that if a magnetic force

whose value is unity produces through the intervention of the

iron of the ship a disturbing force at the compass-needle whose

components are a in the direction of x, d in that of y, and g in

that of z, the components of the disturbing force due to a force X
in the direction of x will be aX, dX, and gX.

If therefore we assume axes fixed in the ship, so that x is

towards the ship's head, y to the starboard side, and z towards

the keel, and if X, F, Z represent the components of the earth's

magnetic force in these directions, and X', Y', Z' the components

of the combined magnetic force of the earth and ship on the

compass-needle,

X' = X +aX+ bY+cZ+P, a

Y'=Y+dX + eY+fZ+Q, V (1)

Z' == Z+gX + hY+kZ+ R.

)

In these equations a, 6, c, d, e,f, g, h, Jc are nine constant co-

efficients depending on the amount, the arrangement, and the

capacity for induction of the soft iron of the ship.

P, Q, and R are constant quantities depending on the per-

manent magnetization of the ship.

It is evident that these equations are sufficiently general if

magnetic induction is a linear function of magnetic force, for

they are neither more nor less than the most general expression

of a vector as a linear function of another vector.

It may also be shewn that they are not too general, for, by a
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proper arrangement of iron, any one of the coefficients may be
made to vary independently of the others.

Thus, a long thin rod of iron under the action of a longitudinal
magnetic force acquires poles, the strength of each of which is

numerically equal to the cross-section of the rod multiplied by
the magnetizing force and by the coefficient of induced magnet-
ization. A magnetic force transverse to the rod produces a much
feebler magnetization, the effect of which is almost insensible at
a distance of a few diameters.

If a long iron rod be placed fore and aft with one end at a
distance x from the compass-needle, measured towards the ship's
head, then, if the section of the rod is A, and its coefficient of
magnetization k, the strength of the pole will be AkX, and, if

CLCCA —— t the force exerted by this pole on the compass-needle

will be aX. The rod may be supposed so long that the effect of
the other pole on the compass may be neglected.

We have thus obtained the means of giving any required
value to the coefficient a.

If we place another rod of section B with one extremity at
the same point, distant x from the compass toward the head of
the vessel, and extending to starboard to such a distance that the
distant pole produces no sensible effect on the compass, the dis-
turbing force due to this rod will be in the direction of x, and

equal to —~, or if B = — , the force will be b Y.X K

This rod therefore introduces the coefficient b.

A third rod extending downwards from the same point will
introduce the coefficient c.

The coefficients d, e, f may be produced by three rods
extending to head, to starboard, and downward from a point
to starboard of the compass, and g, h, k by three rods in parallel
directions from a point below the compass.
Hence each of the nine coefficients can be separately varied

by means of iron rods properly placed.

The quantities P, Q, R are simply the components of the
force on the compass arising from the permanent magnetization
of the ship together with that part of the induced magnetization
which is due to the action of this permanent magnetization.
A complete discussion of the equations (1), and of the relation
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between the true magnetic course of the ship and the course

as indicated by the compass, is given by Mr. Archibald Smith in

the Admiralty Manual of the Deviation of the Compass.

A valuable graphic method of investigating the problem is

there given. Taking a fixed point as origin, a line is drawn

from this point representing in direction and magnitude the

horizontal part of the actual magnetic force on the compass-

needle. As the ship is swung round so as to bring her head

into different azimuths in succession, the extremity of this line

describes a curve, each point of which corresponds to a par-

ticular azimuth.

Such a curve, by means of which the direction and magnitude

of the force on the compass is given in terms of the magnetic

course of the ship, is called a Dygogram.

There are two varieties of the Dygogram. In the first, the

curve is traced on a plane fixed in space as the ship turns

round. In the second kind, the curve is traced on a plane

fixed with respect to the ship.

The dygogram of the first kind is the Limacon of Pascal,

that of the second kind is an ellipse. For the construction

and use of these curves, and for many theorems as interesting

to the mathematician as they are important to the navigator,

the reader is referred to the Admiralty Manual of the Deviation

of the Compass.



CHAPTER VI.

weber's theory of induced magnetism.

442.] We have seen that Poisson supposed the magnetization
of iron to consist in a separation of the magnetic fluids within
each magnetic molecule. If we wish to avoid the assumption
of the existence of magnetic fluids, we may state the same
theory in another form, by saying that each molecule of the
iron, when the magnetizing force acts on it, becomes a magnet.

Weber's theory differs from this in assuming that the mole-
cules of the iron are always magnets, even before the appli-
cation of the magnetizing force, but that in ordinary iron
the magnetic axes of the molecules are turned indifferently in
every direction, so that the iron as a whole exhibits no magnetic
properties.

When a magnetic force acts on the iron it tends to turn the
axes of the molecules all in one direction, and so to cause the
iron, as a whole, to become a magnet.

If the axes of all the molecules were set parallel to each
other, the iron would exhibit the greatest intensity of mag-
netization of which it is capable. Hence Weber's theory implies
the existence of a limiting intensity of magnetization, and the
experimental evidence that such a limit exists is therefore

necessary to the theory. Experiments shewing an approach
to a limiting value of magnetization have been made by Joule *,

J. Mullerf, and Ewing and Low J.

The experiments of Beetz§ on electrotype iron deposited

* Annah of Electricity, iv. p. 131, 1839 ; Phil. Mag. [4] ill. p. 32.

t Pogg., Ann. Ixxix. p. 337. 1850.
X Phil. Trans. 1889. A. p. 221. § p gg. cxi. 1860.
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under the action of magnetic force furnish the most complete

evidence of this limit :

—

A silver wire was varnished, and a very narrow line on the

metal was laid bare by making a fine longitudinal scratch on

the varnish. The wire was then immersed in a solution of a

salt of iron, and placed in a magnetic field with the scratch

in the direction of a line of magnetic force. By making the

wire the cathode of an electric current through the solution,

iron was deposited on the narrow exposed surface of the wire,

molecule by molecule. The filament of iron thus formed was

then examined magnetically. Its magnetic moment was found

to be very great for so small a mass of iron, and when a power-

ful magnetizing force was made to act in the same direction

the increase of temporary magnetization was found to be very

small, and the permanent magnetization was not altered. A
magnetizing force in the reverse direction at once reduced the

filament to the condition of iron magnetized in the ordinary way.

Weber's theory, which supposes that in this case the mag-

netizing force placed the axis of each molecule in the same

direction during the instant of its deposition, agrees very well

with what is observed.

Beetz found that when the electrolysis is continued under

the action of the magnetizing force the intensity of magnet-

ization of the subsequently deposited iron diminishes. The

axes of the molecules are probably deflected from the line of

magnetizing force when they are being laid down side by side

with the molecules already deposited, so that an approximation

to parallelism can be obtained only in the case of a very thin

filament of iron.

If, as Weber supposes, the molecules of iron are already

magnets, any magnetic force sufficient to render their axes

parallel as they are electrolytically deposited will be sufficient

to produce the highest intensity of magnetization in the de-

posited filament.

If, on the other hand, the molecules of iron are not magnets,

but are only capable of magnetization, the magnetization of the

deposited filament will depend on the magnetizing force in the

same way in which that of soft iron in general depends on

it. The experiments of Beetz leave no room for the latter

hypothesis.
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443.] We shall now assume, with Weber, that in every unit

of volume of the iron there are n magnetic molecules, and that

the magnetic moment of each is m. If the axes of all the

molecules were placed parallel to one another, the magnetic
moment of the unit of volume would be

M — nm,
and this would be the greatest intensity of magnetization of

which the iron is capable.

In the unmagnetized state of ordinary iron Weber supposes

the axes of its molecules to be placed indifferently in all

directions.

To express this, we may suppose a sphere to be described,

and a radius drawn from the centre parallel to the direction

of the axis of each of the n molecules. The distribution of the

extremities of these radii will represent that of the axes of the

molecules. In the case of ordinary iron these n points are

equally distributed over every part of the surface of the sphere,

so that the number of molecules whose axes make an angle less

than a with the axis of x is

-(1-cosa),

and the number of molecules whose axes make angles with that
of x between a and a + da is therefore

n . ,

-am ad a.

This is the arrangement of the molecules in a piece of iron
which has never been magnetized.

Let us now suppose that a magnetic force X is made to

act on the iron in the direction of the axis of x, and let us
consider a molecule whose axis was originally inclined o to the
axis of x.

If this molecule is perfectly free to turn, it will place itself

with its axis parallel to the axis of x, and if all the molecules
did so, the very slightest magnetizing force would be found
sufficient to develope the very highest degree of magnetization.
This, however, is not the case.

The molecules do not turn with their axes parallel to x, and
this is either because each molecule is acted on by a force

tending to preserve it in its original direction, or because an
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equivalent effect is produced by the mutual action of the entire

system of molecules.

Weber adopts the former of these suppositions as the simplest,

and supposes that each molecule, when deflected, tends to return

to its original position with a force which is the same as that

which a magnetic force D, acting in the original direction of its

axis, would produce.

The position which the axis actually assumes is therefore

in the direction of the resultant ofX and D.

Let APB represent a section of a sphere whose radius re-

presents, on a certain scale, the force D.

Let the radius OP be parallel to the axis of a particular

molecule in its original position.

Fig. 5. Fig. 6.

Let SO represent on the same scale the magnetizing force X
which is supposed to act from S towards 0. Then, if the mole-

cule is acted on by the force X in the direction SO, and by a

force D in a direction parallel to OP, the original direction of

its axis, its axis will set itself in the direction SP, that of the

resultant of X and D.

Since the axes of the molecules are originally in all directions,

P may be at any point of the sphere indifferently. In Fig. 5,

in which X is less than D, SP, the final position of the axis,

may be in any direction whatever, but not indifferently, for

more of the molecules will have their axes turned towards A
than towards B. In Fig. 6, in which X is greater than D, the

axes of the molecules will be all confined within the cone TST
touching the sphere.

Hence there are two different cases according as X is less or

greater than D.
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Let a = AOP, the original inclination of the axis of a mole-

cule to the axis of x.

6 = ASP, the inclination of the axis when deflected by

the force X.

/3 = SPO, the angle of deflexion.

SO = X *, the magnetizing force.

OP = D, the force tending towards the original position.

SP = R, the resultant ofX and D.

m — magnetic moment of the molecule.

Then the moment of the statical couple due to X, tending to

diminish the angle 6, is

mL = mX sin 6 y

and the moment of the couple due to D> tending to increase 0, is

mL = mD sin /S.

Equating these values, and remembering that /3 = a— 6, we find

. , D sin a
tan 6 = ^—^

(1)X + Dcoaa v '

to determine the direction of the axis after deflexion.

We have next to find the intensity of magnetization produced

in the mass by the force X, and for this purpose we must
resolve the magnetic moment of every molecule in the direction

of x, and add all these resolved parts.

The resolved part of the moment of a molecule in the direc-

tion of a is m cos ^

The number of molecules whose original inclinations lay

sin ad a.

between a and a + da is n
2

We have therefore to integrate

T rwmn n .

1 = / -jr- cos 0sm ada, (2)
Jo 2

remembering that 6 is a function of a.

* \The force acting on a magnetic pole inside a magnet is indefinite, depending on
the shape of the cavity in which the pole is placed. The force X is thus indefinite,
for since we know nothing about the shape or disposition of these molecular magnets
there does not seem any reason for assuming that the force is that in a cavity of one
shape rather than :inother. Thus it would seem that unless further assumptions are
made we ought to put X = Xa + pi, where X is the external magnetic force and p a
constant, of which all we can say is that it must lie between and 4 it. This uncertainty
about the value of X is the more embarrassing from the fact that in iron J is very
much greater than X , so that the term about which there is the uncertainty may be
much the more important of the two, !-
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We may express both 6 and a in terms of R, and the ex-

pression to be integrated becomes

mn
±X2D

the general integral of which is

mnR

(R2 +X2-D2)dR, (3)

(R2 + 3X*-3D 2
) + C.

In the first case, that in which X is less than D, the limits of

integration are from R = D+X to R = D—X. In the second

case, in which X is greater than D, the limits are from

R = X +D to R = X~D.

When X is less than D,

When X is equal to D,

When X is greater than D,

and when X becomes infinite,

T 2 m n v

T 2
I = -mn.

3

T=mn(l- --=),

mw.

(5)

(6)

(8)

According to this form of the theory, which is that adopted

by Weber *, as the magnetizing force increases from to D, the

magnetization increases in the same proportion. When the

magnetizing force attains the value D, the magnetization is

two-thirds of its limiting value. When the magnetizing force

is further increased, the magnetization, instead of increasing

indefinitely, tends towards a finite limit.

Fig. 7.

The law of magnetization is expressed in Fig. 7, where the

magnetizing force is reckoned from towards the right, and the

* There is some mistake in the formula given by Weber, Abhandlungen der Kg.

Sachs-Gesellschaft der Wissens. i. p. 572 (1852), or Pogg., Ann., lxxxvii. p. 167 (1852),

as the result of this integration, the steps of which are not given by him. His formula

I = mn
VXSTD* X* + X'Z>a + .D<
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magnetization is expressed by the vertical ordinates. Weber's

own experiments give results in satisfactory accordance with

this law. It is probable, however, that the value of D is not

the same for all the molecules of the same piece of iron, so that

the transition from the straight line from to E to the curve

beyond E may not be so abrupt as is here represented.

444.] The theory in this form gives no account of the residual

magnetization which is found to exist after the magnetizing

force is removed. I have therefore thought it desirable to

examine the results of making a further assumption relating to

the conditions under which the position of equilibrium of a

molecule may be permanently altered.

Let us suppose that the axis of a magnetic molecule, if de-

flected through any angle /3 less than /3 , will return to its

original position when the deflecting force is removed, but that

if the deflexion /3 exceeds /3 , then, when the deflecting force is

removed, the axis will not return to its original position, but

will be permanently deflected through an angle /3— /3 , which
may be called the permanent set of the molecule *.

This assumption with respect to the law of molecular de-

flexion is not to be regarded as founded on any exact knowledge

of the intimate structure of bodies, but is adopted, in our

ignorance of the true state of the case, as an assistance to the

imagination in following out the speculation suggested by
Weber.

Let L = .Dsin/3
, (9)

then, if the moment of the couple acting on a molecule is

less than mL, there will be no permanent deflexion, but if it

exceeds mL there will be a permanent change of the position of

equilibrium.

To trace the results of this supposition, describe a sphere

whose centre is and radius OL — L.

As long as X is less than L everything will be the same as

in the case already considered, but as soon as X exceeds L it

will begin to produce a permanent deflexion of some of the

molecules.

Let us take the case of Fig. 8, in which X is greater than L
but less than D. Through 8 as vertex draw a double cone

* { The assumption really made by Maxwell seems not to be that in this paragraph,

but that enunciated in the foot-note to Art. 445.

}
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touching the sphere L. Let this cone meet the sphere D in P
and Q. Then if the axis of a molecule in its original position

lies between OA and OP, or between OB and OQ, it will be

Fig. 8. Fig. 9.

deflected through an angle less than /3 , and will not be perma-

nently deflected. But if the axis of the molecule lies originally

between OP and OQ, then a couple whose moment is greater

than L will act upon it and will deflect it into the position SP,

and when the force X ceases to act it will not resume its

original direction, but will be permanently set in the direction

OP.

Let us put

L = Xsin0o where 6 = PSA or QSB,

then all those molecules whose axes, on the former hypothesis,

would have values of Q between d and it—
O
will be made to

have the value d during the action of the force X.

During the action of the force X, therefore, those molecules

whose axes when deflected lie within either sheet of the double

cone whose semivertical angle is
O
will be arranged as in the

former case, but all those whose axes on the former theory

would lie outside of these sheets will be permanently deflected,

so that their axes will form a dense fringe round that sheet of

the cone which lies towards A.

As X increases, the number of molecules belonging to the

cone about B continually diminishes, and when X becomes

equal to D all the molecules have been wrenched out of their

former positions of equilibrium, and have been forced into the

fringe of the cone round A, so that when X becomes greater

than D all the molecules form part of the cone round A or of

its fringe.
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When the force X is removed, then in the case in which X is

less than L everything returns to its primitive state. When X
is between L and D, then there is a cone round A whose aDgle

AOP = d + p ,

and another cone round B whose angle

BOQ = O
-/3O .

Within these cones the axes of the molecules are distributed

uniformly. But all the molecules, the original direction of

whose axes lay outside of both these cones, have been wrenched

from their primitive positions and form a fringe round the cone

about A.

If X is greater than D, then the cone round B is completely

dispersed, and all the molecules which formed it are converted

into the fringe round A, and are inclined at the angle
Q + fio .

445.] Treating this case in the same way as before *, we find

* [The results given in the text may be obtained, with one slight exception, by
the processes given below, the statement of the modified theory of Art. 444 being as

follows : The axis of a magnetic molecule, if deflected through an angle £ less than /3 ,

will return to its original position when the deflecting force is removed; but when
the deflexion exceeds O the force tending to oppose the deflexion gives way and
permits the molecule to be deflected into the same direction as those whose deflexion

is /3 , and when the deflecting force is removed the molecule takes up a direction

parallel to that of the molecule whose deflexion was /3 . This direction may be

called the permanent set of the molecules.

In the case X>L<D, the expression / for the magnetic moment consists of two
parts, the first ofwhich is due to the molecules within the cones A OP, BOQ, and is to

be found precisely as in Art. 443, due regard being had to the limits of integration.

Referring to Fig. 8 we find for the second part, according to the above statement of

the theory,
. „„ Projection of QP on BA

% mn cos ASF x -^pp
*

The two parts together when reduced give the result in the text.

When X>D, the integral again consists of two parts, one of which is to be taken

over the cone AOP as in Art. 443. The second part is, (Fig. 9),

, r, t, Projection of BP on BA
\ mn cos ASP x -— ^p •

The value of I in this case, when reduced, differs from the value given in the text

in the third term, viz. : we have then — -^= instead of — -t=_- Tne effect of this

6 JL o JL

change on the table of numerical values given in the text will be that when X = 6,

7, 8, the corresponding values of / will be 887, 817, 936. These changes do not

alter the general character of the curve of Temporary Magnetization given in

Fig. 10.

The value of V in the case of Fig. 8 is

|mn
j

/ sin o cos ada+

f

sin a cos ada
( «/0 JAOQ

. „ „ Projection o
+ cos AOP x j

The value of 1' in the case of Fig. 9 may be found in like manner.]
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for the intensity of the temporary magnetization during the

action of the force X, which is supposed to act on iron which

has never before been magnetized,

2 X
When X is less than L, I = -M -^ •

3 D
2 L

When X is equal to L, I = -t^-k •

o U
When X is between L and D,

/=-»{lf+(i-y)[^/i-^-l75-3}-
When X is equal to B,

When X is greater than D,

When X is infinite, I = M,

When X is less than L the magnetization follows the former

law, and is proportional to the magnetizing force. As soon as

X exceeds L the magnetization assumes a more rapid rate of

increase on account of the molecules beginning to be transferred

from the one cone to the other. This rapid increase, however,

soon comes to an end as the number of molecules forming the

negative cone diminishes, and at last the magnetization reaches

the limiting value M.

If we were to assume that the values of L and of D are

different for different molecules, we should obtain a result in

which the different stages of magnetization are not so distinctly

marked.

The residual magnetization, /', produced by the magnetizing

force X, and observed after the force has been removed, is as

follows

:

When X is less than L, No residual magnetization.

When X is between L and D,

When X is equal to Z),

7"2 2
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When X is greater than D,

When X is infinite,

If we make
M = 1000, L— 3, D— 5,

we find the following values of the temporary and the residual

magnetization :

—

Magnetizing
Force.

X
Temporary

Magnetization.

I

Residual
Magnetization.

r

1 133

2 267

3 400

4 729 280

5 837 410

6 864 485
7 882 537
8 897 575
CO 1000 810

These results are laid down in Fisr. 10.o

\A£uxi»ntm. Magnetizalio-n

4- 5 € 7
Jtfcyrnetizuty farce

Fig. 10.

The curve of temporary magnetization is at first a straight

line from X = to X = L. It then rises more rapidly till

X = D, and as X increases it approaches its horizontal asymptote.
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The curve of residual magnetization begins when X = L, and

approaches an asymptote whose ordinate = -81 M.

It must be remembered that the residual magnetism thus

found corresponds to the case in which, when the external force

is removed, there is no demagnetizing force arising from the

distribution of magnetism in the body itself. The calculations

are therefore applicable only to very elongated bodies magnet-

ized longitudinally. In the case of short thick bodies the

residual magnetism will be diminished by the reaction of the

free magnetism in the same way as if an external reversed

magnetizing force were made to act upon it*.

446.] The scientific value of a theory of this kind, in which

we make so many assumptions, and introduce so many adjust-

able constants, cannot be estimated merely by its numerical

agreement with certain sets of experiments. If it has any value

it is because it enables us to form a mental image of what takeS

place in a piece of iron during magnetization. To test the

theory, we shall apply it to the case in which a piece of iron,

after being subjected to a magnetizing force X , is again sub-

jected to a magnetizing force Xv
If the new force X

1
acts in the same direction as that in

which X acted, which we shall call the positive direction, then

X
x , if less than X , will produce no permanent set of the

molecules, and when Xx
is removed the residual magnetization

will be the same as that produced by Z . If Xx
is greater than

X , then it will produce exactly the same effect as if X had not

acted.

But let us suppose Xx
to act in the negative direction, and let

us suppose Xo
= Zcosec0o , and Xx

— — L cosec 6V

* {Consider the case of a piece of iron subjected to a magnetic force in the positive

direction which increases from zero to a value X sufficient to produce permanent

magnetization, then let the magnetic force diminish again to zero, it is evident that

on the preceding theory the intensity of magnetization will in consequence of the

permanent set given to some of the molecular magnets be greater for a given value of

the magnetizing force when this force is deceasing than when it was increasing.

Thua the behaviour of the iron in the magnetic field will depend upon its previous

treatment. This effect has been called hysteresis by Ewing and has been very

fully investigated by him (see Phil. Trans. Part II, 1885). The theory given in

Art. 445 will not however explain all the phenomena discovered by Ewing, for if in

the above case after decreasing the magnetic force we increase it again, the value of

the intensity of magnetization for a value XX<XQ of the magnetic force ought to be

the same as when the force was first decreased to Zt . Ewing's researches shew

however that it is not so. A short account of these and similar researches will be

given in the Supplementary Volume.}
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As X
x
increases numerically, 6

X
diminishes. The first mole-

cules on which X
x
will produce a permanent deflexion are those

which form the fringe of the cone round A *, and these have an
inclination when undeflected of

O + /3O
.

As soon as O
x —fi becomes less than

O + /3O the process of de-

magnetization will commence. Since, at this instant, 6
1
=

O + 2 j3 ,

X
x ,
the force required to begin the demagnetization, is less than

X , the force which produced the magnetization.

If the values of D and of L were the same for all the mole-
cules, the slightest increase of X

x would wrench the whole of
the fringe of molecules whose axes have the inclination 9

Q + po

into a position in which their axes are inclined
X + j3 to the

negative axis OB.

Though the demagnetization does not take place in a manner
so sudden as this, it takes place so rapidly as to afford some
confirmation of this mode of explaining the process.

Let us now suppose that by giving a proper value to the
reverse force X

x we have on the removal of X
x exactly demag-

netized the piece of iron.

The axes of the molecules will not now be arranged indiffer-

ently in all directions, as in a piece of iron which has never
been magnetized, but will form three groups.

(1) Within a cone of semiangle d
x —fi surrounding the posi-

tive pole, the axes of the molecules remain in their primitive

positions.

(2) The same is the case within a cone of semiangle B — /3

surrounding the negative pole.

(3) The directions of the axes of all the other molecules form
a conical sheet surrounding the negative pole, and are at an
inclination

X + /3 .

When X is greater than D the second group is absent. When
X

x
is greater than D the first group is also absent.

The state of the iron, therefore, though apparently demagnet-
ized, is different from that of a piece of iron which has never
been magnetized.

To shew this, let us consider the effect of a magnetizing force

X2 acting in either the positive or the negative direction. The
first permanent effect of such a force will be on the third group

* {This assumes that in figs. 8 and 9 P is to the right of C.)
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of molecules, whose axes make angles =
1 + pQ

with the nega-

tive axis.

If the force X2 acts in the negative direction it will begin to

produce a permanent effect as soon as
2 + /3 becomes less than

X + /3O , that is, as soon as X2
becomes greater than Zx . But if

X2 acts in the positive direction it will begin to remagnetize the

iron as soon as 2— /3 becomes less than 6
l + j3 , that is, when

6
2
= d

1
+ 2j3 , or while X2

is still much less than X
x

.

It appears therefore from our hypothesis that

—

When a piece of iron is magnetized by means of a force X ,

its residual magnetism cannot be increased without the applica-

tion of a force greater than X . A reverse force, less than X
,

is sufficient to diminish its residual magnetization.

If the iron is exactly demagnetized by the reversed force X1 ,

then it cannot be magnetized in the reversed direction without

the application of a force greater than Xx , but a positive force

less than X
x

is sufficient to begin to remagnetize the iron in its

original direction.

These results are consistent with what has been actually

observed by Ritchie *, Jacobi f, Marianini J, and Joule §.

A very complete account of the relations of the magnetization

of iron and steel to magnetic forces and to mechanical strains is

given by Wiedemann in his Galvanismws. By a detailed com-

parison of the effects of magnetization with those of torsion, he

shews that the ideas of elasticity and plasticity which we derive

from experiments on the temporary and permanent torsion of

wires can be applied with equal propriety to the temporary and

permanent magnetization of iron and steel.

447.] Matteucci
||
found that the extension of a hard iron bar

during the action of the magnetizing force increases its temporary

magnetism % This has been confirmed by Wertheim. In the

case of soft iron bars the magnetism is diminished by extension.

The permanent magnetism of an iron bar increases when it is

extended, and diminishes when it is compressed.

* Phil. Mag. 3, 1833. t Pogg., Ann., 81, 867, 1834.

% Ann. de Chimie et de Physique, 16, pp. 436 and 448, 1846.

§ Phil. Trans., 1856, p. 287. II
Ann. de Chimie et de Physique, 53, p. 385, 1858.

% { Villari shewed that this is only true when the magnetizing force is less than a

certain critical value, but when it exceeds this value an extension produces a

diminution on the intensity of magnetization ; Pogg., Ann. 126, p. 87, 1865.

The statement in the text as to the behaviour of soft iron bars does not hold for

small strains and low magnetic fields.
J
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Hence, if a piece of iron is first magnetized in one direction,

and then extended in another direction, the direction of niao-net-

ization will tend to approach the direction of extension. If

it be compressed, the direction of magnetization will tend to

become normal to the direction of compression.

This explains the result of an experiment of Wiedemann's.
A current was passed downward through a vertical wire. If,

either during the passage of the current or after it has ceased,

the wire be twisted in the direction of a right-handed screw, the

lower end becomes a north pole.

Fig. 11. Fig. 12.

Here the downward current magnetizes every part of the wire

in a tangential direction, as indicated by the letters NS.

The twisting of the wire in the direction of a right-handed

screw causes the portion ABCD to be extended along the

diagonal AG and compressed along the diagonal BD. The

direction of magnetization therefore tends to approach AG and

to recede from BD, and thus the lower end becomes a north pole

and the upper end a south pole.

Effect of Magnetization on the Dimensions of the Magnet.

448.] Joule*, in 1842, found that an iron bar becomes length-

ened when it is rendered magnetic by an electric current in a

coil which surrounds it. He afterwards f shewed, by placing

the bar in water within a glass tube, that the volume of the iron

is not augmented by this magnetization, and concluded that its

transverse dimensions were contracted.

Finally, he passed an electric current through the axis of an

* Sturgeon's Annals of Electricity, vol. viii. p. 219.

t Phil. Mag., xxx. 1847.
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iron tube, and back outside the tube, so as to make the tube

into a closed magnetic solenoid, the magnetization being at right

angles to the axis of the tube. The length of the axis of the

tube was found in this case to be shortened.

He found that an iron rod under longitudinal pressure is also

elongated when it is magnetized. When, however, the rod is

under considerable longitudinal tension, the effect of magnet-

ization is to shorten it.

This was the case with a wire of a quarter of an inch

diameter when the tension exceeded 600 pounds weight.

In the case of a hard steel wire the effect of the magnetizing

force was in every case to shorten the wire, whether the wire

was under tension or pressure. The change of length lasted

only as long as the magnetizing force was in action, no altera-

tion of length was observed due to the permanent magnetization

of the steel.

Joule found the elongation of iron wires to be nearly pro-

portional to the square of the actual magnetization, so that the

first effect of a demagnetizing current was to shorten the wire *.

On the other hand, he found that the shortening effect on

wires under tension, and on steel, varied as the product of the

magnetization and the magnetizing current.

Wiedemann found that if a vertical wire is magnetized with

its south end uppermost, and if a current is then passed down-

wards through the wire, the lower end of the wire, if free,

twists in the direction of the hands of a watch as seen from

above, or, in other words, the wire becomes twisted like a

right-handed screw if the relation between the longitudinal

current and the magnetizing current is right-handed.

In this case the resultant magnetization due to the action

of the current and the previously existing magnetization is in

the direction of a right-handed screw round the wire. Hence the

twisting would indicate that when the iron is magnetized it

expands in the direction of magnetization and contracts in

directions at right angles to the magnetization. This agrees with

Joule's results.

For further developments of the theory of magnetization, see

Arts. 832-845.

*
I Shelford Bidwell has shewn that when the magnetizing force is very great, the

length of the magnet diminishes as the magnetizing force increases. Proc. Roy. Soc.

xl. p. 109.

}



CHAPTER VII.

MAGNETIC MEASUREMENTS.

449.] The principal magnetic measurements are the deter-

mination of the magnetic axis and magnetic moment of a
magnet, and that of the direction and intensity of the magnetic
force at a given place.

Since these measurements are made near the surface of the

earth, the magnets are always acted on by gravity as well as by
terrestrial magnetism, and since the magnets are made of steel

their magnetism is partly permanent and partly induced. The
permanent magnetism is altered by changes of temperature, by
strong induction, and by violent blows ; the induced magnetism
varies with every variation of the external magnetic force.

The most convenient way of observing the force acting on a
magnet is by making the magnet free to turn about a vertical

axis. In ordinary compasses this is done by balancing the

magnet on a vertical pivot. The finer the point of the pivot

the smaller is the moment of the friction which interferes with
the action of the magnetic force. For more refined observations

the magnet is suspended by a thread composed of a silk fibre

without twist, either single, or doubled on itself a sufficient

number of times, and so formed into a thread of parallel fibres,

each of which supports as nearly as possible an equal part of

the weight. The force of torsion of such a thread is much less

than that of a metal wire of equal strength, and it may be

calculated in terms of the observed azimuth of the magnet,

which is not the case with the force arising from the friction of

a pivot.

The suspension fibre can be raised or lowered by turning a
horizontal screw which works in a fixed nut. The fibre is

wound round the thread of the screw, so that when the screw
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is turned the suspension fibre always hangs in the same vertical

line.

The suspension fibre carries a small horizontal divided circle

called the Torsion-circle, and a stirrup with an index, which can

be placed so that the index coincides with any given division of

the torsion circle. The stirrup is so shaped that the magnet bar

can be fitted into it with its axis horizontal, and with any one

of its four sides uppermost.

To ascertain the zero of torsion a non-magnetic body of the

same weight as the magnet is placed

in the stirrup, and the position of

the torsion circle when in equi-

librium ascertained.

The magnet itself is a piece of

hard-tempered steel. According to

Gauss and Weber its length ought

to be at least eight times its greatest

transverse dimension. This is neces-

sary when permanence of the direc-

tion of the magnetic axis within the

magnet is the most important con-

sideration. Where promptness of

motion isrequired themagnet should

be shorter, and it may even be ad-

visable in observing sudden altera-

tions in magnetic force to use a bar

magnetized transversely and sus-

pended with its longest dimension

vertical *.

450.] The magnet is provided

with an arrangement for ascertain-

ing its angular position. For or-

dinary purposes its ends are pointed,

and a divided circle is placed below

the ends, by which their positions are read off by an eye placed

in a plane through the suspension thread and the point of the

needle.

For more accurate observations a plane mirror is fixed to the

magnet, so that the normal to the mirror coincides as nearly as

* Joule, Proc. Phil. Soc, Manchester, Nov. 29, 1864.

Fig. 13.
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possible with the axis of magnetization. This is the method
adopted by Gauss and Weber.

Another method is to attach to one end of the magnet a lens

and to the other end a scale engraved on glass, the distance of

the lens from the scale being equal to the principal focal length

of the lens. The straight line joining the zero of the scale with
the optical centre of the lens ought to coincide as nearly as

possible with the magnetic axis.

As these optical methods of ascertaining the angular position

of suspended apparatus are of great importance in many physical

researches, we shall here consider once for all their mathematical
theory.

Theory of the Mirror Method.

We shall suppose that the apparatus whose angular position

is to be determined is capable of revolving about a vertical axis.

This axis is in general a fibre or wire by which it is suspended.
The mirror should be truly plane, so that a scale of millimetres

may be seen distinctly by reflexion at a distance of several

metres from the mirror.

The normal through the middle of the mirror should pass

through the axis of suspension, and should be accurately

horizontal. We shall refer to this normal as the line of colli-

mation of the apparatus.

Having roughly ascertained the mean direction of the line of

collimation during the experiments which are to be made, a tele-

scope is erected at a convenient distance in front of the mirror,

and a little above the level of the mirror.

The telescope is capable of motion in a vertical plane, it is

directed towards the suspension-fibre just above the mirror, and
a fixed mark is erected in the line of vision, at a horizontal

distance from the object-glass equal to twice the distance of the

mirror from the object-glass. The apparatus should, if possible,

be so arranged that this mark is on a wall or other fixed object.

In order to see the mark and the suspension-fibre at the same
time through the telescope, a cap may be placed over the object-

glass having a slit along a vertical diameter. This should be

removed for the other observations. The telescope is then
adjusted so that the mark is seen distinctly to coincide with
the vertical wire at the focus of the telescope. A plumb-line is
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then adjusted so as to pass close in front of the optical centre of

the object-glass and to hang below the telescope. Below the

telescope and just behind the plumb-line a scale of equal parts

is placed so as to be bisected at right angles by the plane through

the mark, the suspension-fibre, and the plumb-line. The sum

of the heights of the scale and the object-glass from the floor

should be equal to twice the height of the mirror. The telescope

being now directed towards the mirror, the observer will see in it

the reflexion of the scale. If the part of the scale where the

plumb-line crosses it appears to coincide with the vertical wire of

the telescope, then the line of collimation of the mirror coincides

with the plane through the mark and the optical centre of the

object-glass. If the vertical wire coincides with any other

division of the scale, the angular position of the line of

collimation is to be found as follows :

—

k

Fig. 14.

Let the plane of the paper be horizontal, and let the various

points be projected on this plane. Let be the centre of the

object-glass of the telescope, P the fixed mark: P and the

vertical wire of the telescope are conjugate foci with respect

to the object-glass. Let M be the point where OP cuts the

plane of the mirror. Let MN be the normal to the mirror; then

OMN = 8 is the angle which the line of collimation makes with

the fixed plane. Let MS be a line in the plane of OM and MN,
such that NMS = OMN, then S will be the part of the scale

which will be seen by reflexion to coincide with the vertical

wire of the telescope. Now, sinceM is horizontal, the pro-

jected angles OMN and NMS in the figure are equal, and

OMS = 20. Hence OS = OM tan 29.
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We have therefore to measure OM in terms of the divisions

of the scale ; then, if s is the division of the scale which coincides

with the plumb-line, and s the observed division,

s—s =OM tan 2 0,

whence 6 may be found. In measuring OM we must re-

member that if the mirror is of glass, silvered at the back, the

virtual reflecting surface is at a distance behind the front

surface of the glass = -, where t is the thickness of the glass,

and
fj.

is the index of refraction.

We must also remember that if the line of suspension does not

pass through the point of reflexion, the position ofM will alter

with 0. Hence, when it is possible, it is advisable to make the

centre of the mirror coincide with the line of suspension.

Fig. 15.

It is also advisable, especially when large angular motions

have to be observed, to make the scale in the form of a concave

cylindric surface, whose axis is the line of suspension. The
angles are then observed at once in circular measure without

reference to a table of tangents. The scale should be carefully

adjusted, so that the axis of the cylinder coincides with the

suspension-fibre. The numbers on the scale should always run

from the one end to the other in the same direction so as to

avoid negative readings. Fig. 15 represents the middle portion

of a scale to be used with a mirror and an inverting telescope.

This method of observation is the best when the motions are

slow. The observer sits at the telescope and sees the image of

the scale moving to right or to left past the vertical wire of the

telescope. With a clock beside him he can note the instant at

which a given division of the scale passes the wire, or the

division of the scale which is passing at a given tick of the
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clock, and he can also record the extreme limits of each

oscillation.

When the motion is more rapid it becomes impossible to read

the divisions of the scale except at the instants of rest at the

extremities of an oscillation. A conspicuous mark may be

placed at a known division of the scale, and the instant of

transit of this mark may be noted.

When the apparatus is very light, and the forces variable,

the motion is so prompt and swift that observation through a

telescope would be useless. In this case the observer looks at

the scale directly, and observes the motions of the image of the

vertical wire thrown on the scale by a lamp.

It is manifest that since the image of the scale reflected by

the mirror and refracted by the object-glass coincides with the

vertical wire, the image of the vertical wire, if sufficiently

illuminated, will coincide with the scale. To observe this the

room is darkened, and the concentrated rays of a lamp are

thrown on the vertical wire towards the object-glass. A bright

patch of light crossed by the shadow of the wire is seen on the

scale. Its motions can be followed by the eye, and the division

of the scale at which it comes to rest can be fixed on by the eye

and read off at leisure. If it be desired to note the instant of the

passage of the bright spot past a given point on the scale, a pin

or a bright metal wire may be placed there so as to flash out at

the time of passage.

By substituting a small hole in a diaphragm for the cross-wire

the image becomes a small illuminated dot moving to right or left

on the scale, and by substituting for the scale a cylinder revolving

by clock-work about a horizontal axis and covered with photo-

graphic paper, the spot of light traces out a curve which can be

afterwards rendered visible. Each abscissa of this curve cor-

responds to a particular time, and the ordinate indicates the

angular position of the mirror at that time. In this way an

automatic system of continuous registration of all the elements

of terrestrial magnetism has been established at Kew and other

observatories.

In some cases the telescope is dispensed with, a vertical wire

is illuminated by a lamp placed behind it, and the mirror is a

concave one, which forms the image of the wire on the scale as

a dark line across a patch of light.
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451.] In the Kew portable apparatus, the magnet is made in

the form of a tube, having at one end a lens, and at the other a

glass scale, so adjusted as to be at the principal focus of the

lens. Light is admitted from behind the scale, and after passing

through the lens it is viewed by means of a telescope.

Since the scale is at the principal focus of the lens, rays from

any division of the scale emerge from the lens parallel, and if

the telescope is adjusted for celestial objects, it will shew the

scale in optical coincidence with the cross-wires of the telescope.

If a given division of the scale coincides with the intersection of

the cross-wires, then the line joining that division with the

optical centre of the lens must be parallel to the line of colli-

mation of the telescope. By fixing the magnet and moving the

telescope, we may ascertain the angular value of the divisions of

the scale, and then, when the magnet is suspended and the

position of the telescope known, we may determine the position

of the magnet at any instant by reading off the division of the

scale which coincides with the cross-wires.

The telescope is supported on an arm which is centred in the

line of the suspension-fibre, and the position of the telescope is

read off by verniers on the azimuth circle of the instrument.

This arrangement is suitable for a small portable magneto-

meter in which the whole apparatus is supported on one tripod,

and in which the oscillations due to accidental disturbances

rapidly subside.

Determination of the Direction of the Axis of the Magnet,

and of the Direction of Terrestrial Magnetism.

452.] Let a system of axes be drawn in a magnet, of which

the axis of z is in the direction of the length of the bar, and

x and y perpendicular to the sides of the bar supposed a paral-

lelopiped.

Let I, m, n and A, /x, v be the angles which the magnetic axis

and the line of collimation make with these axes respectively.

Let M be the magnetic moment of the magnet, let H be the

horizontal component of terrestrial magnetism, let Z be the

vertical component, and let 8 be the azimuth in which H acts,

reckoned from the north towards the west.

Let C be the observed azimuth of the line of collimation, let a

be the azimuth of the stirrup, and /3 the reading of the index of
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the torsion circle, then a— is the azimuth of the lower end of

the suspension-fibre.

Let y be the value of a— /3 when there is no torsion, then the

moment of the force of torsion tending to diminish a will be

r(a-/3-y),

where t is a coefficient of torsion depending on the nature of the

fibre.

To determine A x , the angle between the axis of x and the pro-

jection of the line of collimation on the plane of xz, fix the stirrup

so that y is vertical and upwards, z to the north and x to the

west, and observe the azimuth ( of the line of collimation. Then

remove the magnet, turn it through an angle tt about the axis

of z and replace it in this inverted position, and observe the

azimuth C of the line of collimation when y is downwards and

a? to the east, tt
x /iXC=a + --Ax , ^1)

C = a~l + \x . (2)

Hence K = \ + \(C-Q- (
3
)

Next, hang the stirrup to the suspension-fibre, and place the

magnet in it, adjusting it carefully so that y may be vertical and

upwards, then the moment of the force tending to increase a is

MHsin<msm(b-a-^ + lx)-T(a-P-y); (4)

where lx is the angle between the axis of x and the projection of

the magnetic axis on the plane of xz.

But if C is the observed azimuth of the line of collimation

C=a +^-Ax , (5)

so that the force may be written

i!f#sinmsin(8-C+Zs-M-r(C+A.x -|-/3-y). (6)

When the apparatus is in equilibrium this quantity is zero for

a particular value of £
When the apparatus never comes to rest, but must be observed

in a state of vibration, the value of ( corresponding to the position

of equilibrium may be calculated by a method which will be

described in Art. 735.

When the force of torsion is small compared with the moment
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of the magnetic force, we may put b—C+lx—K f°r the sine of

that angle.

If we give to /3, the reading of the torsion circle, two different

values, fix
and /32 , and if d and £2 are the corresponding values

of & JfZT(C2 -Ci)smm = r (Ci-C2 -/3i + /32), (7)

or, if we put

7—^^ = /, then t = t'MH sin m, (8)

and equation (6) becomes, dividing by Jfi? sin m,

S-C+Z*-A*-r'(C+^-f-/3-y) = 0. (9)

If we now reverse the magnet so that y is downwards, and

adjust the apparatus till y is exactly vertical, and if £' is the

new value of the azimuth, and 5' the corresponding declination,

t>'-('-l,+K-T(C-K+l-P-y) = o, (10)

whence *±£ = l(C+C) +W {C+C-2 (/3 + y)}. (11)

The reading of the torsion circle should now be adjusted, so

that the coefficient of t may be as nearly as possible zero. For

this purpose we must determine y, the value of a— ft when there

is no torsion. This may be done by placing a non-magnetic

bar of the same weight as the magnet in the stirrup, and deter-

mining a— /3 when there is equilibrium. Since r is small, great

accuracy is not required. Another method is to use a torsion

bar of the same weight as the magnet, containing within it a

very small magnet whose magnetic moment is — of that of the

principal magnet. Since r remains the same, t will become n t,

and if (x and £/ are the values of C as found by the torsion bar,

*±*' =W1 + Cl')+$nr'{C1 + C1'-2(P+y)}. (12)

Subtracting this equation from (11),

2(n-l)(p + y) = (n + ±
:,)(C1 + C1')-(l+l)(C+C). (13)

Having found the value of j8 + y in this way, /3, the reading of

the torsion circle, should be altered till

C+C-2(j3 + y) = 0, (14)

as nearly as possible in the ordinary position of the apparatus.
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Then, since t' is a very small numerical quantity, and since its

coefficient is very small, the value of the second term in the ex-

pression for 8 will not vary much for small errors in the values

of t and y, which are the quantities whose values are least ac-

curately known.

The value of 8, the magnetic declination, may be found in this

way with considerable accuracy, provided it remains constant

during the experiments, so that we may assume 8'= 8.

When great accuracy is required it is necessary to take

account of the variations of 8 during the experiment. For this

purpose observations of another suspended magnet should be

made at the same instants that the different values of C are

observed, and if 77, r{ are the observed azimuths of the second

magnet corresponding to ( and (', and if 8 and 8' are the corre-

sponding values of 8, then

^-8 = ^-1,. (15)

Hence, to find the value of 8 we must add to (11) a correction

The declination at the time of the first observation is therefore

8 = HC+C
, + r?-rj

,

) +^/

(C+C
/-2^-2y). (16)

To find the direction of the magnetic axis within the magnet

subtract (10) from (9) and add (15),

^ = Ax+4(C-C
/)-H^-r)

,

) +^,

(C-C' + 2A
a!
-7r). (17)

By repeating the experiments with the bar on its two edges,

so that the axis of x is vertically upwards and downwards, we

can find the value of m. If the axis of collimation is capable of

adjustment it ought to be made to coincide with the magnetic

axis as nearly as possible, so that the error arising from the

magnet not being exactly inverted may be as small as possible*.

On the Measurement of Magnetic Forces.

453.] The most important measurements of magnetic force are

those which determine M, the magnetic moment of a magnet,

and H, the intensity of the horizontal component of terrestrial

magnetism. This is generally done by combining the results of

two experiments, one of which determines the ratio and the

other th eproduct of these two quantities.

The intensity of the magnetic force due to an infinitely small

* See a Paper on 'Imperfect Inversion,' by W. Swan. Trans. E. S. Edin.,

vol. xxi (1855), p. 349.
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magnet whose magnetic moment is M, at a point distant r from
the centre of the magnet in the positive direction of the axis of

the magnet, is -r, M

and is in the direction of r. If the magnet is of finite size but
spherical, and magnetized uniformly in the direction »of its axis,

this value of the force will still be exact. If the magnet is a

solenoidal bar magnet of length 2 L,

If the magnet be of any kind, provided its dimensions are all

small, compared with r,

where Av A 2 , &c. are coefficients depending on the distribution

of the magnetization of the bar.

Let H be the intensity of the horizontal part of terrestrial

magnetism at any place. H is directed towards magnetic north.

Let r be measured towards magnetic west, then the magnetic
force at the extremity of r will be H towards the north and R
towards the west. The resultant force will make an angle 6

with the magnetic meridian, measured towards the west, and
such that R = Hta,nd. (4)

R
Hence, to determine -jj" we proceed as follows :

—

The direction of the magnetic north having been ascertained, a

magnet, whose dimensions should not be too great, is suspended as

in the former experiments, and the deflecting magnetM is placed

so that its centre is at a distance r from that of the suspended

magnet, in the same horizontal plane, and due magnetic east.

The axis ofM is carefully adjusted so as to be horizontal and
in the direction of r.

The suspended magnet is observed before M is brought near

and also after it is placed in position. If 6 is the observed

deflexion, we have, if we use the approximate formula (1),

M r3
± n

or, if we use the formula (3),

l Jj 11
-
¥ r3 tan^=l+^-+^

2
^+&c. (6)
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Here we must bear in mind that though the deflexion 6 can be

observed with great accuracy, the distance r between the centres

of the magnets is a quantity which cannot be precisely determined,

unless both magnets are fixed and their centres defined by marks.

This difficulty is overcome thus :

The magnet M is placed on a divided scale which extends east

and west on both sides of the suspended magnet. The middle

point between the ends of M is reckoned the centre of the

magnet. This point may be marked on the magnet and its

position observed on the scale, or the positions of the ends may

be observed and the arithmetical mean taken. Call this s
l3
and

let the line of the suspension-fibre of the suspended magnet

when produced cut the scale at s , then r
1= s1-s ,

where s1

is known accurately and s approximately. Let 6X be the deflexion

observed in this position of M.

Now reverse M, that is, place it on the scale with its ends

reversed, then r
x
will be the same, but M and Av A 3 ,

&c. will

have their signs changed, so that if
2
is tne deflexion to the west,

-
I fn

3 tan02
= l-ii^ +A 2

± -&c. (7)

Taking the arithmetical mean of (6) and (7),

I^r
1Mtan^1

-tan^2)= 1+A^ +^4^ + &c - (
8
)

Now remove M to the west side of the suspended magnet,

and place it with its centre at the point marked 2 s -s1
on the

scale. Let the deflexion when the axis is in the first position

be 3 , and when it is in the second 4 ,
then, as before,

lj|r
a
» (tan03-tan e,)=l+A^ + Ai

± +&c. (9)

Let us suppose that the true position of the centre of the

suspended magnet is not s but s + a-, then

^ = 7* — o-, r
2
= r + <r

f (
10

)

and i(r
1
» + r2«) = r«|l + 5fcll) ^ + &c.} ; (")

and since ^ may be neglected if the measurements are carefully

made, we are sure that we may take the arithmetical mean of

r
x

B and r2
" for rn.

Hence, taking the arithmetical mean of (8) and (9),
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1 FT i

8M^ ^
tan ^ "~ tan °

2 + tan ^3—tan ^4) = 1 + A 2— + &C, (
1 2)

r, ma ing ^aQ ^_^ ^ +^ ^_^^ _ ^ (13)

i|Dr3 = l + ^ 2^ +&c.

454.] We may now regard D and r as capable of exact

determination.

The quantity A
2 can in no case exceed 2Z2

, where L is half

the length of the magnet, so that when r is considerable com-
pared with L we may neglect the term in A 2 and determine

the ratio ofH to M at once. We cannot, however, assume that

A
2
is equal to 2 Z2

, for it may be less, and may even be negative

for a magnet whose largest dimensions are transverse to the axis.

The term in A4 and all higher terms may safely be neglected.

To eliminate A2i repeat the experiment, using distances

r
i>
r2> r3> &c., and let the values of D be DXi D2 , D3 , &c, then

n 2M , 1 A
2
, 2M ,1 A 2

. . .

H K
r-f r^J * H V2

3 r2
5'

If we suppose that the probable errors of these equations are

equal, as they will be if they depend on the determination of D
only, and if there is no uncertainty about r, then, by multiply-

ing each equation by r~ 3 and adding the results, we obtain one
equation, and by multiplying each equation by r~5 and adding
we obtain another, according to the general rule in the theory

of the combination of fallible measurements when the probable
error of each equation is supposed the same.

Let us write

2 (Dr-3
) for D

x rr3 +D2 r2
~3 +D3

r
3

~ 3 + &c.

,

and use similar expressions for the sums of other groups of

symbols, then the two resultant equations may be written

2(Dt-3
) = -^{2(r-6) + ul

2 2(r-8)},

2 M
2 (Dr-s) = f£ (2 (r-«) +A 2

2 (r"")},

whence

2M
-g (2(r-6)2(r-10)-[2(r-8

)]
2
} = 2(Z>7-3)2(r-10)-2(Z)r-5)2(r- 8

),

and A 2 {2 (Dr~3
) 2 (r"10}- 2 (Dr~5

) 2 (r~ 8
)

}

= 2 (Dr~5
) 2 (r~6

)- 2 (Z>r-3
) 2 (t--

8
).
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The value of A 2
derived from these equations ought to be less

than half the square of the length of the magnet M. If it is not

we may suspect some error in the observations. This method

of observation and reduction was given by Gauss in the ' First

Report of the Magnetic Association.'

When the observer can make only two series of experiments

at distances rx and r2 , the values of —^- and A 2
derived from

these experiments are

1M D
1
r
1
5-D

2
r

i

*C ~~
J£

~ ™ a "'/» 2

_ Di
r
a
*-D

1
r
1

*
2 2

'1 —'2

If bD
x
and bD2 are the actual errors of the observed deflexions

D
x
and D2 , the actual error of the calculated result Q will be

.„ r/gi) _r
2
55D

2bD = -1
\ %

-•

r{— r
2

If we suppose the errors h~D
1
and 8D

2 to be independent, and

that the probable value of either is bD, then the probable value

of the error in the calculated value of Q will be b Q, where

« 10 I m 10

If we suppose that one of these distances, say the smaller, is

given, the value of the greater distance may be determined so as

to make b Q a minimum. This condition leads to an equation

of the fifth degree in rx
2

, which has only one real root greater

than r
2
2
. From this the best value of r

x
is found to be

r
1
=l-3189r

2
*

If one observation only is taken the best distance is when

D r

where bD is the probable error of a measurement of deflexion,

and br is the probable error of a measurement of distance.

* See Airy's Magnetism.

f { In this case neglecting the term in A2 we have

(8Q)" = (82>)»** + 9?(8r)>,

and this is a minimum when
SB -Sr
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Method of Sines.

455.] The method which we have just described may be called

the Method of Tangents, because the tangent of the deflexion is

a measure of the magnetic force.

If the line r
x , instead of being measured east or west, is

adjusted till it is at right angles with the axis of the deflected

magnet, then R is the same as before, but in order that the

suspended magnet may remain perpendicular to r, the resolved

part of the force H in the direction of r must be equal and

opposite to R. Hence, if is the deflexion, R = H sin 0.

This method is called the Method of Sines. It can be applied

only when i2 is less than H.
In the Kew portable apparatus this method is employed. The

suspended magnet hangs from a part of the apparatus which

revolves along with the telescope and the arm for the deflecting

magnet, and the rotation of the whole is measured on the azimuth

circle.

The apparatus is first adjusted so that the axis of the telescope

coincides with the mean position of the line of collimation of the

magnet in its undisturbed state. If the magnet is vibrating,

the true azimuth of magnetic north is found by observing the

extremities of the oscillation of the transparent scale and making
the proper correction of the reading of the azimuth circle.

The deflecting magnet is then placed upon a straight rod

which passes through the axis of the revolving apparatus at

right angles to the axis of the telescope, and is adjusted so that

the axis of the deflecting magnet is in a line passing through the

centre of the suspended magnet.

The whole of the revolving apparatus is then moved till the

line of collimation of the suspended magnet again coincides with

the axis of the telescope, and the new azimuth reading is

corrected, if necessary, by the mean of the scale readings at

the extremities of an oscillation.

The difference of the corrected azimuths gives the deflexion,

after which we proceed as in the method of tangents, except

that in the expression for D we put sin instead of tan 0.

In this method there is no correction for the torsion of the

suspending fibre, since the relative position of the fibre, tele-

scope, and magnet is the same at every observation.

The axes of the two magnets remain always at right angles
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in this method, so that the correction for length can be more

accurately made.

456.] Having thus measured the ratio of the moment of the

deflecting magnet to the horizontal component of terrestrial

magnetism, we have next to find the product of these quantities,

by determining the moment of the couple with which terrestrial

magnetism tends to turn the same magnet when its axis is

deflected from the magnetic meridian.

There are two methods of making this measurement, the

dynamical, in which the time of vibration of the magnet under

the action of terrestrial magnetism is observed, and the statical,

in which the magnet is kept in equilibrium between a measure-

able statical couple and the magnetic force.

The dynamical method requires simpler apparatus and is

more accurate for absolute measurements, but takes up a con-

siderable time; the statical method admits of almost instan-

taneous measurement, and is therefore useful in tracing the

changes of the intensity of the magnetic force, but requires

more delicate apparatus, and is not so accurate for absolute

measurement.

Method of Vibrations.

The magnet is suspended with its magnetic axis horizontal,

and is set in vibration in small arcs. The vibrations are

observed by means of any of the methods already described.

A point on the scale is chosen corresponding to the middle of

the arc of vibration. The instant of passage through this point

of the scale in the positive direction is observed. If there is

sufficient time before the return of the magnet to the same

point, the instant of passage through the point in the negative

direction is also observed, and the process is continued till n + 1

positive and n negative passages have been observed. If the

vibrations are too rapid to allow of every consecutive passage

being observed, every third or every fifth passage is observed,

care being taken that the observed passages are alternately

positive and negative.

Let the observed times of passage be TXi T2 , T2n+L , then if

we put
^(iT1 + Ts + T5 + kc. + T2n_ 1 + lT2n+1) = Tn+l ,

i(T
2 + 2

T

4 + &c. +T2W_2 +Ta .) = r.+1 ;
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then Tn+1 is the mean time of the positive passages, and ought
to agree with T'n+1 , the mean time of the negative passages,

if the point has been properly chosen. The mean of these

results is to be taken as the mean time of the middle passage.

After a large number of vibrations have taken place, but
before the vibrations have ceased to be distinct and regular,

the observer makes another series of observations, from which
he deduces the mean time of the middle passage of the second
series.

By calculating the period of vibration either from the first

series of observations or from the second, he ought to be able

to be certain of the number of whole vibrations which have
taken place in the interval between the time of middle passage
in the two series. Dividing the interval between the mean
times of middle passage in the two series by this number of
vibrations, the mean time of vibration is obtained.

The observed time of vibration is then to be reduced to the

time of vibration in infinitely small arcs by a formula of the
same kind as that used in pendulum observations, and if the
vibrations are found to diminish rapidly in amplitude, there

is another correction for resistance, see Art. 740. These cor-

rections, however, are very small when the magnet hangs by
a fibre, and when the arc of vibration is only a few degrees.

The equation of motion of the magnet is

,12 a

A— +MH sin 6 + HMt' (0-y) = 0,

where 6 is the angle between the magnetic axis and the direc-

tion of the force H, A is the moment of inertia of the magnet
and suspended apparatus, M is the magnetic moment of the

magnet, H the intensity of the horizontal magnetic force, and
MHt the coefficient of torsion : r' is determined as in Art. 452,

and is a very small quantity. The value of 6 for equilibrium is

T V
6 = -

—

— 3 a very small angle,

and the solution of the equation for small values of the ampli-

tude is „ , t \B- Ccos(2 7Ty + a) + o ,

where T is the periodic time, a a constant, C the amplitude, and

~ MH{\+t'Y
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whence we find the value of MH,

r2 (l+/)

Here T is the time of a complete vibration determined from

observation. A, the moment of inertia, is found once for all for

the magnet, either by weighing and measuring it if it is of a

regular figure, or by a dynamical process of comparison with

a body whose moment of inertia is known.

M
Combining this value of ifif with that of ^ formerly obtained,

we get 1P = (MB)(^) =^^?)
W,

and * = l"*)Q = P(?W)Br>
-

457.] We have supposed that H and M continue constant

during the two series of experiments. The fluctuations of H
may be ascertained by simultaneous observations of the bifilar

magnetometer to be presently described, and if the magnet has

been in use for some time, and is not exposed during the

experiments to changes of temperature or to concussion, the

part of M which depends on permanent magnetism may be

assumed to be constant. All steel magnets, however, are capable

of induced magnetism depending on the action of external

magnetic force.

Now the magnet when employed in the deflexion experiments

is placed with its axis east and west, so that the action of ter-

restrial magnetism is transverse to the magnet, and does not

tend to increase or diminish M. When the magnet is made
to vibrate, its axis is north and south, so that the action of

terrestrial magnetism tends to magnetize it in the direction

of the axis, and therefore to increase its magnetic moment by

a quantity k H, where A; is a coefficient to be found by experi-

ments on the magnet.

There are two ways in which this source of error may
be avoided without calculating k, the experiments being ar-

ranged so that the magnet shall be in the same condition

when employed in deflecting another magnet and when itself

swinging.

We may place the deflecting magnet with its axis pointing
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north, at a distance r from the centre of the suspended magnet,
the line r making an angle whose cosine is V\ with the

magnetic meridian. The action of the deflecting magnet on the

suspended one is then at right angles to its own direction, and
is equal to _ ™

R= -v/2^-

Here M is the magnetic moment when the axis points north,

as in the experiment of vibration, so that no correction has to

be made for induction.

This method, however, is extremely difficult, owing to the

large errors which would be introduced by a slight displacement

of the deflecting magnet, and as the correction by reversing the

deflecting magnet is not applicable here, this method is not

to be followed except when the object is to determine the

coefficient of induction.

The following method, in which the magnet while vibrating is

freed from the inductive action of terrestrial magnetism, is due
to Dr. J. P. Joule*.

Two magnets are prepared whose magnetic moments are as

nearly equal as possible. In the deflexion experiments these

magnets are used separately, or they may be placed simul-

taneously on opposite sides of the suspended magnet to produce

a greater deflexion. In these experiments the inductive force

of terrestrial magnetism is transverse to the axis.

Let one of these magnets be suspended, and let the other be
placed parallel to it with its centre exactly below that of the

suspended magnet, and with its axis in the same direction. The
force which the fixed magnet exerts on the suspended one is

in the opposite direction from that of terrestrial magnetism. If

the fixed magnet be gradually brought nearer to the suspended
one the time of vibration will increase, till at a certain point

the equilibrium will cease to be stable, and beyond this point
the suspended magnet will make oscillations in the reverse

position. By experimenting in this way a position of the

fixed magnet is found at which it exactly neutralizes the effect

of terrestrial magnetism on the suspended one. The two
magnets are fastened together so as to be parallel, with their

axes turned the same way, and at the distance just found by

* Proc. Phil. S., Manchester, March 19, 1867.
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experiment. They are then suspended in the usual way and

made to vibrate together through small arcs.

The lower magnet exactly neutralizes the effect of terrestrial

magnetism on the upper one, and since the magnets are of equal

moment, the upper one neutralizes the inductive action of the

earth on the lower one.

The value of M is therefore the same in the experiment of

vibration as in the experiment of deflexion, and no correction for

induction is required.

458.] The most accurate method of ascertaining the intensity

of the horizontal magnetic force is that which we have just

described. The whole series of experiments, however, cannot be

performed with sufficient accuracy in much less than an hour, so

that any changes in the intensity which take place in periods of

a few minutes would escape observation. Hence a different

method is required for observing the intensity of the magnetic

force at any instant.

The statical method consists in deflecting the magnet by means

of a statical couple acting in a horizontal plane. If L be the

moment of this couple, M the magnetic moment of the magnet,

H the horizontal component of terrestrial magnetism, and 6 the

deflexion, MH sin = L.

Hence, if L is known in terms of 6, MH can be found.

The couple L may be generated in two ways, by the torsional

elasticity of a wire, as in the ordinary torsion balance, or by the

weight of the suspended apparatus, as in the bifilar suspension.

In the torsion balance the magnet is fastened to the end of a

vertical wire, the upper end of which can be turned round, and

its rotation measured by means of a torsion circle.

We have then

L = T(a—aQ
-6) = MHsin0.

Here a is the value of the reading of the torsion circle when the

axis of the magnet coincides with the magnetic meridian, and a

is the actual reading. If the torsion circle is turned so as to

bring the magnet nearly perpendicular to the magnetic meridian,

so that

e = l~d', then r(a-aQ
-\+d')=MH(l-\d%

or MH=T(l + ie'
2)(a-a -^ + d').
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By observing 6', the deflexion of the magnet when in equili-

brium, we can calculate MH provided we know t.

If we only wish to know the relative value of H at different

times it is not necessary to know either M or r.

We may easily determine t in absolute measure by suspending

a non-magnetic body from the same wire and observing its time

of oscillation, then if A is the moment of inertia of this body,

and T the time of a complete vibration,

T — ya *

The chief objection to the use of the torsion balance is that

the zero-reading a is liable to change. Under the constant

twisting force, arising from the tendency of the magnet to turn

to the north, the wire gradually acquires a permanent twist, so

that it becomes necessary to determine the zero-reading of the

torsion circle afresh at short intervals of time.

BifiLar Suspension.

459.] The method of suspending the magnet by two wires or

fibres was introduced by Gauss and Weber. As the bi filar

suspension is used in many electrical instruments, we shall

investigate it more in detail. The general appearance of the

suspension is shewn in Fig. 16, and Fig. 17 represents the pro-

jection of the wires on a horizontal plane.

AB and A'B' are the projections of the two wires.

AA' and BR are the lines joining the upper and the lower

ends of the wires.

a and b are the lengths of the lines AA' and BB/
.

a and j3 their azimuths.

W and W the vertical components of the tensions of the

wires.

Q and Q' their horizontal components.

h the vertical distance between AA' and BB?.

The forces which act on the magnet are—its weight, the

couple arising from terrestrial magnetism, the torsion (if any)

of the wires and their tensions. Of these the effects of mag-

netism and of torsion are of the nature of couples. Hence the

resultant of the tensions must consist of a vertical force, equal

to the weight of the magnet, together with a couple. The

resultant of the vertical components of the tensions is therefore
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along the line whose projection is 0, the intersection of AA' and

BB\ and either of these lines is divided in in the ratio of W
to W.

The horizontal components of the tensions form a couple, and

are therefore equal in magnitude and parallel in direction.

Calling either of them Q, the moment of the couple which they

form is L = Q.PP\ (1)

where PP/
is the distance between the parallel lines AB and

A'B'.

To find the value of L we have the equations of moments

Qh=W.AB=W.A'B', (2)

and the geometrical equation

{AB +Af
B') PP'= ab sin (0-/8), (3)

whence we obtain,

£ = Q.PP' = TF:rr sin(a-/3). (4)

Ifm is the mass of the suspended apparatus, and g the inten-

sity of gravity, W+W = mg. (5)

If we also write W—W = tvmg, (6)

we find L = -(l-n2)mg-j-sin(a— /3). (7)

The value of L is therefore a maximum with respect to n

when n is zero, that is, when the weight of the suspended mass

is equally borne by the two wires.

We may adjust the tensions of the wires to equality by ob-

serving the time of vibration, and making it a minimum, or we

may obtain a self-acting adjustment by attaching the ends of

the wires, as in Fig. 16, to a pulley, which turns on its axis till

the tensions are equal.

The distance between the upper ends of the suspension wires is

regulated by means of two other pulleys. The distance between

the lower ends of the wires is also capable of adjustment.

By this adjustment of the tension, the couple arising from the

tensions of the wires becomes

T 1 ab . . ,

L — - t-my sin (a— p).
4 ft

The moment of the couple arising from the torsion of the

wires is of the form r(y— 0),

where t is the sum of the coefficients of torsion of the wires.
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The wires ought to be without torsion when a — /3, we may
then make y = a.

The moment of the couple arising from the horizontal mag-

netic force is of the form

ME sin (8-0),

where b is the magnetic declination, and is the azimuth of the

Fig. 16. Fig. 17.

axis of the magnet. We shall avoid the introduction of un-

necessary symbols without sacrificing generality if we assume

that the axis of the magnet is parallel to BB', or that /3 = 6.

The equation of motion then becomes

d*0 labA ~t# = MHsm(b-d)+ --r-mgam(a—6) + T(a-0). (8)
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There are three principal positions of this apparatus.

(1) When a is nearly equal to 8. If T
x

is the time of a

complete oscillation in this position, then

4 it
2 J. lab Mlr / Q \

(2) When a is nearly equal to 8 + tt. If T2
is the time of a

complete oscillation in this position, the north end of the magnet

being now turned towards the south,

i^-I^ + r-JHf. (10)

The quantity on the right-hand of this equation may be made

as small as we please by diminishing a or b, but it must not be

made negative, or the equilibrium of the magnet will become

unstable. The magnet in this position forms an instrument by

which small variations in the direction of the magnetic force

may be rendered sensible.

For when 6 — 8 is nearly equal to ir, sin (8 — 6) is nearly equal

to 6— 8— 7r, and we find

B = a-
lah

MH
(8 + ir-a). (11)

-^-mq +T-MH
4 ft

By diminishing the denominator of the fraction in the last

term we may make the variation of very large compared with

that of 8. We should notice that the coefficient of 8 in this

expression is negative, so that when the direction of the mag-

netic force turns in one direction the magnet turns in the

opposite direction.

(3) In the third position the upper part of the suspension-

apparatus is turned round till the axis of the magnet is nearly

perpendicular to the magnetic meridian.

If we make

0-8 = ^ + 0', and a— = /3-0', (12)

the equation of motion may be written

rl2 tf 1 ah
A-^[= -MH cob tf+^jmg an (p-tf) + r(p-d'). (13)

If there is equilibrium when H — H and 6' = 0,

-MH +j~mgsmp + l3T = 0, (14)
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and if H is the value of the horizontal force corresponding to a

small angle 0',

lab

H = Hh~m—7-—?\ (15)

\ -ymgr sin /3 + r/3 /

In order that the magnet may be in stable equilibrium it is

necessary that the numerator of the fraction in the second

member should be positive, but the more nearly it approaches

zero, the more sensitive will be the instrument in indicating

changes in the value of the intensity of the horizontal com-
ponent of terrestrial magnetism.

The statical method of estimating the intensity of the force

depends upon the action of an instrument which of itself

assumes different positions of equilibrium for different values of

the force. Hence, by means of a mirror attached to the magnet
and throwing a spot of light upon a photographic surface moved
by clock-work, a curve may be traced, from which the intensity

of the force at any instant may be determined according to a
scale, which we may for the present consider an arbitrary one.

460.] In an observatory, where a continuous system of regis-

tration of declination and intensity is kept up either by eye-
observation or by the automatic photographic method, the
absolute values of the declination and of the intensity, as well
as the position and moment of the magnetic axis of a magnet,
may be determined to a great degree of accuracy.

For the declinometer gives the declination at every instant
affected by a constant error, and the bifilar magnetometer gives
the intensity at every instant multiplied by a constant coeffi-

cient. In the experiments we substitute for 8. 8' + 8 , where 8'

is the reading of the declinometer at the given instant, and 8

is the unknown but constant error, so that 8' + 8 is the true
declination at that instant.

In like manner for H, we substitute CH', where H' is the
reading of the magnetometer on its arbitrary scale, and G is an
unknown but constant multiplier which converts these readings
into absolute measure, so that CH' is the horizontal force at a
given instant.

The experiments to determine the absolute values of the

quantities must be conducted at a sufficient distance from the
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declinometer and magnetometer, so that the different magnets

may not sensibly disturb each other. The time of every obser-

vation must be noted and the corresponding values of 8' and H'

inserted. The equations are then to be treated so as to find b ,

the constant error of the declinometer, and C the coefficient to

be applied to the reading of the magnetometer. When these

are found the readings of both instruments may be expressed in

absolute measure. The absolute measurements, however, must

be frequently repeated in order to take account of chaDges

which may occur in the magnetic axis and magnetic moment of

the magnets.

461.] The methods of determining the vertical component of

the terrestrial magnetic force have not been brought to the

same degree of precision. The vertical force must act on a

magnet which turns about a horizontal axis. Now a body

which turns about a horizontal axis cannot be made so sensitive

to the action of small forces as a body which is suspended by a

fibre and turns about a vertical axis. Besides this, the weight of

a magnet is so large compared with the magnetic force exerted

upon it that a small displacement of the centre of inertia by
unequal dilatation, &c. produces a greater effect on the position

of the magnet than a considerable change of the magnetic force.

Hence the measurement of the vertical force, or the com-

parison of the vertical and the horizontal forces, is the least

perfect part of the system of magnetic measurements.

The vertical part of the magnetic force is generally deduced

from the horizontal force by determining the direction of the

total force.

If i be the angle which the total force makes with its hori-

zontal component, i is called the magnetic Dip or Inclination,

and if H is the horizontal force already found, then the vertical

force is H tan i, and the total force is H sec i.

The magnetic dip is found by means of the Dip Needle.

The theoretical dip-needle is a magnet with an axis which

passes through its centre of inertia perpendicular to the mag-

netic axis of the needle. The ends of its axis are made in

the form of cylinders of small radius, the axes of which are

coincident with the line passing through the centre of inertia.

These cylindrical ends rest on two horizontal planes and are

free to roll on them.
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When the axis is placed magnetic east and west, the needle

is free to rotate in the plane of the magnetic meridian, and if

the instrument is in perfect adjustment, the magnetic axis will

set itself in the direction of the total magnetic force.

It is, however, practically impossible to adjust a dip-needle so

that its weight does not influence its position of equilibrium,

because its centre of inertia, even if originally in the line

joining the centres of the rolling sections of the cylindrical ends,

will cease to be in this line when the needle is imperceptibly bent
or unequally expanded. Besides, the determination of the true

centre of inertia of a magnet is a very difficult operation, owing
to the interference of the magnetic force with that of gravity.

Let us suppose one end of the needle and one end of the
pivot to be marked. Let a line, real or imaginary, be drawn on
the needle, which we shall call the Line of Collimation. The
position of this line is read off on a vertical circle. Let 6 be the
angle which this line makes with the radius to zero, which we
shall suppose to be horizontal. Let A. be the angle which the

magnetic axis makes with the line of collimation, so that when
the needle is in this position the magnetic axis is inclined $ + A
to the horizontal.

Let p be the perpendicular from the centre of inertia on the

plane on which the axis rolls, then p will be a function of d,

whatever be the shape of the rolling surfaces. If both the
rolling sections of the ends of the axis are circular we have an
equation of the form,

p = c— asin(0 + a), (l)

where a is the distance of the centre of inertia from the line

joining the centres of the rolling sections, and a is the angle
which this line makes with the line of collimation.

IfM is the magnetic moment, m the mass of the magnet, and

g the force of gravity. / the total magnetic force, and i the dip,

then, by the conservation of energy, when there is stable equi-
librium MI cos (6 + \-i)~mgp (2)

must be a maximum with respect to 6, or

MIsin(0 + \-i) = -™>g^.,

= mga cos (6 + a), (3)

if the ends of the axis are cylindrical.
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Also, if T be the time of vibration about tbe position of equi-

librium,
. , ^4 it'

1A /,<.

MI+mg a sin (0 + a) = —7^-' ^'

where A is the moment of inertia of the needle about its axis of

rotation, and is determined by (3).

In determining the dip a reading is taken with the dip-circle

in the magnetic meridian and with the graduation towards the

west.

Let 6
X
be this reading, then we have

MI sin (d
1 + A — i) = mga cos (0X + a). (5)

The instrument is now turned about a vertical axis through

180°, so that the graduation is to the east, and if 2
is the new

reading, MI sin (02 + A- -n + i) = mga cos (02 + a). (6)

Taking (6) from (6), and remembering that 6
X
is nearly equal

to i, and
2
nearly equal to -n— i, and that A is a small angle,

such that mga\ may be neglected in comparison with MI,

MI(6
1
— 62 + tt— 2i) = 2mgacosicosa. (7)

Now take the magnet from its bearings and place it in the

deflexion apparatus, Art. 453, so as to indicate its own magnetic

moment by the deflexion of a suspended magnet, then

M=hr3HB, (8)

where D is the tangent of the deflexion.

Next, reverse the magnetism of the needle and determine its

new magnetic moment M', by observing a new deflexion the

tangent of which is D', then the distance being the same as before,

M' = I r*HD\ (9)

whence MB' = M'D. (10)

Then place it on its bearings and take two readings, 3

and 6i , in which
3
is nearly ir + i, and 4

nearly — i,

M'l8,xa.(6.i + k'— Tt— i) = mga cos (03 + a), (11)

M'l sin (04 + A' + i) = mga cos (04 + a), (1 2)

whence, as before,

M/
I(6z

— d
4:
-T:— 2i)— —2mgacosicosa, (13)

and on adding (7),

MI(d
x
-d2 + Tt-2i) + M'I{dz

-0±-Tt-2i) = 0, (14)

or i)(0
1
-0

2 + ir-2i)+ D'(03
-0

4
-7r-2i) = 0, (15)
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whence we find the dip

. D(g
1
-fl, + ,r)+D'(g,-fl

4-,r)*"
2DT2R

' (1^>

where D and D' are the tangents of the deflexions produced
by the needle in its first and second magnetizations respectively.

In taking observations with the dip-circle the vertical axis
is carefully adjusted so that the plane bearings upon which the
axis of the magnet rests are horizontal in every azimuth. The
magnet being magnetized so that the end A dips, is placed with
its axis on the plane bearings, and observations are taken with
the plane of the circle in the magnetic meridian, and with
the graduated side of the circle east. Each end of the magnet
is observed by means of reading microscopes carried on an arm
which moves concentric with the dip-circle. The cross-wires
of the microscope are made to coincide with the image of a
mark on the magnet, and the position of the arm is then read
off on the dip-circle by means of a vernier.

We thus obtain an observation of the end A and another
of the end B when the graduations are east. It is necessary
to observe both ends in order to eliminate any error arising
from the axle of the magnet not being concentric with the dip-

circle.

The graduated side is then turned west, and two more ob-

servations are made.

The magnet is then turned round so that the ends of the axle
are reversed, and four more observations are made looking at

the other side of the magnet.

The magnetization of the magnet is then reversed so that the
end B dips, the magnetic moment is ascertained, and eight

observations are taken in this state, and the sixteen observations
combined to determine the true dip.

462.] It is found that in spite of the utmost care the dip,

as thus deduced from observations made with one dip-circle,

differs perceptibly from that deduced from observations with
another dip-circle at the same place. Mr. Broun has pointed
out the effect due to ellipticity of the bearings of the axle,

and how to correct it by taking observations with the magnet
magnetized to different strengths.

The principle of this method may be stated thus. We shall

suppose that the error of any one observation is a small
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quantity not exceeding a degree. We shall also suppose that

some unknown but regular force acts upon the magnet, dis-

turbing it from its true position.

If L is the moment of this force, 6 the true dip, and 6

the observed dip, then

L = MIain(6-d ), (17)

= MI(0-d
o ),

(18)

since 6 — 6
Q
is small.

It is evident that the greater M becomes the nearer does

the needle approach its proper position. Now let the operation

of taking the dip be performed twice, first with the magnetiza-

tion equal to Mlt the greatest that the needle is capable of,

and next with the magnetization equal to M.
A , a much smaller

value but sufficient to make the readings distinct and the error

still moderate. Let 6
%
and 62

be the dips deduced from these

two sets of observations, and let L be the mean value of the

unknown disturbing force for the eight positions of each de-

termination, which we shall suppose the same for both deter-

minations. Then

L = M
x
i{e

x
-e ) = M»i(o

9
-e ). (19)

Hence <>. = *%=%>. X-W^' <»»

If we find that several experiments give nearly equal values

for L, then we may consider that O
must be very nearly the

true value of the dip.

463.] Dr. Joule has recently constructed a new dip-circle, in

which the axis of the needle, instead of rolling on horizontal

agate planes, is slung on two filaments of silk or spider's thread,

the ends of the filaments being attached to the arms of a

delicate balance. The axis of the needle thus rolls on two loops

of silk fibre, and Dr. Joule finds that its freedom of motion is

much greater than when it rolls on agate planes.

In Fig. 18, NS is the needle, CC is its axis, consisting of a

straight cylindrical wire, and PCQ, P'C'Q' are the filaments

on which the axis rolls. POQ is the balance, consisting of a

double bent lever supported by a wire, O'O', stretched horizont-

ally between the prongs of a forked piece, and having a counter-

poise R which can be screwed up or down, so that the balance

is in neutral equilibrium about O'O'.



463.] JOULE S SUSPENSION. 125

In order that the needle may be in neutral equilibrium as

the needle rolls on the filaments the centre of gravity must
neither rise nor fall. Hence the distance OG must remain
constant as the needle rolls. This condition will be fulfilled

if the arms of the balance OP and OQ are equal, and if the

filaments are at right angles to the arms.

Dr. Joule finds that the needle should not be more than five

inches long. When it is eight inches long, the bending of the

needle tends to diminish the

apparent dip by a fraction of

a minute. The axis of the

needle was originally of steel

wire, straightened by being

brought to a red heat while

stretched by a weight, but

Dr. Joule found that with

the new suspension it is

not necessary to use steel

wire, for platinum and even
standard gold are hard

enough.

The balance is attached to

a wire f0' about a foot long

stretched horizontally be-

tween the prongs of a fork.

This fork is turned round in

azimuth by means of a circle

at the top of a tripod which
supports the whole. Six

complete observations of the

dip can be obtained in one
hour, and the average error

of a single observation is a
fraction of a minute of arc.

It is proposed that the dip-needle in the Cambridge Physical
Laboratory shall be observed by means of a double image
instrument, consisting of two totally reflecting prisms placed
as in Fig. 19 and mounted on a vertical graduated circle, so
that the plane of reflexion may be turned round a horizontal
axis nearly coinciding with the prolongation of the axis of

Fig. 18.
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the suspended dip-needle. The needle is viewed by means of a

telescope placed behind the prisms, and the two ends of the

needle are seen together as in Fig. 20. By turning the prisms

about the axis of the vertical circle, the images of two lines

Fig. 19. Fig. 20.

drawn on the needle may be made to coincide. The inclination

of the needle is thus determined from the reading of the vertical

circle.

The total intensity I of the magnetic force in the line of dip

may be deduced as follows from the times of vibration T1
,T2 ,TZ ,

T
4
in the four positions already described,

4«M Jl .Jl._L.J_1.1 ~ 2M+2M'IT* T*
+ T* +

_v$

The values of M and M must be found by the method of

deflexion and vibration formerly described, and A is the moment

of inertia of the magnet about its axle.

The observations with a magnet suspended by a fibre are so

much more accurate that it is usual to deduce the total force

from the horizontal force by means of the equation

I — Haec0,

where I is the total force, H the horizontal force, and 6 the dip.

464.] The process of determining the dip being a tedious one,

is not suitable for determining the continuous variation of the

magnetic force. The most convenient instrument for continuous

observations is the vertical force magnetometer, which is simply

a magnet balanced on knife edges so as to be in stable

equilibrium with its magnetic axis nearly horizontal.

If Z is the vertical component of the magnetic force, M the
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magnetic moment, and* 6 the small angle which the magnetic
axis makes with the horizon,

MZ cos 6 = triga cos (a— 6) ,

where m is the mass of the magnet, g the force of gravity, a the
distance of the centre of gravity from the axis of suspension,
and a the angle which the plane through the axis and the
centre of gravity makes with the magnetic axis.

Hence, for the small variation of vertical force hZ, there will

be since 6 is very small a variation of the angular position of

the magnet 8 6 such that

MlZ— mga sin {a — 6) h6.

In practice this instrument is not used to determine the
absolute value of the vertical force, but only to register its

small variations.

For this purpose it is sufficient to know the absolute value
dZ

of Z when = 0, and the value of -r- •

dO
The value of Z, when the horizontal force and the dip are

known, is found from the equation Z = //"tan
Q , where 6 is

the dip and H the horizontal force.

To find the deflexion due to a given variation of Z, take a
magnet and place it with its axis east and west, and with its

centre at a known distance r
x
east or west from the declinometer

as in experiments on deflexion, and let the tangent of deflexion

beDr
Then place it with its axis vertical and with its centre at

a distance r
2
above or below the centre of the vertical force

magnetometer, and let the tangent of the deflexion produced
in the magnetometer be D

2 . Then, if the moment of the

deflecting magnet is M',
.

rJ72M=Hr*D
1
= <^r*D

2 .

Hence
dZ=H r-l£.
d9 r

2
*D

2

The actual value of the vertical force at any instant is

z==z
°
+d

dJ'
where ZQ is the value of Z when 6 = 0.

For continuous observations of the variations of magnetic
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force at a fixed observatory the Unifilar Declinometer, the

Bifilar Horizontal Force Magnetometer, and the Balance Ver-

tical Force Magnetometer are the most convenient instruments.

At several observatories photographic traces are now pro-

duced on prepared paper moved by clock-work, so that a

continuous record of the indications of the three instruments

at every instant is formed. These traces indicate the variation

of the three rectangular components of the force from their

standard values. The declinometer gives the force towards

mean magnetic west, the bifilar magnetometer gives the varia-

tion of the force towards magnetic north, and the balance

magnetometer gives the variation of the vertical force. The

standard values of these forces, or their values when these

instruments indicate their several zeros, are deduced by fre-

quent observations of the absolute declination, horizontal force,

and dip.



CHAPTEK VIII.

ON TERRESTRIAL MAGNETISM.

465.] Our knowledge of Terrestrial Magnetism is derived
from the study of the distribution of magnetic force on the
earth's surface at any one time, and of the changes in that
distribution at different times.

The magnetic force at any one place and time is known when
its three coordinates are known. These coordinates may be
given in the form of the declination or azimuth of the force,

the dip or inclination to the horizon, and the total intensity.

The most convenient method, however, for investigating the
general distribution of magnetic force on the earth's surface
is to consider the magnitudes of the three components of the
force,

X = Hcoa b, directed due north, \

Y = H sin 8, directed due west, I (l)

Z = Htan 0, directed vertically downwards, )

where H denotes the horizontal force, 8 the declination, and
the dip.

If V is the magnetic potential at the earth's surface, and if

we consider the earth a sphere of radius a, then

a dl a cos I d\' dr
'

' '

where I is the latitude, A the longitude, and r the distance
from the centre of the earth.

A knowledge of V over the surface of the earth may be
obtained from the observations of horizontal force alone as
follows.

Let V be the value of V at the true north pole, then, taking



130 TEERESTRIAL MAGNETISM. [466.

the line-integral along any meridian, we find,

V=-a[
l

Xdl+V
, (3)

5

for the value of the potential on that meridian at latitude I.

Thus the potential may be found for any point on the earth's

surface provided we know the value of X, the northerly

component at every point, and V , the value of V at the pole.

Since the forces depend not on the absolute value of V but

on its derivatives, it is not necessary to fix any particular value

for F .

The value of V at any point may be ascertained if we know

the value of X along any given meridian, and also that of F

over the whole surface.

Let V2 =-af
l

Xdl+V , (4)

where the integration is performed along the given meridian

from the pole to the parallel I, then

V=Vt
-ar YcosldX, (5)

where the integration is performed along the parallel I from the

given meridian A to the required point.

These methods imply that a complete magnetic survey of the

earth's surface has been made, so that the values of X or of 7
or of both are known for every point of the earth's surface at a

given epoch. What we actually know are the magnetic com-

ponents at a certain number of stations. In the civilized parts

of the earth these stations are comparatively numerous ;
in other

places there are large tracts of the earth's surface about which

we have no data.

Magnetic Survey.*

466.] Let us suppose that in a country of moderate size, whose

greatest dimensions are a few hundred miles, observations of the

declination and the horizontal force have been taken at a con-

siderable number of stations distributed fairly over the country

Within this district we may suppose the value of V to be

represented with sufficient accuracy by the formula

V=const.-a(A 1
l + A2k + hB1

l
2 + Bzl\+ \B3

k2 + &c), (6)

* (The reader should consult Riicker and Thorpe's paper 'A Magnetic Survey of

the British Isles,' Phil. Trans., 1890, a, pp. 53-328.}
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whence X = A
1 + B1

l +B2
k

i (7)

Fcos l = A
2 +B2 l + B3

\. (8)

Let there be n stations whose latitudes are llt lai ... &c. and
longtitudes A19 A2 , &c, and ]et X and Y be found for each station.

Let l» =
l

-Z(l\ andA =l2(A), (9)

l and A may be called the latitude and longitude of the central

station. Let

X = -2(X), and Y cos l = - 2 (Fcos I), (10)

then X and Y are the values of X and Y at the imaginary
central station, then

x = x^^-g+^A-A,), (ii)

Ycosl = Y cosl
Q + B2{l-l ) + B3(\-X ). (12)

We have n equations of the form (11) and n of the form
(12). If we denote the probable error in the determination of

X by £ and in that of Y cos I by rj, then we may calculate $ and
V on the supposition that they arise from errors of observation
of H and b.

Let the probable error of H be h, and that of b, A, then since

dX = cosb.dH—Hsinb.db,

g
2 = h2 co&i

b + A2H2 sm2
b.

Similarly t/
2 = h2 sin2

b + A2 H2 cos2
b.

If the variations of X and Y from their values as given
by equations of the form (11) and (12) considerably exceed the
probable errors of observation, we may conclude that they are

due to local attractions, and then we have no reason to give
the ratio of £ to rj any other value than unity.

According to the method of least squares we multiply the
equations of the form (11) by v , and those of the form (12)
by £ to make their probable error the same. We then multiply
each equation by the coefficient of one of the unknown quan-
tities B

x , B.2y or B3 and add the results, thus obtaining three
equations from which to find B

x , B2 , B3 , viz.

P
1
= B

1
b
1 + B2

b2 ,

v'z+eQt = B
1
r
]

2 b
2+B2{eb1+ r

]

2 h
3)+B3eb2 ,

Qz= B
2 b2 +B

3
b
3 ;

K 2
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in which we write for conciseness,

61== S(Z2)-^ 2
, b

2
= 2(lk)-nl \ ,

63 = 2(\2)-™V,

P
x
= 2(lX)-nl XQ , Qx

= 2{lYcosl)-rdQ
Y cosl ,

P2 = 2(\X)-<nA X
, Q2

= S(AFcosZ)-^A ^cosZ .

By calculating Bx , B2 , and Bs , and substituting in equations

(11) and (12), we can obtain the values of X and Y at any point

within the limits of the survey free from the local disturbances

which are found to exist where the rock near the station is

magnetic, as most igneous rocks are.

Surveys of this kind can be made only in countries where

magnetic instruments can be carried about and set up in a great

many stations. For other parts of the world we must be content

to find the distribution of the magnetic elements by interpolation

between their values at a few stations at great distances from

each other.

467.] Let us now suppose that by processes of this kind,

or by the equivalent graphical process of constructing charts

of the lines of equal values of the magnetic elements, the values

of X and Y, and thence of the potential V, are known over the

whole surface of the globe. The next step is to expand V in

the form of a series of spherical surface harmonics.

If the earth were magnetized uniformly and in the same

direction throughout its interior, V would be a harmonic of

the first degree, the magnetic meridians would be great circles

passing through two magnetic poles diametrically opposite, the

magnetic equator would be a great circle, the horizontal force

would be equal at all points of the magnetic equator, and if

E is this constant value, the value at any other point would

be H = H cos V, where V is the magnetic latitude. The vertical

force at any point would be Z = 2H sin V, and if 6 is the dip,

tan 6 would be = 2 tan V.

In the case of the earth, the magnetic equator is defined to

be the line of no dip. It is not a great circle of the sphere.

The magnetic poles are defined to be the points where there

is no horizontal force, or where the dip is 90°. There are

two such points, one in the northern and one in the southern

regions, but they are not diametrically opposite, and the line

joining them is not parallel to the magnetic axis of the earth.

46b.] The magnetic poles are the points where the value of V
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on the surface of the earth is a maximum or minimum, or is

stationary.

At any point where the potential is a minimum the north end
of the dip-needle points vertically downwards, and if a compass-
needle be placed anywhere near such a point, the north end will
point towards that point.

At points where the potential is a maximum the south end
of the dip-needle points downwards, and in the neighbourhood
the south end of the compass-needle points towards the point.

If there are p minima of V on the earth's surface there must
be p—\ other points, where the north end of the dip-needle
points downwards, but where the compass-needle, when carried
in a circle round the point, instead of revolving so that its north
end points constantly to the centre, revolves in the opposite
direction, so as to turn sometimes its north end and sometimes
its south end towards the point.

If we call the points where the potential is a minimum true
north poles, then these other points may be called false north
poles, because the compass-needle is not true to them. If there
are p true north poles, there must be p— 1 false north poles,

and in like manner, if there are q true south poles, there must
be q—1 false south poles. The number of poles of the same
name must be odd, so that the opinion at one time prevalent,
that there are two north poles and two south poles, is erroneous.
According to Gauss there is in fact only one true north pole
and one true south pole on the earth's surface, and therefore
there are no false poles. The line joining these poles is not
a diameter of the earth, and it is not parallel to the earth's

magnetic axis.

469.] Most of the early investigators into the nature of the
earth's magnetism endeavoured to express it as the result of the
action of one or more bar magnets, the positions of the poles of
which were to be determined. Gauss was the first to express
the distribution of the earth's magnetism in a perfectly general
way by expanding its potential in a series of solid harmonics,
the coefficients of which he determined for the first four degrees.
These coefficients are 24 in number, 3 for the first degree, 5 for

the second, 7 for the third, and 9 for the fourth. All these
terms are found necessary in order to give a tolerably accurate
representation of the actual state of the earth's magnetism.
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To find what Part of the Observed Magnetic Force is due

to External and what to Internal Causes.

470.] Let us now suppose that we have obtained an expan-

sion of the magnetic potential of the earth in spherical har-

monics, consistent with the actual direction and magnitude

of the horizontal force at every point on the earth's surface,

then Gauss has shewn how to determine, from the observod

vertical force, whether the magnetic forces are due to causes,

such as magnetization or electric currents, within the earths

surface, or whether any part is directly due to causes exterior

to the earth's surface.

Let V be the actual potential expanded in a double series of

spherical harmonics.

F-^+ta. + ^(=)'+

+*,(£) + Aa+2>,(-) +

The first series represents the part of the potential due to

causes exterior to the earth, and the second series represents

the part due to causes within the earth.

The observations of horizontal force give us the sum of these

series when r = a, the radius of the earth. The term of the

order i is V= At + B,.

The observations of vertical force give us

z = dV
dr

'

and the term of the order i in a Z is

(^ = ^-(1+1)5;.

Hence the part due to external causes is

(i+^V.+ aZj
Ai ~ 2»+l *

and the part due to causes within the earth is

iV.-aZj
l ~ 2i+l

The expansion of V has hitherto been calculated only for the

mean value of V at or near certain epochs. No appreciable part
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of this mean value appears to be due to causes external to the
earth.

471.] We do not yet know enough of the form of the ex-
pansion of the solar and lunar parts of the variations of V
to determine by this method whether any part of these variations
arises from magnetic force acting from without. It is certain,

however, as the calculations of MM. Stoney and Chambers have
shewn, that the principal part of these variations cannot arise

from any direct magnetic action of the sun or moon, supposing
these bodies to be magnetic *.

472.] The principal changes in the magnetic force to which
attention has been directed are as follows.

I. The more Regular Variations.

(1) The Solar variations, depending on the hour of the day
and the time of the year.

(2) The Lunar variations, depending on the moon's hour angle
and on her other elements of position.

(3) These variations do not repeat themselves in different

years, but seem to be subject to a variation of longer period
of about eleven years.

(4) Besides this, there is a secular alteration in the state of
the earth's magnetism, which has been going on ever since
magnetic observations have been made, and is producing changes
of the magnetic elements of far greater magnitude than any
of the variations of small period.

II. The Disturbances.

473.] Besides the more regular changes, the magnetic elements
are subject to sudden disturbances of greater or less amount
It is found that these disturbances are more powerful and
frequent at one time than at another, and that at times of great
disturbance the laws of the regular variations are masked, though

* Professor Hornstein of Prague has discovered a periodic change in the magnetic
elements, the period of which is 26-33 days, almost exactly equal to that of the
synodic revolution of the sun, as deduced from the observation of sun-spots near his
equator. This method of discovering the time of rotation of the unseen solid body of
the sun by its effects on the magnetic needle is the first instalment of the repayment
by Magnetism of its debt to Astronomy. Anzeiqer der Jc. Akad., Wien. June 15
1871. See Proc. B. S., Nov. 16, 1871.
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they are very distinct at times of small disturbance. Hence

great attention has been paid to these disturbances, and it

has been found that disturbances of a particular kind are more

likely to occur at certain times of the day, and at certain

seasons and intervals of time, though each individual disturb-

ance appears quite irregular. Besides these more ordinary

disturbances, there are occasionally times of excessive disturb-

ance, in which the magnetism is strongly disturbed for a day

or two. These are called Magnetic Storms. Individual dis-

turbances have been sometimes observed at the same instant

in stations widely distant.

Mr. Airy has found that a large proportion of the disturb-

ances at Greenwich correspond with the electric currents

collected by electrodes placed in the earth in the neighbourhood,

and are such as would be directly produced in the magnet if

the earth-current, retaining its actual direction, were conducted

through a wire placed underneath the magnet.

It has been found that there is an epoch of maximum dis-

turbance every eleven years, and that this appears to coincide

with the epoch of maximum number of spots in the sun.

474.] The field of investigation into which we are introduced

by the study of terrestrial magnetism is as profound as it is

extensive.

We know that the sun and moon act on the earth's magnetism.

It has been proved that this action cannot be explained by sup-

posing these bodies magnets. The action is therefore indirect.

In the case of the sun part of it may be thermal action, but

in the case of the moon we cannot attribute it to this cause.

Is it possible that the attraction of these bodies, by causing

strains in the interior of the earth, produces (Art. 447) changes

in the magnetism already existing in the earth, and so by a kind

of tidal action causes the semidiurnal variations ?

But the amount of all these changes is very small compared

with the great secular changes of the earth's magnetism.

What cause, whether exterior to the earth or in its inner

depths, produces such enormous changes in the earth's mag-

netism, that its magnetic poles move slowly from one part of

the globe to another ? When we consider that the intensity of

the magnetization of the great globe of the earth is quite com-

parable with that which we produce with much difficulty in
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our steel magnets, these immense changes in so large a body
force us to conclude that we are not yet acquainted with one

of the most powerful agents in nature, the scene of whose ac-

tivity lies in those inner depths of the earth, to the knowledge
of which we have so few means of access *.

* {Balfour Stewart suggested that the diurnal variations are due to electric
current induced in the rarified air in the upper regions of the atmosphere as it moves
across the earth's lines of force. Schuster, Phil. Trans, A, 1889, p. 467, by applying
Gauss's method, has lately shewn that the greater part of these disturbances have
their origin above the surface of the earth.

}



PART IV.

ELECTRO MAGNETISM.

CHAPTER I.

ELECTROMAGNETIC FORCE.

475.] It had been noticed by many different observers that in

certain cases magnetism is produced or destroyed in needles by

electric discharges through them or near them, and conjectures

of various kinds had been made as to the relation between mag-

netism and electricity, but the laws of these phenomena, and the

form of these relations, remained entirely unknown till Hans

Christian Orsted*, at a private lecture to a few advanced stu-

dents at Copenhagen, observed that a wire connecting the ends

of a voltaic battery affected a magnet in its vicinity. This

discovery he published in a tract entitled Experimenta circa

effectum Conflictils Electrici in Acum Magneticam, dated

July 21, 1820.

Experiments on the relation of the magnet to bodies charged

with electricity had been tried without any result till Orsted

endeavoured to ascertain the effect of a wire heated by an

electric current. He discovered, however, that the current itself,

and not the heat of the wire, was the cause of the action, and

that the 'electric conflict acts in a revolving manner,' that is,

that a magnet placed near a wire transmitting an electric cur-

rent tends to set itself perpendicular to the wire, and with the

* See another account of Orsted's discovery in a letter from Professor Hansteen in

-the Life of Faraday by Dr. Bence Jones, vol. ii. p. 395.
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same end always pointing forwards as the magnet is moved
round the wire.

476.] It appears therefore that in the space surrounding a

wire transmitting an electric current a magnet is acted on by
forces dependent on the position of the wire and on the strength

of the current. The space in which these forces act may there-

fore be considered as a magnetic field, and we may study it in

the same way as we have already studied the field in the

neighbourhood of ordinary magnets, by tracing the course of

the lines of magnetic force, and measuring the intensity of

the force at every point.

477.] Let us begin with the case of an indefinitely long

straight wire carrying an electric current. If a man were to

place himself in imagination in the position of the wire, so that

the current should flow from his head to his feet, then a magnet
suspended freely before him would set itself so that the end
which points north would, under the action of the current,

point to his right hand.

The lines of magnetic force are everywhere at right angles to

planes drawn through the wire, and are

therefore circles each in a plane perpen-

dicular to the wire, which passes through

its centre. The pole of a magnet which
points north, if carried round one of these

circles from left to right, would experience

a force acting always in the direction of

its motion. The other pole of the same
magnet would experience a force in the

opposite direction.

478.] To compare these forces let the

wire be supposed vertical, and the current

a descending one, and let a magnet be

placed on an apparatus which is free to

rotate about a vertical axis coinciding

with the wire. It is found that under
these circumstances the current has no effect in causing the
rotation of the apparatus as a whole about itself as an axis.

Hence the action of the vertical current on the two poles of the
magnet is such that the statical moments of the two forces

about the current as an axis are equal and opposite. Let m
1

Ficr. 21.
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and m2
be the strengths of the two poles, r

x
and r

2
their dis-

tances from the axis of the wire, Tx
and T2

the intensities of the

magnetic force due to the current at the two poles respectively,

then the force on m
1

is m1
T1 , and since it is at right angles to

the axis its moment is m^v Similarly that of the force on

the other pole is m2
T2

r2>
and since there is no motion observed,

m
1
2

t

1
r
1
+ «i.2T2

r
2
=0.

But we know that in all magnets

mL +m2
= 0.

Hence T^ = T2r2 ,

or the electromagnetic force due to a straight current of infinite

length is perpendicular to the current, and varies inversely as the

distance from it.

479.] Since the product Tr depends on the strength of the

current it may be employed as a measure of the current. This

method of measurement is different from that founded upon

electrostatic phenomena, and as it depends on the magnetic

phenomena produced by electric currents it is called the Elec-

tromagnetic system of measurement. In the electromagnetic

system if i is the current, Tr = 2i.

480.] If the wire be taken for the axis of z, then the rectangular

components of T are

X=-2i^, Y=2i~, Z=0.

Here Xdx + Ydy + Zdz is a complete differential, being that of

2^tan~ 1 ^ +G.
x

Hence the magnetic force in the field can be deduced from a

potential function, as in several former instances, but the potential

is in this case a function having an infinite series of values whose

common difference is 47ri. The differential coefficients of the

potential with respect to the coordinates have, however, definite

and single values at every point.

The existence of a potential function in the field near an

electric current is not a self-evident result of the principle of

the conservation of energy, for in all actual currents there is

a continual expenditure of the electric energy of the battery in

overcoming the resistance of the wire, so that unless the amount
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of this expenditure were accurately known, it might be suspected
that part of the energy of the battery was employed in caus-
ing work to be done on a magnet moving in a cycle. In fact,

if a magnetic pole, m, moves round a closed curve which em-
braces the wire, work is actually done to the amount of A itmi.
It is only for closed paths which do not embrace the wire that
the line-integral of the force vanishes. We must therefore for

the present consider the law of force and the existence of a
potential as resting on the evidence of the experiment already
described.

481.] If we consider the space surrounding an infinite straight

line we shall see that it is a cyclic space, because it returns into

itself. If we now conceive a plane, or any other surface, com-
mencing at the straight line and extending on one side of it

to infinity, this surface may be regarded as a diaphragm which
reduces the cyclic space to an acyclic one. If from any fixed

point lines be drawn to any other point without cutting the
diapbragm, and the potential be defined as the line -integral of
the force taken along one of these lines, the potential at any
point will then have a single definite value.

The magnetic field is now identical in all respects with that
due to a magnetic shell coinciding with this surface, the strength
of the shell being i. This shell is bounded on one edge by the
infinite straight line. The other parts of its boundary are at an
infinite distance from the part of the field under consideration.

482.] In a,ll actual experiments the current forms a closed

circuit of finite dimensions. We shall therefore compare the
magnetic action of a finite circuit with that of a magnetic shell of
which the circuit is the bounding edge.

It has been shewn by numerous experiments, of which the
earliest are those of Ampere, and the most accurate those of
Weber, that the magnetic action of a small plane circuit at
distances which are great compared with the dimensions of the
circuit is the same as that of a magnet whose axis is normal
to the plane of the circuit, and whose magnetic moment is

equal to the area of the circuit multiplied by the strength of
the current*.

* {Ampere, Thdorie des phtnom&nes dlectrodynamiques, 1826 ; Weber, Elektrody-
namische Maasbestimmungen (Abhandlungen der koniglich Sachs. Gesellsch'ift zu
Leipzig, 1850-1852.)}
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If the circuit be supposed to be filled up by a surface bounded

by the circuit and thus forming a diaphragm, and if a magnetic

shell of strength i coinciding with this surface be substituted for

the electric current, then the magnetic action of the shell on all

distant points will be identical with that of the current.

483.] Hitherto we have supposed the dimensions of the circuit

to be small compared with the distance of any part of it from

the part of the field examined. We shall now suppose the circuit

to be of any form and size whatever, and examine its action at

any point P not in the conducting wire itself. The following

method, which has important geometrical applications, was in-

troduced by Ampere for this purpose.

Conceive any surface 8 bounded by the circuit and not passing

through the point P. On this surface draw two series of lines

crossing each other so as to divide it into elementary portions,

the dimensions of which are small compared with their distance

from P, and with the radii of curvature of the surface.

Round each of these elements conceive a current of strength

i to flow, the direction of circulation being the same in all the

elements as it is in the original circuit.

Along every line forming the division between two contiguous

elements two equal currents of strength i flow in opposite direc-

tions.

The effect of two equal and opposite currents in the same place

is absolutely zero, in whatever aspect we consider the currents.

Hence their magnetic effect is zero. The only portions of the

elementary circuits which are not neutralized in this way are

those which coincide with the original circuit. The total effect

of the elementary circuits is therefore equivalent to that of the

original circuit.

484.] Now since each of the elementary circuits may be con-

sidered as a small plane circuit whose distance from P is great

compared with its dimensions, we may substitute for it an

elementary magnetic shell of strength i whose bounding edge

coincides with the elementary circuit. The magnetic effect of

the elementary shell on P is equivalent to that of the elementary

circuit. The whole of the elementary shells constitute a mag-

netic shell of strength i, coinciding with the surface S and

bounded by the original circuit, and the magnetic action of

the whole shell on P is equivalent to that of the circuit.
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It is manifest that the action of the circuit is independent
of the form of the surface S, which was drawn in a perfectly
arbitrary manner so as to fill it up. We see from this that the
action of a magnetic shell depends only on the form of its edge
and not on the form of the shell itself. This result we obtained
before, in Art. 410, but it is instructive to see how it may be
deduced from electromagnetic considerations.

The magnetic force due to the circuit at any point is therefore
identical in magnitude and direction with that due to a magnetic
shell bounded by the circuit and not passing through the point,
the strength of the shell being numerically equal to that of the
current. The direction of the current in the circuit is related to
the direction of magnetization of the shell, so that if a man were
to stand with his feet on that side of the shell which we call the
positive side, and which tends to point to the north, the current
in front of him would be from right to left.

485.] The magnetic potential of the circuit, however, differs

from that of the magnetic shell for those points which are in the
substance of the magnetic shell.

If a) is the solid angle subtended at the point P by the mag-
netic shell, reckoned positive when the positive or austral side
of the shell is next to P, then the magnetic potential at any
point not in the shell itself is <o<£, where

<f> is the strength of the
shell. At any point in the substance of the shell itself we may
suppose the shell divided into two parts whose strengths are

fa and
<f>2 , where fa + fa = <£, such that the point is on the

positive side of fa and on the negative side of fa. The potential
at this point is

<»(<l>i+fa)-4*fa-

On the negative side of the shell the potential becomes
0(a)— 4tt). In this case therefore the potential is continuous,
and at every p>int has a single determinate value. In the case
of the electric circuit, on the other hand, the magnetic potential
at every point not in the conducting wire itself is equal to iw,

where i is the strength of the current, and a> is the solid angle
subtended by a circuit at the point, and is reckoned positive
when the current, as seen from P, circulates in the direction
opposite to that of the hands of a watch.

The quantity i m is a function having an infinite series of values
whose common difference is 4?u. The differential coefficients of
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i(a with respect to the coordinates have, however, single and de-

terminate values for every point of space.

486.] If a long thin flexible solenoidal magnet were placed in

the neighbourhood of an electric circuit, the north and south

ends of the solenoid would tend to move in opposite directions

round the wire, and if they were free to obey the magnetic force

the magnet would finally become wound round the wire in a

closed coil. If it were possible to obtain a magnet having only

one pole, or poles of unequal strength, such a magnet would be

moved round and round the wire continually in one direction,

but since the poles of every magnet are equal and opposite, this

result can never occur. Faraday, however, has shewn how to

produce the continuous rotation of one pole of a magnet round

an electric current by making it possible for one pole to go round

and round the current while the other pole does not. That this

process may be repeated indefinitely, the body of the magnet

must be transferred from one side of the current to the other

once in each revolution. To do this without interrupting the

flow of electricity, the current is split into two branches, so that

when one branch is opened to let the magnet pass the current

continues to flow through the other. Faraday used for this

purpose a circular trough of mercury, as shewn in Fig. 23,

Art. 491. The current enters the trough through the wire AB,

it is divided at B, and after flowing through the arcs BQP and

BRP it unites at P, and leaves the trough through the wire PO,

the cup of mercury 0, and a vertical wire beneath 0, down which

the current flows.

The magnet (not shewn in the figure) is mounted so as to be

capable of revolving about a vertical axis through 0, and the

wire OP revolves with it. The body of the magnet passes

through the aperture of the trough, one pole, say the north

pole, being beneath the plane of the trough, and the other above

it. As the magnet and the wire OP revolve about the vertical

axis, the current is 'gradually transferred from the branch of the

trough which lies in front of the magnet to that which lies

behind it, so that in every complete revolution the magnet

passes from one side of the current to the other. The north pole

of the magnet revolves about the descending current in the

direction N.E.S.W., and if <o, J are the solid angles (irrespective

of sign) subtended by the circular trough at the two poles, the
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work done by the electromagnetic force in a complete revolution

18 mi(4:TT— co— a/),

where m is the strength of either pole, and i the strength of the

current *.

487.] Let us now endeavour to form a notion of the state of

the magnetic field near a linear electric circuit.

Let the value of <*>, the solid angle subtended by the circuit,

be found for every point of space, and let the surfaces for which
o) is constant be described. These surfaces will be the equipo-

tential surfaces. Each of these surfaces will be bounded by the

circuit, and any two surfaces, coj and to2 , will meet in the circuit

at an angle \ (coj— w
2) f

.

* [This problem may be discussed as follows : Referring to Fig. 23, Art. 491, let
us take OP in any position and introduce imaginary balancing currents i along BO
and x, y along OB. As the magnet attached to OP is carried through a complete
revolution no work is done on the south pole by the current i, supposed to pass along
ABOZ, that pole describing a closed curve which does not embrace the current.
The north pole however describes a closed curve which does embrace the current, and
the work done upon it is 4 itmi. We have now to estimate the effects of the currents
x in the circuit BPOB and y in the circuit BBPOB. The potential of the north
pole which is below the planes of those circuits will be

— mxajg + my (a>—we ) and, of the south, — mxw'g—my ( — «' + w'g),

where wg and o)'g denote the solid angles subtended at the two poles by BOP, and w,

w' those subtended by the circular trough. The resultant potential is

my (cu + w')—mi (o^ + u'g).

Hence as OP revolves from OP in the direction NESW back to OP again the
potential will change by —mi(w + o/). The work done by the currents is therefore
that given in the text.]

{The following is a slightly different way of obtaining this result .-—The currents
through the wires and the mercury trough are equivalent to a circular current i— x
round the trough, a current i round the circuit POB and a current i through AB, BO,
and the vertical wire OZ. The circular current will evidently not produce any force
tending to make either pole travel round a circle co-axial with the circuit of the
current. The North pole threads the circuit AB, BO, and the vertical OZ, once in
each revolution, the work done on it is therefore 4 vim. If Cl and Ci' are the numerical
values of the solid angle subtended by the circuit POB at the north and south poles of
the magnet respectively, then the potential energy of the magnet and circuit is

—mi (ft + Cl'). Hence if 6 is the angle POB, the work done on the magnet in a com-
plete revolution is

P" d— I mi-j-{Cl + Cl
r)d6 = —mi(w + o/).

Jo ae

Hence the whole work done on the magnet is

mi {4 it— (cu + a/)} ].

t { This can be deduced as follows :—Consider a pointP on the surfacewlnear the line
of intersection of the two equipotential surfaces, let O be a point on the line of
intersection near P, then describe a sphere of unit radius with centre 0. The solid
angle subtended at P by the circuit will be measured by the area cut off the unit
sphere by the tangent plane at O to the surface wu and by an irregularly shaped cone
determined by the shape of the circuit at some distance from O. Now consider a
point Q on the second surface <u2 near to 0, the solid angle subtended by the circuit at
this point will be measured by the area cut off the unit sphere with centre by the
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Figure XVIII, at the end of this volume, represents a section

of the equipotential surfaces due to a circular current. The small

circle represents a section of the conducting wire, and the hori-

zontal line at the bottom of the figure is the perpendicular to the

plane of the circular current through its centre. The equipotential

surfaces, 24 of which are drawn corresponding to a series of values

of w differing by - > are surfaces of revolution, having this line for

their common axis. They are evidently oblate figures, being

flattened in the direction of the axis. They meet each other in

the line of the circuit at angles of 15°.

The force acting on a magnetic pole placed at any point of an

equipotential surface is perpendicular to this surface, and varies

inversely as the distance between consecutive equipotential sur-

faces. The closed curves surrounding the section of the wire in

Fig. XVIII are the lines of force. They are copied from Sir W.

Thomson's Paper on ' Vortex Motion*.' See also Art. 702.

Action of an Electric Circuit on any Magnetic System.

488.] We are now able to deduce the action of an electric

circuit on any magnetic system in its neighbourhood from the

theory of magnetic shells. For if we construct a magnetic shell,

whose strength is numerically equal to the strength of the

current, and whose edge coincides in position with the circuit,

while the shell itself does not pass through any part of the

magnetic system, the action of the shell on the magnetic system

will be identical with that of the electric current.

Reaction of the Magnetic System on the Electric Circuit.

489.] From this, applying the principle that action and reac-

tion are equal and opposite, we conclude that the mechanical

action of the magnetic system on the electric circuit is identical

with its action on a magnetic shell having the circuit for its edge.

The potential energy of a magnetic shell of strength </> placed

tangent plane to w2 at and by an irregularly shaped cone which, if P and Q are

very close together, will be the same as before. Thus the difference between the solid

angles is the area of the lune between the tangent planes, and this area is twice the

angle between the tangent planes, that is twice the angle at which a^ and «a intersect,

thus the angle between the surfaces is \ (a^— a>2) j

.

* Trans. It. S. JEdin., vol. xxv. p. 217, (1869).
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in a field of magnetic force of which the potential is V, is, by

where I, m, n are the direction-cosines of the normal drawn
from the positive side of the element dS of the shell, and the

integration is extended over the surface of the shell.

Now the surface-integral

N == I (la + rnb + nc) dS,

where a, b, c are the components of the magnetic induction, re-

presents the quantity of magnetic induction through the shell,

or, in the language of Faraday, the number of lines of magnetic

induction, reckoned algebraically, which pass through the shell

from the negative to the positive side, lines which pass through

the shell in the opposite direction being reckoned negative.

Remembering that the shell does not belong to the magnetic
system to which the potential V is due, and that the magnetic

force is therefore equal to the magnetic induction, we have

~~
dx ~ dy ' ~ dz

f

and we may write the value of M,

,If SiCj represents any displacement of the shell, and Xx the

force acting on the shell so as to aid the displacement, then by
the principle of conservation of energy,

X
1
bx

1 +bM= 0,

We have now determined the nature of the force which cor-

responds to any given displacement of the shell. It aids or

resists that displacement accordingly as the displacement in-

creases or diminishes If, the number of lines of induction which

pass through the shell.

The same is true of the equivalent electric circuit. Any dis-

placement of the circuit will be aided or resisted according as

it increases or diminishes the number of lines of induction which

pass through the circuit in the positive direction.
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We must remember that the positive direction of a line of

magnetic induction is the direction in which the pole of a magnet

which points north tends to move along the line, and that a line

of induction passes through the circuit in the positive direction,

when the direction of the line of induction is related to the

direction of the current of vitreous electricity in the circuit as

the longitudinal to the rotational motion of a right-handed

screw. See Art. 23.

490.] It is manifest that the force corresponding to any dis-

placement of the circuit as a whole may be deduced at once from

the theory of the magnetic shell. But this is not all. If a

portion of the circuit is flexible, so that it may be displaced

independently of the rest, we may make the edge of the shell

capable of the same kind of displacement by cutting up the

surface of the shell into a sufficient number of portions con-

nected by flexible joints. Hence we conclude that if by the

displacement of any portion of the circuit in a given direction

the number of lines of induction which pass through the circuit

can be increased, this displacement will be aided by the electro-

magnetic force acting on the circuit.

Every portion of the circuit therefore is acted on by a force

urging it across the lines of magnetic induction so as to include

a greater number of these lines within the embrace of the circuit,

and the work done by the force during this displacement is

numerically equal to the number of the additional lines of in-

duction multiplied by the strength of the current.

Let the element ds of a circuit, in which a current of strength

i is flowing, be moved parallel to itself through a space bx, it will

sweep out an area in the form of a parallelogram whose sides are

parallel and equal to ds and bx respectively.

If the magnetic induction is denoted by 33, and if its

direction makes an angle e with the normal to the parallel-

ogram, the value of the increment of JSf corresponding to the

displacement is found by multiplying the area of the parallel-

ogram by 33 cos e. The result of this operation is represented

geometrically by the volume of a parallelopiped whose edges

represent in magnitude and direction bx, ds, and 33, and it

is to be reckoned positive if when we point in these three

directions in the order here given the pointer moves round

the diagonal of the parallelopiped in the direction of the hands
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of a watch*. The volume of this parallelopiped is equal to

Xhx.
If 9 is the angle between ds and 33, the area of the parallelo-

gram whose sides are ds and 33 is ds.33 sin 0, and if tj is the
angle which the displacement 8 x makes with the normal to this

parallelogram, the volume of the parallelopiped is

ds . 33 sin . 8x cos tj = 8

K

Now Xhx — ihN — ids. 33 sin tf 8 # cos 17,

and X = ids.^& sin0cos?7

is the force which urges ds, resolved in the direction bx.

The direction of this force is therefore perpendicular to the

parallelogram, and its magnitude is equal to i . ds . 33 sin 6.

This is the area of a parallelogram whose sides represent in

magnitude and direction ids and 33. The force acting on ds is

therefore represented in magnitude by the area of this parallel

ogram, and in direction by a normal to its plane drawn in the

direction of the longitudinal motion of a right-handed screw, the

handle of which is turned from the direction of the current ids
to that of the magnetic induction 33.

We may express in the language of Copper

Quaternions, both the direction and

the magnitude of this force by saying West

that it is the vector part of the result

of multiplying the vector ids, the

element of the current, by the vector

33, the magnetic induction. South

491.] We have thus completely de-

termined the force which acts on any
portion of an electric circuit placed

in a magnetic field. If the circuit is

moved in any way so that, after assuming various forms and
positions, it returns to its original place, the strength of the

current remaining constant during the motion, the whole amount
of work done by the electromagnetic forces will be zero. Since

this is true of any cycle of motions of the circuit, it follows that

it is impossible to maintain by electromagnetic forces a motion

of continuous rotation in any part of a linear circuit of constant

strength against the resistance of friction, &c.

*
I
In this rule d 8 is drawn in the direction of i and the observer is supposed to be

at that corner of the parallelopiped from which dx, ds and 33 are drawn.}

pass* ^-

KJ
Zine
Fig. 22.

^\
North

East
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It is possible, however, to produce continuous rotation provided

that at some part of the course of the electric current the current

passes from one conductor which slides or glides over another.

When in a circuit there is sliding contact of a conductor over

the surface of a smooth solid or a fluid, the circuit can no longer

be considered as a single linear circuit of constant strength, but

must be regarded as a system of two or of some greater number

of circuits of variable strength, the current being so distributed

among them that those for which JV is increasing have currents

in the positive direction, while those for which N is diminishing

have currents in the negative direction.

Thus, in the apparatus represented in Fig. 23, OP is a move-

able conductor, one end of which rests in a cup of mercury 0,

while the other dips into a

circular trough of mercury

concentric with 0.

The current i enters along

AB, and divides in the cir-

cular trough into two parts,

one of which, x, flows along

the arc BQP, while the other,

y, flows along BRP. These

~^T
23

currents, uniting at P, flow

along the moveable conductor

PO and the electrode OZ to the zinc end of the battery. The

strength of the current along PO and OZ is x + y or i.

Here we have two circuits, ABQPOZ, the strength of the

current in which is x, flowing in the positive direction, and

ABRPOZ, the strength of the current in which is y, flowing in

the negative direction.

Let 35 be the magnetic induction, and let it be in an upward

direction, normal to the plane of the circle.

While OP moves through an angle in the direction opposite

to that of the hands of a watch, the area of the first circuit

increases by \ OP2
. 0, and that of the second diminishes by the

same quantity. Since the strength of the current in the first

circuit is x, the work done by it is \x.0P2
.

9

. S3, and since the

strength of the second is —y, the work done by it is I 3/.OP2
. 0.23.

The whole work done is therefore

l(x + y)OP2.6%> or £ i. OP2
. 033,
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depending only on the strength of the current in PO. Hence, if

i is maintained constant, the arm OP will be carried round and
round the circle with a uniform force whose moment is | i.0P2

.^8.

If, as in northern latitudes, 33 acts downwards, and if the current

is inwards, the rotation will be in the negative direction, that is,

in the direction PQBR.
492.] We are now able to pass from the mutual action of

magnets and currents to the action of one circuit on another.

For we know that the magnetic properties of an electric circuit

C1? with respect to any magnetic system M
2 , are identical with

those of a magnetic shell Slt whose edge coincides with the cir-

cuit, and whose strength is numerically equal to that of the

electric current. Let the magnetic system M
2
be a magnetic

shell S2 , then the mutual action between ^ and S2
is identical

with that between S
x
and a circuit C

2 , coinciding with the edge

of S2 and equal in numerical strength, and this latter action is

identical with that between C
x
and C

2
.

Hence the mutual action between two circuits C
x
and G

2
is

identical with that between the corresponding magnetic shells $
t

and S2 .

We have already investigated, in Art. 423, the mutual action

of two magnetic shells whose edges are the closed curves s
x
and s2 .

If we make M = / / ds-. ds9 ,

Jo Jo r 1 2 '

where e is the angle between the directions of the elements ds
t

and ds2> and r is the distance between them, the integrations being

extended one round s
2
and one round slt and if we call M the

potential of the two closed curves s
x
and s2 , then the potential

energy due to the mutual action of two magnetic shells whose

strengths are i
x
and i% bounded by the two circuits is

and the force X, which aids any displacement bx, is

. . dM
1 2 dx

The whole theory of the force acting on any portion of an

electric circuit due to the action of another electric circuit may
be deduced from this result.

493.] The method which we have followed in this chapter is

that of Faraday. Instead of beginning, as we shall do, following
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Ampere, in the next chapter, with the direct action of a portion

of one circuit on a portion of another, we shew, first, that a

circuit produces the same effect on a magnet as a magnetic shell,

or, in other words, we determine the nature of the magnetic field

due to the circuit. We shew, secondly, that a circuit when

placed in any magnetic field experiences the same force as a

magnetic shell. We thus determine the force acting on the

circuit placed in any magnetic field. Lastly, by supposing the

magnetic field to be due to a second electric circuit we determine

the action of one circuit on the whole or any portion of the

other.

494.] Let us apply this method to the case of a straight

current of infinite length acting on a portion of a parallel straight

conductor.

Let us suppose that a current i in the first conductor is flowing

vertically downwards. In this case the end of a magnet which

points north will point to the right-hand of a man (with his feet

downwards) looking at it from the axis of the current.

The lines of magnetic induction are therefore horizontal circles,

having their centres in the axis of the current, and their positive

direction is north, east, south, west.

Let another descending vertical current be placed due west of

the first. The lines of magnetic induction due to the first current

are here directed towards the north. The direction of the force

acting on the second circuit is to be determined by turning the

handle of a right-handed screw from the nadir, the direction of

the current, to the north, the direction of the magnetic induction.

The screw will then move towards the east, that is, the force

acting on the second circuit is directed towards the first current,

or, in general, since the phenomenon depends only on the relative

position of the currents, two parallel circuits conveying currents

in the same direction attract each other.

In the same way we may shew that two parallel circuits

conveying currents in opposite directions repel one another.

495.] The intensity of the magnetic induction at a distance r

from a straight current of strength i is, as we have shewn in

Art. 479,
2
t

r

Hence, a portion of a second conductor parallel to the first, and

carrying a current i' in the same direction, will be attracted
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towards the first with a force

r

where a is the length of the portion considered, and r is its

distance from the first conductor.

Since the ratio of a to r is a numerical quantity independent

of the absolute value of either of these lines, the product of two

currents measured in the electromagnetic system must be of the

dimensions of a force, hence the dimensions of the unit current

are
[i] = [F*] = [Mi Li T" 1

].

496.] Another method of determining the direction of the

force which acts on a circuit is to consider the relation of the

magnetic action of the current to that of other currents and

magnets.

If on one side of the wire which carries the current the mag-

netic action due to the current is in the same or nearly the same

direction as that due to other currents, then, on the other side of

the wire, these forces will be in opposite or nearly opposite

directions, and the force acting on the wire will be from the side

on which the forces strengthen each other to the side on which

they oppose each other.

Thus, if a descending current is placed in a field of magnetic

force directed towards the north, its magnetic action will be to

the north on the west side, and to the south on the east side.

Hence the forces strengthen each other on the west side and

oppose each other on the east side, and the circuit will therefore

be acted on by a force from west to east. See Fig. 22, p. 149.

In Fig. XVII at the end of this volume the small circle

represents a section of the wire carrying a descending current,

and placed in a uniform field of magnetic force acting towards

the left-hand of the figure. The magnetic force is greater below

the wire than above it. It will therefore be urged from the

bottom towards the top of the figure.

497.] If two currents are in the same plane but not parallel,

we may apply this principle. Let one of the conductors be an

infinite straight wire in the plane of the paper, supposed hori-

zontal. On the right side of the current* the magnetic force acts

* { The right side of the current is the right of an observer with his back against

the paper placed so that the current enters at his head and leaves at his feet. ]
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downwards and on the left side it acts upwards. The same is

true of the magnetic force due to any short portion of a second

current in the same plane. If the second current is on the right

side of the first, the magnetic forces will strengthen each other on

its right side and oppose each other on its left side. Hence the

circuit conveying the second current will be acted on by a force

urging it from its right side to its left side. The magnitude of

this force depends only on the position of the second current and

not on its direction. If the second circuit is on the left side of the

first it will be urged from left to right.

Fig. 24.

Relation between the electric current and the lines of magnetic induction indicated

by a right-handed screw.

Hence, if the second current is in the same direction as the first

its circuit is attracted ; if in the opposite direction it is repelled

;

if it flows at right angles to the first and away from it, it is urged

in the direction of the first current ; and if it flows towards the

first current, it is urged in the direction opposite to that in which

the first current flows.

In considering the mutual action of two currents it is not

necessary to bear in mind the relations between electricity and

magnetism which we have endeavoured to illustrate by means of

a right-handed screw. Even if we have forgotten these relations

we shall arrive at correct results, provided we adhere consistently

to one of the two possible forms of the relation.
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498.] Let us now bring together the magnetic phenomena of

the electric circuit so far as we have investigated them.

We may conceive the electric circuit to consist of a voltaic

battery, and a wire connecting its extremities, or of a thermo-

electric arrangement, or of a charged Leyden jar with a wire

connecting its positive and negative coatings, or of any other

arrangement for producing an electric current along a definite

path.

The current produces magnetic phenomena in its neighbour-

hood.

If any closed curve be drawn, and the line-integral of the

magnetic force taken completely round it, then, if the closed curve

is not linked with the circuit, the line-integral is zero, but if it

is linked with the circuit, so that the current i flows through the

closed curve, the line-integral is 4 iti, and is positive if the direction

of integration round the closed curve would coincide with that

of the hands of a watch as seen by a person passing through it

in the direction in which the electric current flows. To a person

moving along the closed curve in the direction of integration, and

passing through the electric circuit, the direction of the current

would appear to be that of the hands of a watch. We may
express this in another way by saying that the relation between

the directions of the two closed curves may be expressed by

describing a right-handed screw round the electric circuit and a

right-handed screw round the closed curve. If the direction of

rotation of the thread of either, as we pass along it, coincides with

the positive direction in the other, then the line-integral will be

positive, and in the opposite case it will be negative.

499.] Note.—The line-integral 4 7j-i depends solely on the

quantity of the current, and not on any other thing whatever. It

does not depend on the nature of the conductor through which

the current is passing, as, for instance, whether it be a metal

or an electrolyte, or-»,an imperfect conductor. We have reason

for believing that even when there is no proper conduction, but

merely a variation of electric displacement, as in the glass of a

Leyden jar during charge or discharge, the magnetic effect of the

electric movement is precisely the same.

Again, the value of the line-integral A-ni does not depend on

the nature of the medium in which the closed curve is drawn.

It is the same whether the closed curve is drawn entirely through
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air, or passes through a magnet, or soft iron, or any other sub-

stance, whether paramagnetic or diamagnetic.

500.] When a circuit is placed in a magnetic field the mutual

action between the current and the other constituents of the field

depends on the surface-integral of the magnetic induction through

any surface bounded by that circuit. If by any given motion of

the circuit, or of part of it, this surface-integral can be increased,

there will be a mechanical force tending to move the conductor

or the portion of the conductor in the given manner.

The kind of motion ofthe conductor which increases the surface-

integral is motion of the conductor perpendicular to the direction

of the current and across the lines of induction.

Relations between the positive directions of motion and of rotation indicated by
three right-handed screws.

If a parallelogram be drawn, whose sides are parallel and pro-

portional to the strength of the current at any point, and to the

magnetic induction at the same point, then the force on unit of

length of the conductor is numerically equal to the area of this

parallelogram, and is perpendicular to its plane, and acts in the

direction in which the motion of turning the handle of a right-

handed screw from the direction of the current to the direction

of the magnetic induction would cause the screw to move.

Hence we have a new electromagnetic definition of a line of
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magnetic induction. It is that line to which the force on the

conductor is always perpendicular.

It may also be defined as a line along which, if an electric

current be transmitted, the conductor carrying it will experience

no force.

501.] It must be carefully remembered, that the mechanical

force which urges a conductor carrying a current across the lines

of magnetic force, acts, not on the electric current, but on the

conductor which carries it. If the conductor be a rotating disk

or a fluid it will move in obedience to this force, and this motion
may or may not be accompanied by a change of position of the

electric current which it carries. [But if the current itself be free

to choose any path through a fixed solid conductor or a network
of wires, then, when a constant magnetic force is made to act on
the system, the path of the current through the conductors is not
permanently altered, but after certain transient phenomena, called

induction currents, have subsided, the distribution of the current

will be found to be the same as if no magnetic force were in

action.] *

The only force which acts on electric currents is electromotive

force, which must be distinguished from the mechanical force

which is the subject of this chapter.

* {Mr. Hall has discovered {Phil. Mag. ix. p. 225, x. p. 301, 1880) that a steady
magnetic field does slightly alter the distribution of currents in most conductors, so
that the statement in brackets must be regarded as only approximately true. *



CHAPTER II.

ampere's investigation or THE mutual action of

ELECTRIC CURRENTS.

502.] We have considered in the last chapter the nature of

the magnetic field produced by an electric current, and the

mechanical action on a conductor carrying an electric current

placed in a magnetic field. From this we went on to consider

the action of one electric circuit upon another, by determining

the action on the first due to the magnetic field produced by

the second. But the action of one circuit upon another was

originally investigated in a direct manner by Ampere almost

immediately after the publication of Orsted's discovery. We
shall therefore give an outline of Ampere's method, resuming

the method of this treatise in the next chapter.

The ideas which guided Ampere belong to the system which

admits direct action at a distance, and we shall find that a

remarkable course of speculation and investigation founded on

those ideas has been carried on by Gauss, Weber, F. E. Neumann,

Riemann, Betti, C. Neumann, Lorenz, and others, with very

remarkable results both in the discovery of new facts and in the

formation of a theory of electricity. See Arts. 846-866.

The ideas which I have attempted to follow out are those of

action through a medium from one portion to the contiguous

portion. These ideas were much employed by Faraday, and the

development of them in a mathematical form, and the com-

parison of the results with known facts, have been my aim in

several published papers. The comparison, from a philosophical

point of view, of the results of two methods so completely

opposed in their first principles must lead to valuable data for

the study of the conditions of scientific speculation.
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503.] Ampere's theory of the mutual action of electric currents

is founded on four experimental facts and one assumption.

Ampere's fundamental experiments are all of them examples

of what has been called the null method of comparing forces.

See Art. 214. Instead of measuring the force by the dynamical
effect of communicating motion to a body, or the statical method
of placing it in equilibrium with the weight of a body or the

elasticity of a fibre, in the null method two forces, due to the

same source, are made to act simultaneously on a body already

in equilibrium, and no effect is produced, which shews that these

forces are themselves in equilibrium. This method is peculiarly

valuable for comparing the effects of the electric current when it

passes through circuits of different forms. By connecting all the

conductors in one continuous series, we ensure that the strength

of the current is the same at every point of its course, and since

the current begins everywhere throughout its course almost at

the same instant, we may prove that the forces due to its action

on a suspended body are in equilibrium by observing that the

body is not at all affected by the starting or the stopping of the

current.

504.] Ampere's balance consists of a light frame capable of

revolving about a vertical axis, and carrying a wire which forms

two circuits of equal area, in the same plane or in parallel

planes, in which the current flows in opposite directions. The
object of this arrangement is to get rid of the effects of terrestrial

magnetism on the conducting wire. When an electric circuit

is free to move it tends to place itself so as to embrace the

largest possible number of the lines of induction. If these lines

are due to terrestrial magnetism, this position, for a circuit in

a vertical plane, will be when the plane of the circuit is mag-
netic east and west, and when the direction of the current is

opposed to the apparent course of the sun.

By rigidly connecting two circuits of equal area in parallel

planes, in which equal currents run in opposite directions, a
combination is formed which is unaffected by terrestrial mag-
netism, and is therefore called an Astatic Combination, see Fig.

26. It is acted on, however, by forces arising from currents or

magnets which are so near it that they act differently on the two
circuits.

505.] Ampere's first experiment is on the effect of two equal
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currents close together in opposite directions. A wire covered

with insulating material is doubled on itself, and placed near one

of the circuits of the astatic balance. When a current is made

to pass through the wire and the balance, the equilibrium of the

balance remains undisturbed, shewing that two equal currents

close together in opposite directions neutralize each other. If,

instead of two wires side by side, a wire be insulated in the

middle of a metal tube, and if the, current pass through the wire

and back by the tube, the action outside the tube is not only

approximately but accurately null. This principle is of great

importance in the construction of electric apparatus, as it affords

the means of conveying the current to and from any galvano-

Fig. 26.

meter or other instrument in such a way that no electromagnetic

effect is produced by the current on its passage to and from the

instrument. In practice it is generally sufficient to bind the

wires together, care beiDg taken that they are kept perfectly

insulated from each other, but where they must pass near any

sensitive part of the apparatus it is better to make one of the

conductors a tube and the other a wire inside it. See Art. 683.

506.] In Ampere's second experiment one of the wires is bent

and crooked with a number of small sinuosities, but so that in

every part of its course it remains very near the straight wire.

A current, flowing through the crooked wire and back again

through the straight wire, is found to be without influence on

the astatic balance. This proves that the effect of the current

running through any crooked part of the wire is equivalent to
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the same current running in the straight line joining its ex-

tremities, provided the crooked line is in no part of its course far

from the straight one. Hence any small element of a circuit is

equivalent to two or more component elements, the relation

between the component elements and the resultant element
being the same as that between component and resultant

displacements or velocities.

507.] In the third experiment a conductor capable of moving
only in the direction of its length is substituted for the astatic

balance. The current enters the conductor and leaves it at fixed

points of space, and it is found that no closed circuit placed in

the neighbourhood is able to move the conductor.

Fig. 27.

The conductor in this experiment is a wire in the form of a
circular arc suspended on a frame which is capable of rotation

about a vertical axis. The circular arc is horizontal, and its

centre coincides with the vertical axis. Two small troughs are

filled with mercury till the convex surface of the mercury rises

above the level of the troughs. The troughs are placed under
the circular arc and adjusted till the mercury touches the wire,

which is of copper well amalgamated. The current is made to

enter one of these troughs, to traverse the part of the circular

arc between the troughs, and to escape by the other trough.
Thus part of the circular arc is traversed by the current, and the
arc is at the same time capable of moving with considerable
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freedom in the direction of its length. Any closed currents or

magnets may now be made to approach the moveable conductor

without producing the slightest tendency to move it in the

direction of its length.

508.] In the fourth experiment with the astatic balance two

circuits are employed, each similar to one of those in the

balance, but one of them, C, having dimensions n times greater,

and the other, A, n times less. These are placed on opposite

sides of the circuit of the balance, which we shall call B, so that

they are similarly placed with respect to it, the distance of C

from B being n times greater than the distance of B from A.

Fig. 28.

The direction and strength of the current is the same in A and

C. Its direction in B may be the same or opposite. Under

these circumstances it is found that B is in equilibrium under

the action of A and C, whatever be the forms and distances of

the three circuits, provided they have the relations given above.

Since the actions between the complete circuits may be

considered to be due to actions between the elements of the

circuits, we may use the following method of determining the

law of these actions.

Let A
l
,B

x
,G

A
, Fig. 28, be corresponding elements of the three

circuits, and let A 2 , B2 , C> be also corresponding elements in

antoher part of the circuits. Then the situation of B
1
with

respect to A
2
is similar to the situation of C

x
with respect to B2 ,
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but the distance and dimensions of G
x
and B2 are n times the

distance and dimensions of B
x
and A

2 , respectively. If the law

of electromagnetic action is a function of the distance, then the

action, whatever be its form or quality, between B
x and A 2> may

be written F= B^AjQB^db,
and that between G

x
and B2

F'=G
x
.B2f(GZB2

)bc,

where a, b, c are the strengths of the currents in A, B, C. But

7iB
1
— <71S nA 2

= B
2 , nBx A 2

= C
x
B

2 , and a = c. Hence

F'= n2B
1

. A 2f(nB^A2)
ab,

and this is equal to F by experiment, so that we have

n*f(nA 2~B1)=f(A*B1 )',

or, the force varies inversely as the square of the distance*.

509.] It may be observed with reference to these experiments

that every electric current forms a closed circuit. The currents

used by Ampere, being produced by the voltaic battery, were of

course in closed circuits. It might be supposed that in the case

of the current of discharge of a conductor by a spark we might

have a current forming an open finite line, but according to the

views of this book even this case is that of a closed circuit. No
experiments on the mutual action of unclosed currents have been

made. Hence no statement about the mutual action of two
elements of circuits can be said to rest on purely experimental

grounds. It is true we may render a portion of a circuit

moveable, so as to ascertain the action of the other currents

upon it, but these currents, together with that in the moveable

portion, necessarily form closed circuits, so that the ultimate

result of the experiment is the action of one or more closed

currents upon the whole or a part of a closed current.

510.] In the analysis of the phenomena, however, we may re-

gard the action of a closed circuit on an element of itself or of

another circuit as the resultant of a number of separate forces,

depending on the separate parts into which the first circuit may
be conceived, for mathematical purposes, to be divided.

* { Another proof that this experiment leads to the law of the inverse square is

given in Art. 523, and the reader will probably find it simpler and more convincing
than the preceding.

}
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This is a merely mathematical analysis of the action, and is

therefore perfectly legitimate, whether these forces can really act

separately or not.

511.] We shall begin by considering the purely geometrical

relations between two lines in space representing the circuits,

and between elementary portions of these lines.

Let there be two curves in space in each of which a fixed

point is taken, from which the arcs are measured in a defined

r ,
direction along the curves. Let

A, A' be these points. Let PQ
and P'Q' be elements of the two

curves.

Let AP = s, A'P'=s', l m
PQ = ds, P'Q'=ds',S { }

and let the distance PP' be de-

noted by r. Let the angle P'PQ

be denoted by 0, and PP'Q' by 0', and let the angle between the

planes of these angles be denoted by y\.

The relative position of the two elements is sufficiently de-

fined by their distance r and the three angles 0, 0', and t], for if

these be given their relative position is as completely determined

as if they formed part of the same rigid body.

512.] If we use rectangular coordinates and make x, y, z the

coordinates of P, and x\ y', z' those of P', and if we denote by

I, m, n and by V, m', n' the direction-cosines of PQ, and of P'Q'

respectively, then

Fig. 29.

dx T dv dz

ds ds ds

dx'

da
y=l',

dy' dz'

d7=
m

> M=n

and l(x'—x) + m{y'— y) + n(z'— z) = rcos0,

l'(x'-x) + m'(y'-y) + n'(z'- z) = - r cos 0',

IV + ram'+ nn'= cos e,

(2)

(3)

where e is the angle between the directions of the elements

themselves, and

cos € = — cos cos 0' + sin sin 6' cos tj.

Again, r2 = (#'- xf + (y - yf + (z'- s)
2
,

(4)

(5)
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whence

GEOMETRICAL SPECIFICATIONS.

dr dx , dy . , x dz

— T COS 6.

Similarly r%= (x^ x) «jL + {y
'_

yflt+(,_ zf
ds'

— -T COS

dr

165

(6)

(7)

and differentiating r~ with respect to /,

r —L + ^^L _ _ ^^' _ fyfyf_ _ dzdz'
dsds' dsds' dads' ds ds

~
dsds'

= — (IV + mm' + nn'),

= — cos e.

We can therefore express the three angles d, 0', and v, and the
auxiliary angle « in terms of the differential coefficients of r with
respect to s and s' as follows,

a dr
cos =——

,

., dr

cose = —r

sin sin 0' cos ?j = — r

d2r

dsds'

d2r

dsds'

dr dr

ds ds'

(8)

513.] We shall next consider in what way it is mathematically
conceivable that the elements PQ and P'Q' might act on each
other, and in doing so we shall not at first assume that their
mutual action is necessarily in the line joining them.
We have seen that we may suppose each element resolved into

other elements, provided that these components, when combined
according to the rule of addition of vectors, produce the original
element as their resultant.

We shall therefore consider ds as resolved into cos 0ds = a

in the direction of r, and p *.

sin eds — $ in a direction X/* **\/ y

perpendicular to r in the ** « «'*'

plane P'PQ. ^g-SO.

We shall also consider ds' as resolved into cos 0'ds'= a in

the direction of r reversed, sin 6' cos rj ds' = p' in a direction



166 ampere's theory. [5 i 3-

parallel to that in which /3 was measured, and sin0'sinr7<Zs' = /
in a direction perpendicular to a and ft'.

Let us consider the action between the components a and (3 on

the one hand, and a, p', y on the other.

(1) a and a? are in the same straight line. The force between

them must therefore be in this line. We shall suppose it to be

an attraction = A aai i',

where A is a function of r, and i, i' are the intensities of the

currents in ds and da' respectively. This expression satisfies

the condition of changing sign with i and with i''.

(2) p and ft are parallel to each other and perpendicular to

the line joining them. The action between them may be written

Bpftii'.

This force is evidently in the line joining /3 and ft, for it must

be in the plane in which they both lie, and if we were to measure

/3 and ft in the reversed direction, the value of this expression

would remain the same, which shews that, if it represents a force,

that force has no component in the direction of (3, and must

therefore be directed along r. Let us assume that this expression,

when positive, represents an attraction.

(3) /3 and y are perpendicular to each other and to the line

joining them. The only action possible between elements so

related is a couple whose axis is parallel to r. We are at present

engaged with forces, so we shall leave this out of account *.

(4) The action of a and ft, if they act on each other, must be

expressed by Caftii'.

The sign of this expression is reversed if we reverse the

direction in which we measure ft. It must therefore represent

either a force in the direction of ft, or a couple in the plane

of a and ft. As we are not investigating couples, we shall take

it as a force acting on a in the direction of ft.

There is of course an equal force acting on ft in the opposite

direction.

*
\ It might be objected that we have no right to assume there is no force in this

case, inasmuch as such a rule as that there was a force on at right angles to both £ and

Y, and in the direction to which -/ would be brought by a right-handed screw through

90° round 0, would indicate a force which would satisfy the condition of reversing if

either of the components were reversed but not if both. The reason for assuming that

such a force does not exist, is that the direction of the force would be determined

merely by the direction of the currents, and not by their relative position. Thus tor

example, it would change from a repulsive to an attractive force between the elements,

if in Fig. 30 P' were to the left instead of the right of P.)
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We have for the same reason a force

Cay'ii'

acting on a in the direction of /, and a force

C&a'ii'

acting on /3 in the direction opposite to that in which j3 is measured.
514.] Collecting our results, we find that the action on ds is

compounded of the following forces,

X = (Aaa+ Bpp')ii' in the direction of r,\

Y=C(af3'~a'fB)ii' in the direction of /3,
[

(9

)

and Z = Cay ii! in the direction of /. j

Let us suppose that this action on ds is the resultant of three

forces, Rii'dsds' acting in the direction of r, Sii'dsds' acting in

the direction of ds, and S'ii'dsds' acting in the direction of ds'
;

then in terms of 6, 6
f

, and rj,

R — J. + 2Ccos0cos0'+ JBsin0sin0'cos?7
3

£ = -Ccos0', i S'=Ccos8.
In terms of the differential coefficients of r

t> a . nri drdr „ d2r

(10)

ds ds' dsds' .

dr dr i (
11

'

ds ds

In terms of I, m, n, and V, m', n',

R=-(A + 2C+B)^(l£+mn + n()(l'£+m'v + n'()+B(ll' + mm'+yin'),

>s'= cfa+m'v + n'Q, S'= G^+mv + nQ,

where £ ?/, £are written for x'— x, y' — y, and z'~ z respectively.

515.] We have next to calculate the force with which the

finite current &•' acts on the finite current s. The current «

extends from A, where s = 0, to P, where it has the value s.

The current s' extends from A', where s'= 0, to P, where it

has the value s'. The coordinates of points on either current

are functions of s or of s'.

If F is any function of the position of a point, then we shall

use the subscript
(g o)

to denote the excess of its value at P over

that at A , thus ' j^
o)
=FP-FA .

Such functions necessarily disappear when the circuit is closed.

(12)
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Let the components of the total force with which A'F acts on

AP be ii'X, ii'Y, and ii'Z. Then the component parallel to X
d?X

of the force with which ds' acts on ds will be ii
f ^^dsds\

He- ^rUsI+M. (.3)

Substituting the values of R, S, and £' from (12), remembering

that Ui. , , r/.
dr ,.,>,

and arranging the terms with respect to I, m, n, we find

+ n{-(A + 2C+B)L2%K^ + B^\. (.5)

Since A, B, and C are functions of r, we may write

P=f{A + 2C+ B)±drt Q=f~Cdr, (16)

the integration being taken between r and ao because 4, B, C

vanish when r = co .

Hence <A + *)p
— "• -d C ="f

"

<
17>

516.] Now we know, by Ampere's third case of equilibrium,

that when s' is a closed circuit, the force acting on ds is per-

pendicular to the direction of ds, or, in other words, the com-

ponent of the force in the direction of ds itself is zero. Let us

therefore assume the direction of the axis of x so as to be

parallel to ds by making I = 1, m = 0, n = 0. Equation (15)

then becomes

d*X _dP dQ B -IX
(18)

dsds'
- ds'* ds'^ K * } r

v

To find — y the force on ds referred to unit of length, we
ds

must integrate this expression with respect to s'. Integrating

the first term by parts, we find

*g = (Pf -Q)„,.0)
-£'(2Fr-B-a)^ds'. (19)
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When s' is a closed circuit this expression must be zero. The
first term will disappear of itself. The second term, however,
will not in general disappear in the case of a closed circuit

unless the quantity under the sign of integration is always zero.

Hence, to satisfy Ampere's condition, we must put

p =h(B+ y-
(
2°)

517.] We can now eliminate P, and find the general value of
dX

+m — -ds'-n — 2 'ids'. (21)
Jo 2 r J 2 r K '

When s' is a closed circuit the first term of this expression

vanishes, and if we make

a
K 2 r

7
Jo 2 r

where the integration is extended round the closed circuit s', we
may write ^X

dT
Similarly -j- = 7ia'—ly',

J-
(23)

-j- — 10— ma.

The quantities a', /3', y are sometimes called the determinants

of the circuit s' referred to the point P. Their resultant is called

by Ampere the directrix of the electrodynamic action.

It is evident from the equation, that the force whose com-
dX 7 dY _ rtZ

7 . ,. , ,ponents are —7- as, -=— as, and -r- ds is perpendicular both to ds

and to this directrix, and is represented numerically by the area

of the parallelogram whose sides are ds and the directrix.

In the language of quaternions, the resultant force on ds is the

vector part of the product of the directrix multiplied by ds.

Since we already know that the directrix is the same thing as
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the magnetic force due to a unit current in the circuit &', we

shall henceforth speak of the directrix as the magnetic force due

to the circuit.

518.] We shall now complete the calculation of the components

of the force acting between two finite currents, whether closed

or open.

Let p be a new function of r, such that

p=\f* (B-C)dr, (24)
J r

then by (17) and (20)

A+B = r^(Q + P)-^(Q + p), (25)

and equations (11) become

Q
dQ „_dQ

With these values of the component forces, equation (13)

becomes

d2X dP £ c
d* jdQ ,dQ^ = - C0*^r + £d^ {Q + p)

- l
d7

+l
~d-s'

dp
,
d2

\(Q + P)£}
,

jdp ,d P , v

= C0Se^ +
dsds' -

+ l
ds>-

l

ds
(27)

519.] Let

F=f*l P ds, G=f°mpds, H=J^npds, (28)

F=r'l'Pds\ G'=£'m'pds', H'= f*n'pds
f

. (29)

These quantities have definite values for any given point of

space. When the circuits are closed, they correspond to the

components of the vector-potentials of the circuits.

Let L be a new function of r, such that

L=f
r

r(Q+ P)dr, (30)

and let M be the double integral

p cos e ds ds\ (
31

)

Jo Jo
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which, when the circuits are closed, becomes their mutual poten-

tial, then (27) may be written

ds ds' ds ds
f \dx dx )

^ '

520.] Integrating, with respect to s and s', between the given
limits, we find

„ _ dM d
~ Hx ~ dx '

'
~ Ap'~ A 'p + AA ')'

+ FP,-FA,-FP + F'A , (33)
where the subscripts of L indicate the distance, r, of which the
quantity L is a function, and the subscripts of ^and Ff

indicate

the points at which their values are to be taken.

The expressions for Y and Z may be written down from this.

Multiplying the three components by dx, dy, and dz respectively,

we obtain

Xdx + Ydy + Zdz = DM-D(LPP, - LAP,-LA ,P + LAA)
~{F'dx + G'dy + H'dz) {P_ A)

+ (Fdx+Gdy + H dz){P,_A ^, (34)
where D is the symbol of a complete differential.

Since Fdx+Gdy + Hdz is not in general a complete dif-

ferential of a function of x, y, z, Xdx+Ydy + Zdz is not in
general a complete differential for currents either of which is not
closed.

521.] If, however, both currents are closed, the terms in L, F,

G, H, F\ G\ H' disappear, and

Xdx + Ydy + Zdz = DM, (35)
where M is the mutual potential of two closed circuits carrying
unit currents. The quantity M expresses the work done by the

electromagnetic forces on either conducting circuit when it is

moved parallel to itself from an infinite distance to its actual
position. Any alteration of its position, by which if is increased,
will be assisted by the electromagnetic forces.

It may be shewn, as in Arts. 490, 596, that when the motion
of the circuit is not parallel to itself the forces acting on it are
still determined by the variation of M, the potential of the one
circuit on the other.

522.] The only experimental fact which we have made use of
in this investigation is the fact established by Ampere that the
action of a closed circuit on any portion of another circuit is

perpendicular to the direction of the latter. Every other part of
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the investigation depends on purely mathematical considerations

depending on the properties of lines in space. The reasoning

therefore may be presented in a much more condensed and

appropriate form by the use of the ideas and language of the

mathematical method specially adapted to the expression of such

geometrical relations—the Quaternions of Hamilton.

This has been done by Professor Tait in the Quarterly Journal

of Mathematics, 1866, and in his treatise on Quaternions, § 399,

for Ampere's original investigation, and the student can easily

adapt the same method to the somewhat more general investi-

gation given here.

523.] Hitherto we have made no assumption with respect to

the quantities A, B, C, except that they are functions of r, the

distance between the elements. We have next to ascertain the

form of these functions, and for this purpose we make use of

Ampere's fourth case of equilibrium, Art 508, in which it is

shewn that if all the linear dimensions and distances of a system

of two circuits be altered in the same proportion, the currents

remaining the same, the force between the two circuits will

remain the same.

, •
dM

Now the force between the circuits for unit currents is -r- >

and since this is independent of the dimensions of the system, it

must be a numerical quantity. Hence M itself, the coefficient

of the mutual potential of the circuits, must be a quantity of the

dimensions of a line. It follows, from equation (31), that p must

be the reciprocal of a line, and therefore by (24), B— G must be

the inverse square of a line. But since B and G are both

functions of r, B— G must be the inverse square of r or some

numerical multiple of it.

524.] The multiple we adopt depends on our system of

measurement. If we adopt the electromagnetic system, so

called because it agrees with the system already established for

magnetic measurements, the value of M ought to coincide with

that of the potential of two magnetic shells of strength unity

whose boundaries are the two circuits respectively. The value

ofM in that case is, by Art. 423,

M = ff^dsds', (36)

the integration being performed round both circuits in the positive
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direction. Adopting this as the numerical value of M, and
comparing with (31), we find

P = -> and B-C=~- (37)

525.] We may now express the components of the force on ds
arising from the action of ds' in the most general form consistent

with experimental facts.

The force on ds is compounded of an attraction

in the direction of r,

Sii'dsds'= —-pii'dsds' in the direction of ds, \

'38
'

dQ
and Pii'dsds'— -~ ii'dsds' in the direction of ds',

where Q = Cdr, and since C is an unknown function of r we
Jr '

know only that Q is some function of r.

526.] The quantity Q cannot be determined, without assump-
tions of some kind, from experiments in which the active current
forms a closed circuit. If we suppose with Ampere that the
action between the elements ds and ds' is in the line joining
them, then >Sf and S' must disappear, and Q must be constant, or
zero. The force is then reduced to an attraction whose value is

«•»&& = pC^ap-Sr^w'&AT. (39)

Ampere, who made this investigation long before the magnetic
system of units had been established, uses a formula having a
numerical value half of this, namely

,../77 , \f\drdr d2r s ... , , ,

Here the strength of a current is measured in what is called

electrodynamic measure. If *, i' are the strengths of the currents

in electromagnetic measure, and j, f the same in electrodynamic

measure, then it is plain that

jj'= 2ii', or j = a/21 (41)

Hence the unit current adopted in electromagnetic measure is

greater than that adopted in electrodynamic measure in the ratio

of </2 to 1.
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The only title of the electrodynamic unit to consideration is

that it was originally adopted by Ampere, the discoverer of the

law of action between currents. The continual recurrence of \/2

in calculations founded on it is inconvenient, and the electro-

magnetic system has the great advantage of coinciding numeri-

cally with all our magnetic formulae. As it is difficult for the

student to bear in mind whether he is to multiply or to divide

by \/2, we shall henceforth use only the electromagnetic system,

as adopted by Weber and most other writers.

Since the form and value of Q have no effect on any of the

experiments hitherto made, in which the active current at least

is always a closed one, we may, if we please, adopt any value of

Q which appears to us to simplify the formulae.

Thus Ampere assumes that the force between two elements is

in the line joining them. This gives Q = 0,

Grassmann * assumes that two elements in the same straight

line have no mutual action. This gives

n X p 3 d2r 1 dr ,_ 1 dr ,

We might, if we pleased, assume that the attraction between

two elements at a given distance is proportional to the cosine of

the angle between them. In this case1^1 ™ 1 dr „. 1 dr A A
>

Q= , R=^eo&€, S = 2^7' s = ~2zr' 44
)

Finally, we might assume that the attraction and the oblique

forces depend only on the angles which the elements make with

the line joining them, and then we should have

2 _ n ldrdr 2 dr , 2 dr ,

^
r r2 dsds r2 ds rz ds

527.] Of these four different assumptions that of Ampere is

undoubtedly the best, since it is the only one which makes the

forces on the two elements not only equal and opposite but in

the straight line which joins them.

* Pogg., Ann. 64, p. 1 (1845).



CHAPTEE III.

ON THE INDUCTION OF ELECTRIC CURRENTS.

528.] The discovery by Orated of the magnetic action of an
electric current led by a direct process of reasoning to that of

magnetization by electric currents, and of the mechanical action

between electric currents. It was not, however, till 1831 that

Faraday, who had been for some time endeavouring to produce
electric currents by magnetic or electric action, discovered the

conditions of magneto-electric induction. The method which
Faraday employed in his researches consisted in a constant

appeal to experiment as a means of testing the truth of his ideas,

and a constant cultivation of ideas under the direct influence of

experiment. In his published researches we find these ideas

expressed in language which is all the better fitted for a nascent
science, because it is somewhat alien from the style of physicists

who have been accustomed to establish mathematical forms of

thought.

The experimental investigation by which Ampere established

the laws of the mechanical action between electric currents is one
of the most brilliant achievements in science.

The whole, theory and experiment, seems as if it had leaped,

full grown and full armed, from the brain of the ' Newton of elec-

tricity.' It is perfect in form, and unassailable in accuracy, and
it is summed up in a formula from which all the phenomena may
be deduced, and which must always remain the cardinal formula
of electro-dynamics.

The method of Ampere, however, though cast into an inductive
form, does not allow us to trace the formation of the ideas which
guided it. We can scarcely believe that Ampere really dis-

covered the law of action by means of the experiments which he
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describes. We are led to suspect, what, indeed, he tells us himself*,

that he discovered the law by some process which he has not

shewn us, and that when he had afterwards built up a perfect

demonstration he removed all traces of the scaffolding by which

he had raised it.

Faraday, on the other hand, shews us his unsuccessful as well

as his successful experiments, and his crude ideas as well as his

developed ones, and the reader, however inferior to him in induc-

tive power, feels sympathy even more than admiration, and is

tempted to believe that, if he had the opportunity, he too would

be a discoverer. Every student should therefore read Ampere's

research as a splendid example of scientific style in the statement

of a discovery, but he should also study Faraday for the cultiva-

tion of a scientific spirit, by means of the action and reaction

which will take place between the newly discovered facts as

introduced to him by Faraday and the nascent ideas in his own

mind.

It was perhaps for the advantage of science that Faraday,

though thoroughly conscious of the fundamental forms of space,

time, and force, was not a professed mathematician. He was

not tempted to enter into the many interesting researches in pure

mathematics which his discoveries would have suggested if they

had been exhibited in a mathematical form, and he did not feel

called upon either to force his results into a shape acceptable

to the mathematical taste of the time, or to express them in

a form which mathematicians might attack. He was thus

left at leisure to do his proper work, to coordinate his ideas

with his facts, and to express them in natural, untechnical

language.

It is mainly with the hope of making these ideas the basis of

a mathematical method that I have undertaken this treatise.

529.] We are accustomed to consider the universe as made up

of parts, and mathematicians usually begin by considering a

single particle, and then conceiving its relation to another par-

ticle, and so on. This has generally been supposed the most

natural method. To conceive of a particle, however, requires

a process of abstraction, since all our perceptions are related to

extended bodies, so that the idea of the all that is in our con-

sciousness at a given instant is perhaps as primitive an idea as

* Thdorie des phenomenes lillectrodynamiques, p. 9.
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that ofany individual thing. Hence there may be a mathematical
method in which we proceed from the whole to the parts instead

of from the parts to the whole. For example, Euclid, in his

first book, conceives a line as traced out by a point, a surface
as swept out by a line, and a solid as generated by a surface.

But he also defines a surface as the boundary of a solid, a line

as the edge of a surface, and a point as the extremity of a line.

In like manner we may conceive the potential of a material
system as a function found by a certain process of integration
with respect to the masses of the bodies in the field, or we may
suppose these masses themselves to have no other mathematical

meaning than the volume-integrals of — V 2
*, where * is the

potential.
v

In electrical investigations we may use formulae in which the
quantities involved are the distances of certain bodies, and the
electrifications or currents in these bodies, or we may use formulae
which involve other quantities, each of which is continuous
through all space.

The mathematical process employed in the first method is in-

tegration along lines, over surfaces, and throughout finite spaces,
those employed in the second method are partial differential

equations and integrations throughout all space.

The method of Faraday seems to be intimately related to the
second of these modes of treatment. He never considers bodies
as existing with nothing between them but their distance, and
acting on one another according to some function of that distance.

He conceives all space as a field of force, the lines of force being
in general curved, and those due to any body extending from it

on all sides, their directions being modified by the presence of

other bodies. He even speaks * of the lines of force belonging to

a body as in some sense part of itself, so that in its action on
distant bodies it cannot be said to act where it is not. This,

however, is not a dominant idea with Faraday. I think he
would rather have said that the field of space is full of lines

of force, whose arrangement depends on that of the bodies in the
field, and that the mechanical and electrical action on each body is

determined by the lines which abut on it.

* Exp. Bes., vol. ii. p. 293 ; vol. iii. p. 447.
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PHENOMENA OF MAGNETO-ELECTRIC INDUCTION *.

530.] 1. Induction by Variation of the Primary Current.

Let there be two conducting circuits, the Primary and the

Secondary circuit. The primary circuit is connected with a

voltaic battery by which the primary current may be produced,

maintained, stopped, or reversed. The secondary circuit includes

a galvanometer to indicate any currents which may be formed in

it. This galvanometer is placed at such a distance from all parts

of the primary circuit that the primary current has no sensible

direct influence on its indications.

Let part of the primary circuit consist of a straight wire, and

part of the secondary circuit of a straight wire near and parallel

to the first, the other parts of the circuits being at a greater

distance from each other.

It is found that at the instant of sending a current through

the straight wire of the primary circuit the galvanometer of the

secondary circuit indicates a current in the secondary straight

wire in the opposite direction. This is called the induced current.

If the primary current is maintained constant, the induced current

soon disappears, and the primary current appears to produce no

effect on the secondary circuit. If now the primary current is

stopped, a secondary current is observed, which is in the same

direction as the primary current. Every variation of the

primary current produces electromotive force in the secondary

circuit. When the primary current increases, the electromotive

force is in the opposite direction to the current. When it di-

minishes, the electromotive force is in the same direction as the

current. When the primary current is constant, there is no elec-

tromotive force.

These effects of induction are increased by bringing the two

wires nearer together. They are also increased by forming

them into two circular or spiral coils placed close together,

and still more by placing an iron rod or a bundle of iron wires

inside the coils.

2. Induction by Motion of the Primary Circuit.

We have seen that when the primary current is maintained

constant and at rest the secondary current rapidly disappears.

* Bead Faraday's Experimental Researches, Series i and ii.
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Now let the primary current be maintained constant, but let

the primary straight wire be made to approach the secondary
straight wire. During the approach there will be a secondary
current in the opposite direction to the primary.

If the primary circuit be moved away from the secondary,
there will be a secondary current in the same direction as the
primary.

3. Induction by Motion of the Secondary Circuit.

If the secondary circuit be moved, the secondary current is

opposite to the primary when the secondary wire is approaching

the primary wire, and in the same direction when it is receding
from it.

In all cases the direction of the secondary current is such that

the mechanical action between the two conductors is opposite to

the direction of motion, being a repulsion when the wires are

approaching, and an attraction when they are receding. This
very important fact was established by Lenz *.

4. Induction by the Relative Motion of a Magnet and the

Secondary Circuit.

If we substitute for the primary circuit a magnetic shell,

whose edge coincides with the circuit, whose strength, is numer-
ically equal to that of the current in the circuit, and whose
austral face corresponds to the positive face of the circuit, then
the phenomena produced by the relative motion of this shell and
the secondary circuit are the same as those observed in the case

of the primary circuit.

531.] The whole of these phenomena may be summed up in

one law. When the number of lines of magnetic induction
which pass through the secondary circuit in the positive direction

is altered, an electromotive force acts round the circuit, which
is measured by the rate of decrease of the magnetic induction
through the circuit.

532.] For instance, let the rails of a railway be insulated from
the earth, but connected at one terminus through a galvano-
meter, and let the circuit be completed by the wheels and axle
of a railway carriage at a distance x from the terminus.

Neglecting the height of the axle above the level of the rails,

* Pogg., Ann. xxxi. p. 483 (1834).
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the induction through the secondary circuit is due to the

vertical component of the earth's magnetic force, which in

northern latitudes is directed downwards. Hence, if b is the

gauge of the railway, the horizontal area of the circuit is bx,

and the surface-integral of the magnetic induction through it is

Z bx, where Z is the vertical component of the magnetic force

of the earth. Since Z is downwards, the lower face of the

circuit is to be reckoned positive, and the positive direction of

the circuit itself is north, east, south, west, that is, in the

direction of the sun's apparent diurnal course.

Now let the carriage be set in motion, then x will vary, and

there will be an electromotive force in the circuit whose value

is -Zb%-
at

If x is increasing, that is, if the carriage is moving away from

the terminus, this electromotive force is in the negative direction,

or north, west, south, east. Hence the direction of this force

through the axle is from right to left. If x were diminishing,

the absolute direction of the force would be reversed, but since

the direction of the motion of the carriage is also reversed, the

electromotive force on the axle is still from right to left, the

observer in the carriage being always supposed to move face

forwards. In southern latitudes, where the south end of the

needle dips, the electromotive force on a moving body is from

left to right.

Hence we have the following rule for determining the electro-

motive force on a wire moving through a field of magnetic force.

Place, in imagination, your head and feet in the positions occupied

by the ends of a compass-needle which point north and south

respectively ; turn your face in the forward direction of motion,

then the electromotive force due to the motion will be from left

to right.

533.] As these directional relations are important, let us take

another illustration. Suppose a metal girdle laid round the

earth at the equator, and a metal wire laid along the meridian

of Greenwich from the equator to the north pole.

Let a great quadrantal arch of metal be constructed, of which

one extremity is pivoted on the north pole, while the other is

carried round the equator, sliding on the great girdle of the

earth, and following the sun in his daily course. There will
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Fig. 31.

then be an electromotive force along the moving quadrant,

acting from the pole towards the equator.

The electromotive force will be the same whether we suppose

the earth at rest and the quadrant moved from east to west, or

whether we suppose the quadrant

at rest and the earth turned from

west to east. If we suppose the

earth to rotate, the electromotive

force will be the same whatever

be the form of the part of the cir-

cuit fixed in space of which one

end touches one of the poles and
the other the equator. The cur-

rent in this part of the circuit is

from the pole to the equator.

The other part of the circuit,

which is fixed with respect to the

earth, may also be of any form,

and either within or without the

earth. In this part the current is from the equator to either

pole.

534.] The intensity of the electromotive force of magneto-
electric induction is entirely independent of the nature of the

substance of the conductor in which it acts, and also of the

nature of the conductor which carries the inducing current.

To shew this, Faraday* made a conductor of two wires of

different metals insulated from one another by a silk covering,

but twisted together, and soldered together at one end. The
other ends of the wires were connected with a galvanometer.

In this way the wires were similarly situated with respect to

the primary circuit, but if the electromotive force were stronger

in the one wire than in the other it would produce a current

which would be indicated by the galvanometer. He found,

however, that such a combination may be exposed to the most
powerful electromotive forces due to induction without the

galvanometer being affected. He also found that whether the

two branches of the compound conductor consisted of two
metals, or of a metal and an electrolyte, the galvanometer was
not affected f.

* Exp. Ses., 195. f lb., 200.
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Hence the electromotive force on any conductor depends only

on the form and the motion of that conductor, together with the

strength, form, and motion of the electric currents in the field.

535.] Another negative property of electromotive force is that

it has of itself no tendency to cause the mechanical motion of

any body, but only to cause a current of electricity within it.

If it actually produces a current in the body, there will be

mechanical action due to that current, but if we prevent the

current from being formed, there will be no mechanical action on

the body itself. If the body is electrified, however, the electro-

motive force will move the body, as we have described in

Electrostatics.

Fig. 32.

536.] The experimental investigation of the laws of the induc-

tion of electric currents in fixed circuits may be conducted with

considerable accuracy by methods in which the electromotive

force, and therefore the current, in the galvanometer circuit is

rendered zero.

For instance, if we wish to shew that the induction of the coil

A on the coil X is equal to that of B upon Y, we place the first

pair of coils A and X at a sufficient distance from the second

pair B and Y. We then connect A and B with a voltaic battery,

so that we can make the same primary current flow through A
in the positive direction and then through B in the negative

direction. We also connect X and Y with a galvanometer, so

that the secondary current, if it exists, shall flow in the same

direction through X and Y in series.
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Then, if the induction of A on X is equal to that of B on T,

the galvanometer will indicate no induction current when the

battery circuit is closed or broken.

The accuracy of this method increases with the strength of the

primary current and the sensitiveness of the galvanometer to in-

stantaneous currents, and the experiments are much more easily

performed than those relating to electromagnetic attractions,

where the conductor itself has to be delicately suspended.

A very instructive series of well-devised experiments of this

kind is described by Professor Felici of Pisa *.

I shall only indicate briefly some of the laws which may be
proved in this way.

(1) The electromotive force of the induction of one circuit on
another is independent of the area of the section of the conductors

and of the material of which they are made f

.

For we can exchange any one of the circuits in the experiment

for another of a different section and material, but of the same
form, without altering the result.

(2) The induction of the circuit A on the circuit X is equal to

that of X upon A.

For if we put A in the galvanometer circuit, and X in the bat-

tery circuit, the equilibrium of electromotive force is not disturbed.

(3) The induction is proportional to the inducing current.

For if we have ascertained that the induction of A on X is

equal to that ofB on Y, and also to that of C on Z, we may make
the battery current first flow through A, and then divide itself in

any proportion between B and C. Then ifwe connect Xreversed,

Y and Z direct, all in series, with the galvanometer, the electro-

motive force inX will balance the sum of the electromotive forces

in Y and Z.

(4) In pairs of circuits forming systems geometrically similar

the induction is proportional to their linear dimensions.

Frr if the three pairs of circuits above mentioned are all

similar, but if the linear dimension of the first pah- is the sum
of the corresponding linear dimensions of the second and third

pairs, then, if A, B, and G are connected in series with the

* Annates de Chimie, xxxiv. p. 64 (1852), and Nuovo Cimento, ix. p. 345 (1859).
+ {This statement is not necessarily strictly true if one or more of the materials is

magnetic, for in t
his case the distribution of the lines of magnetic force are disturbed

by the magnetism induced in the w ires. \



184 MAGNETO-ELECTEIC INDUCTION. [537-

battery, and if X reversed, Y and Z are in series with the gal-

vanometer, there will be equilibrium.

(5) The electromotive force produced in a coil of n windings

by a current in a coil of m windings is proportional to the

product m n.

537.] For experiments of the kind we have been considering

the galvanometer should be as sensitive as possible, and its needle

as light as possible, so as to give a sensible indication of a very

small transient current. The experiments on induction due to

motion require the needle to have a somewhat longer period of

vibration, so that there may be time to effect certain motions

of the conductors while the needle is not far from its position

of equilibrium. In the former experiments, the electromotive

forces in the galvanometer circuit were in equilibrium during

the whole time, so that no current passed through the galvano-

meter coil. In those now to be described, the electromotive forces

act first in one direction and then in the other, so as to produce

in succession two currents in opposite directions through the

galvanometer, and we have to show that the impulses on the

galvanometer needle due to these successive currents are in certain

cases equal and opposite.

The theory of the application of the galvanometer to the

measurement of transient currents will be considered more at

length in Art. 748. At present it is sufficient for our purpose to

observe that as long as the galvanometer needle is near its

position of equilibrium the deflecting force of the current is

proportional to the current itself, and if the whole time of action

of the current is small compared with the period of vibration of

the needle, the final velocity of the magnet will be proportional

to the total quantity of electricity in the current. Hence, if two

currents pass in rapid succession, conveying equal quantities of

electricity in opposite directions, the needle will be left without

any final velocity.

Thus, to shew that the induction currents in the secondary

circuit, due to the closing and the breaking of the primary circuit,

are equal in total quantity but opposite in direction, we may
arrange the primary circuit in connexion with the battery, so

that by touching a key the current may be sent through the

primary circuit, or by removing the finger the contact may be

broken at pleasure. If the key is pressed down for some time,
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the galvanometer in the secondary circuit indicates, at the time
of making contact, a transient current in the opposite direction

to the primary current. If contact be maintained, the induction
current simply passes and disappears. If we now break contact,

another transient current passes in the opposite direction through
the secondary circuit, and the galvanometer needle receives an
impulse in the opposite direction.

But if we make contact only for an instant, and then break
contact, the two induced currents pass through the galvanometer
in such rapid succession that the needle, when acted on by the
first current, has not time to move a sensible distance from its

position of equilibrium before it is stopped by the second, and, on
account of the exact equality between the quantities of these

transient currents, the needle is stopped dead.

If the needle is watched carefully, it appears to be jerked
suddenly from one position of rest to another position of rest

very near the first.

In this way we prove that the quantity of electricity in the
induction current, when contact is broken, is exactly equal and
opposite to that in the induction current when contact is made.

538.] Another application of this method is the following,

which is given by Felici in the second series of his Researches.

It is always possible to find many different positions of the
secondary coil B, such that the making or the breaking of contact
in the primary coil A produces no induction current in B. The
positions of the two coils are in such cases said to be conjugate
to each other.

Let B
x
and B

2
be two of these positions. If the coil B be

suddenly moved from the position B
x

to the position B2 , the

algebraical sum of the transient currents in the coil B is exactly

zero, so that the galvanometer needle is left at rest when the
motion of B is completed.

This is true in whatever way the coil B is moved from B
x to

J52 ,
and also whether the current in the primary coil A be

continued constant, or made to vary during the motion.

Again, let B' be any other position of B not conjugate to A,
so that the making or breaking of contact in A produces an
induction current when B is in the position B'.

Let the contact be made when B is in the conjugate position
£lt there will be no induction current. Move B to J3', there



186 MAGNETO-ELECTRIC INDUCTION. [539-

will be an induction current due to the motion, but if B is

moved rapidly to B\ and the primary contact then broken, the

induction current due to breaking contact will exactly annul the

effect of that due to the motion, so that the galvanometer needle

will be left at rest. Hence the current due to the motion from a

conjugate position to any other position is equal and opposite to

the current due to breaking contact in the latter position.

Since the effect of making contact is equal and opposite to that

of breaking it, it follows that the effect of making contact when

the coil B is in any position B' is equal to that of bringing the

coil from any conjugate position B
x
to B' while the current is

flowing through A.

If the change of the relative position of the coils is made by

moving the primary circuit instead of the secondary, the result is

found to be the same.

539.] It follows from these experiments that the total induction

current in B during the simultaneous motion of A from A^ to A 2i

and of B from B^ to B
2 , while the current in A changes from yx

to y2 , depends only on the initial state A x , Bx , yx ,
and the final

state A 2 , B2 , y2 , and not at all on the nature of the intermediate

states through which the system may pass.

Hence the value of the total induction current must be of the

form ^(A at Bat ya)-F(A lt BliY^
where F is a function of A, B, and y.

With respect to the form of this function, we know, by Art.

536, that when there is no motion, and therefore A
x
= A 2

and

B
x
= B

2 , the induction current is proportional to the primary

current. Hence y enters simply as a factor, the other factor

being a function of the form and position of the circuits A and B.

We also know that the value of this function depends on the

relative and not on the absolute positions of A and B, so that it

must be capable of being expressed as a function of the distances

of the different elements of which the circuits are composed, and

of the angles which these elements make with each other.

Let M be this function, then the total induction current may

be written n(lir M x0{Mx yx—M 2i y2 \ i

where G is the conductivity of the secondary circuit, and M
x , yx

are the original, and M2 , y2 the final values ofM and y.
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These experiments, therefore, shew that the total current of

induction depends on the change which takes place in a certain

quantity, My, and that this change may arise either from
variation of the primary current y, or from any motion of the

primary or secondary circuit which alters M.
540.] The conception of such a quantity, on the changes of

which, and not on its absolute magnitude, the induction current

depends, occurred to Faraday at an early stage of his Researches *.

He observed that the secondary circuit, when at rest in an electro-

magnetic field which remains of constant intensity, does not
shew any electrical effect, whereas, if the same state of the field

had been suddenly produced, there would have been a current.

Again, if the primary circuit is removed from the field, or the

magnetic forces abolished, there is a current of the opposite kind.

He therefore recognised in the secondary circuit, when in the

electromagnetic field, a ' peculiar electrical condition of matter,'

to which he gave the name of the Electrotonic State. He after-

wards found that he could dispense with this idea by means of

considerations founded on the lines of magnetic force f, but even
in his latest Researches J, he says, ' Again and again the idea of an
electrotonic state § has been forced on my mind.'

The whole history of this idea in the mind of Faraday, as

shewn in his published Researches, is well worthy of study. By
a course of experiments, guided by intense application of thought,

but without the aid of mathematical calculations, he was led to

recognise the existence of something which we now know to be a
mathematical quantity, and which may even be called the funda-

mental quantity in the theory of electromagnetism. But as he
was led up to this conception by a purely experimental path, he
ascribed to it a physical existence, and supposed it to be a
peculiar condition of matter, though he was ready to abandon
this theory as soon as he could explain the phenomena by any
more familiar forms of thought.

Other investigators were long afterwards led up to the same
idea by a purely mathematical path, but, so far as I know, none
of them recognised, in the refined mathematical idea of the

potential of two circuits, Faraday's bold hypothesis of an electro-

tonic state. Those, therefore, who have approached this subject

* JExp. Res., series i. 60. J lb., 8269.

t lb., series ii. 242. § lb., 60, 1114, 1661, 1729, 1783.
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in the way pointed out by those eminent investigators who first

reduced its laws to a mathematical form, have sometimes found

it difficult to appreciate the scientific accuracy of the statements

of laws which Faraday, in the first two series of his Researches,

has given with such wonderful completeness.

The scientific value of Faraday's conception of an electrotonic

state consists in its directing the mind to lay hold of a eertain

quantity, on the changes of which the actual phenomena de-

pend. Without a much greater degree of development than

Faraday gave it, this conception does not easily lend itself to

the explanation of the phenomena. We shall return to this

subject again in Art. 584.

541.] A method which, in Faraday's hands, was far more

powerful is that in which he makes use of those lines of mag-

netic force which were always in his mind's eye when con-

templating his magnets or electric currents, and the delineation

of which by means of iron filings he rightly regarded * as a most

valuable aid to the experimentalist.

Faraday looked on these lines as expressing, not only by their

direction that of the magnetic force, but by their number and

concentration the intensity of that force, and in his later Re-

searches f he shews how to conceive of unit lines of force. I

have explained in various parts of this treatise the relation

between the properties which Faraday recognised in the lines of

force and the mathematical conditions of electric and magnetic

forces, and how Faraday's notion of unit lines and of the number

of lines within certain limits may be made mathematically

precise. See Arts. 82, 404, 490.

In the first series of his Researches X he shews clearly how the

direction of the current in a conducting circuit, part of which is

moveable, depends on the mode in which the moving part cuts

through the lines of magnetic force.

In the second series § he shews how the phenomena produced

by variation of the strength of a current or a magnet may be ex-

plained, by supposing the system of lines of force to expand from

or contract towards the wire or magnet as its power rises or falls.

I am not certain with what degree of clearness he then held

the doctrine afterwards so distinctly laid down by him
||,

that

* E.rp. lies., 3234. t lb., 3122. t lb., 114.

§ lb., 238. II
lb., 3082, 3087, 3113.
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the moving conductor, as it cuts the lines of force, sums up the

action due to an area or section of the lines of force. This,

however, appears no new view of the case after the investigations

of the second series * have been taken into account.

The conception which" Faraday had of the continuity of the

lines of force precludes the possibility of their suddenly starting

into existence in a place where there were none before. If, there-

fore, the number of lines which pass through a conducting

circuit is made to vary, it can only be by the circuit moving
across the lines of force, or else by the lines of force moving
across the circuit. In either case a current is generated in the

circuit.

The number of the lineB of force which at any instant pass
through the circuit is mathematically equivalent to Faraday's
earlier conception of the electrotonic state of that circuit, and it

is represented by the quantity My.
It is only since the definitions of electromotive force. Arts. 69,

274, and its measurement have been made more precise, that

we can enunciate completely the true law of magneto-electric

induction in the following terms :

—

The total electromotive force acting round a circuit at any
instant is measured by the rate of decrease of the number of

lines of magnetic force which pass through it.

When integrated with respect to the time this statement
becomes :

—

The time-integral of the total electromotive force acting round
any circuit, together with the number of lines of magnetic force

which pass through the circuit, is a constant quantity.

Instead of speaking of the number of lines of magnetic force,

we may speak of the magnetic induction through the circuit,

or the surface-integral of magnetic induction extended over any
surface bounded by the circuit.

We shall return again to this method of Faraday. In the mean-
time we must enumerate the theories of induction which are

founded on other considerations.

Lenz's Law.

542.] In 1834, Lenz f enunciated the following remarkable
relation between the phenomena of the mechanical action of

* Exp. Res., 217, &c + Pogg., Ann. xxxi. p. 483 (1834).
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electric currents, as defined by Ampere's formula, and the in-

duction of electric currents by the relative motion of con-

ductors. An earlier attempt at a statement of such a rela-

tion was given by Ritchie in the Philosophical Magazine for

January of the same year, but the direction of the induced

current was Id every case stated wrongly. Lenz's law is as

follows :

—

If a constant currentflows in theprimary circuit A, and if, by

the motion of A, or of the secondary circuit B, a current is

induced in B, the direction of this induced current will be such

that, by its electromagnetic action on A, it tends to oppose the

relative motion of the circuits.

On this law F. E. Neumann * founded his mathematical theory

of induction, in which he established the mathematical laws of the

induced currents due to the motion of the primary or secondary

conductor. He shewed that the quantity M, which we have, called

the potential of the one circuit on the other, is the same as the

electromagnetic potential of the one circuit on the other, which

we have already investigated in connection with Ampere's formula.

We may regard F. E. Neumann, therefore, as having completed

for the induction of currents the mathematical treatment which

Ampere had applied to their mechanical action.

543.] A step of still greater scientific importance was soon

after made by Helmholtz in his Essay on the Conservation of

Force}, and by Sir W. Thomson J, working somewhat later, but

independently of Helmholtz. They shewed that the induction of

electric currents discovered by Faraday could be mathematically

deduced from the electromagnetic actions discovered by Orsted

and Ampere by the application of the principle of the Conservation

of Energy.

Helmholtz takes the case of a conducting circuit of resistance

R, in which an electromotive force A, arising from a voltaic or

thermoelectric arrangement, acts. The current in the circuit at

any instant is i". He supposes that a magnet is in motion in the

neighbourhood of the circuit, and that its potential with respect

to the conductor is V, so that, during any small interval of time

* Berlin Akad., 1845 and 1847. „ ^ . A , .

f Kead before the Physical Society of Berlin, July 23, 1847. Translated in

Taylor's ' Scientific Memoirs,' part ii. p. 114. ...
J Trans. Brit. Ass., 1848, and Phil. Mag., Dec. 1851. See also his paper on

Transient Electric Currents,' Phil. Mag., June lb53.
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dt, the energy communicated to the magnet by the electromagnetic

action is I —— dt.
dt

The work done in generating heat in the circuit is, by Joule's
law, Art. 242, PRdt, and the work spent by the electromotive
force A, in maintaining the current i" during the time dt, is A Idt.
Hence, since the total work done must be equal to the work spent,

AIdt = PRdt +I~ dt,
dt

whence we find the intensity of the current

a dVA
~~dt

Now the value of A may be what we please. Let, therefore,

-4 = 0, and then
j ^y

I = ~~ BW
or, there will be a current due to the motion of the magnet, equal

to that due to an electromotive force
dt

The whole induced current during the motion of the magnet
from a place where its potential is V

x
to a place where its po-

tential is V9 , is r i r d V i

and therefore the total current is independent of the velocity or
the path of the magnet, and depends only on its initial and final

positions.

Helmholtz in his original investigation adopted a system of
units founded on the measurement of the heat generated in the
conductor by the current. Considering the unit of current as
arbitrary, the unit of resistance is that of a conductor in which
this unit current generates unit of heat in unit of time. The
unit of electromotive force in this system is that required to

produce the unit of current in the conductor of unit resistance.

The adoption of this system of units necessitates the introduction
into the equations of a quantity a, which is the mechanical
equivalent of the unit of heat. As we invariably adopt either
the electrostatic or the electromagnetic system of units, this factor
does not occur in the equations here given.

544.] Helmholtz also deduces the current of induction when a
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conducting circuit and a circuit carrying a constant current are

made to move relatively to one another *.

Let Rx , R2
be the resistances, Ix , I2

the currents, Av A 2
the

external electromotive forces, and V the potential of the one

* (The proofs given in Arts. 543 and 544 are not satisfactory, as they neglect any

variations which may occur in the currents and also any change which may occur in the

Kinetic Energy due to the motion of the circuits. It is in fact as impossible to deduce

the equations of induction of two circuits from the principle of the Conservation ot

Energy alone as it would be to deduce the equations of motion of a system with two

degrees of freedom without using any principle beyond that of the Conservation of

"JS apply the principle of the Conservation of Energy to the case of two currents,

we get one equation, which we may deduce as follows -.—Let L, M, N be the coefficient

of self-induction of the first circuit, the coefficient of mutual induction of the two

circuits and the self-induction of the second circuit respectively (Art. 5/8). Let i,

be the Kinetic Energy due to the currents round the circuits, and let the rest ot the

notation be the same as in Art. 544. Then (Art. 578)

Te = \LI? + MlJt + h XI?,

where x is a coordinate of any type helping to fix the position of the circuit.

Since T, is a homogeneous quadratic function of Iu I2 ,

dTe
dT,

dTe T dTe , T dTe TS dTe , .

hence 25^=51,^ H-I^— + 51,.^ +^_. «
Subtracting (1) from (2), we get

r .dT. T9 dTe ^dTe r<n
' T-- J

*>a%
+T
''dr,-*~*'"-

But—'is the force of type x acting on the system, hence, since we suppose no

dx
dT

external force acts on the system, 2 -^78* will be the increase in Kinetic Energy

Tm due to the motion of the system, hence (3) gives,

The work done by the batteries in a time 8 t is

AiliSt + A^IiSt.

The heat produced in the same time is by Joule's Law,

(flil^ + kj/^S*.

By the Conservation of Energy the work done by the batteries must equal the heat

produced in the circuit plus the increase in the energy of the system, hence

J
l
2 1

S« + ^ 2 J2 S^ = (E 1 J1

2 + i?2 J2
2)5< + 5(Te +7

,

m).

Substituting for 5(Te + Tm) from (4) we get

or Jx
J

A.-R,!,- ^ {LI
1 +MQ

J

+ J2 j
A2-Ra I2

- ^ (MI1 + NI2)
J

= 0. (5

The equations of induction are the two quantities inside the brackets equated to

zero, the principle of the Conservation of Energy however only shows that the left-

hand side of (5) is zero, not that each bracket is separately zero. A rigid proof of the

equations of induced currents is given in Art. 581.}
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circuit on the other due to unit current in each, then we have,

as before, jy
AX

I
X +A 2

I2 = I^R, + I*R2 +IJ^g .

If we suppose jT
x
to be the primary current, and J

2 so much less

than Jp that it does not by its induction produce any sensible

A
alteration in Ilt so that we may put I1== ^, then

Ji
1

A T
dV

a result which may be interpreted exactly as in the case of the
magnet.

If we suppose I
2
to be the primary current, and I

x to be very
much smaller than I

2 , we get for Ilf

A I
dV

This shews that for equal currents the electromotive force of
the first circuit on the second is equal to that of the second on
the first, whatever be the forms of the circuits.

Helmholtz does not in this memoir discuss the case of induc-
tion due to the strengthening or weakening of the primary current,
or the induction of a current on itself. Thomson * applied the
same principle to the determination of the mechanical value of
a current, and pointed out that when work is done by the mutual
action of two constant currents, their mechanical action is in-
creased by the same amount, so that the battery has to supply
double th&t amount of work, in addition to that required to main-
tain the currents against the resistance of the circuits f.

545.] The introduction, by W. Weber, of a system of absolute
units for the measurement of electrical quantities is one of the
most important steps in the progress of the science. Having
already, in conjunction with Gauss, placed the measurement of
magnetic quantities in the first rank of methods of precision,
Weber proceeded in his Electrodynamic Measurements not only
to lay down sound principles for fixing the units to be employed,

* Mechanical Theory of Electrolysis, Phil. Mag., Dec. 1851.
t Nichol's Cyclopaedia of Physical Science, ed. 1860, Article « Magnetism, Dyna-

mical Relations of,' and Reprint, § 571.
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but to make determinations of particular electrical quantities

in terms of these units, with a degree of accuracy previously

unattempted. Both the electromagnetic and the electrostatic

systems of units owe their development and practical applica-

tion to these researches.

Weber has also formed a general theory of electric action from

which he deduces both electrostatic and electromagnetic force,

and also the induction of electric currents. We shall consider

this theory, with some of its more recent developments, in a

separate chapter. See Art. 846.



CHAPTER IV.

ON THE INDUCTION OF A CUBBENT ON ITSELF.

546.] Fabaday has devoted the ninth series of his Researches
to the investigation of a class of phenomena exhibited by the
current in a wire which forms the coil of an electromagnet.

Mr. Jenkin has observed that, although it is impossible to pro-
duce a sensible shock by the direct action of a voltaic system
consisting of only one pair of plates, yet, if the current is made
to pass through the coil of an electromagnet, and if contact is
then broken between the extremities of two wires held one in
each hand, a smart shock will be felt. No such shock is felt on
making contact.

Faraday shewed that this and other phenomena, which he de-
scribes, are due to the same inductive action which he had already
observed the current to exert on neighbouring conductors. In
this case, however, the inductive action is exerted on the same
conductor which carries the current, and it is so much the more
powerful as the wire itself is nearer to the different elements of
the current than any other wire can be.

547.] He observes, however* that « the first thought that arises
in the mind is that the electricity circulates with something like
momentum or inertia in the wire.' Indeed, when we consider
one particular wire only, the phenomena are exactly analogous
to those of a pipe full of water flowing in a continued stream. If
while the stream is flowing we suddenly close the end of the pipe,
the momentum of the water produces a sudden pressure, which is
much greater than that due to the head of water, and may be
sufficient to burst the pipe.

If the water has the means of escaping through a narrow jet
when the principal aperture is closed, it will be projected with a

* Exp. Res., 1077.
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velocity much greater than that due to the head of water, and

if it can escape through a valve into a chamber, it will do so,

even when the pressure in the chamber is greater than that due

to the head of water.

It is on this principle that the hydraulic ram is constructed,

by which a small quantity of water may be raised to a great

height by means of a large quantity flowing down from a much

lower level.

548.] These effects of the inertia of the fluid in the tube depend

solely on the quantity of fluid running through the tube, on its

length, and on its section in different parts of its length. They

do not depend on anything outside the tube, nor on the form into

which the tube may be bent, provided its length remains the

same.

With a wire conveying a current this is not the case, for

if a long wire is doubled on itself the effect is very small, if

the two parts are separated from each other it is greater, if it

is coiled up into a helix it is still greater, and greatest of all if,

when so coiled, a piece of soft iron is placed inside the coil.

Again, if a second wire is coiled up with the first, but insu-

lated from it, then, if the second wire does not form a closed

circuit, the phenomena are as before, but if the second wire forms

a closed circuit, an induction current is formed in the second

wire, and the effects of self-induction in the first wire are re-

tarded.

549.] These results shew clearly that, if the phenomena are

due to momentum, the momentum is certainly not that of the

electricity in the wire, because the same wire, conveying the same

current, exhibits effects which differ according to its form
;
and

even when its form remains the same, the presence of other bodies,

such as a piece of iron or a closed metallic circuit, affects the

result.

550.] It is difficult, however, for the mind which has once

recognised the analogy between the phenomena of self-induction

and those of the motion of material bodies, to abandon altogether

the help of this analogy, or to admit that it is entirely superficial

and misleading. The fundamental dynamical idea of matter, as

capable by its motion of becoming the recipient of momentum

and of energy, is so interwoven with our forms of thought that,

whenever we catch a glimpse of it in any part of nature, we feel
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that a path is before us leading, sooner or later, to the complete
understanding of the subject.

551.] In the case of the electric current, we find that, when the

electromotive force begins to act, it does not at once produce the
full current, but that the current rises gradually. What is the
electromotive force doing during the time that the opposing re-

sistance is not able to balance it ? It is increasing the electric

current.

Now an ordinary force, acting on a body in the direction of its

motion, increases its momentum, and communicates to it kinetic

energy, or the power of doing work on account of its motion.

In like manner the unresisted part of the electromotive force

has been employed in increasing the electric current. Has the

electric current, when thus produced, either momentum or kinetic

energy ?

We have already shewn that it has something very like mo-
mentum, that it resists being suddenly stopped, and that it can
exert, for a short time, a great electromotive force.

But a conducting circuit in which a current has been set up
has the power of doing work in virtue of this current, and this

power cannot be said to be something very like energy, for it

is really and truly energy.

Thus, if the current be left to itself, it will continue to circulate

till it is stopped by the resistance of the circuit. Before it is

stopped, however, it will have generated a certain quantity of

heat, and the amount of this heat in dynamical measure is equal

to the energy originally existing in the current.

Again, when the current is left to itself, it may be made to

do mechanical work by moving magnets, and the inductive effect

of these motions will, by Lenz's law, stop the current sooner than
the resistance of the circuit alone would have stopped it. In this

way part of the energy of the current may be transformed into

mechanical work instead of heat.

552.] It appears, therefore, that a system containing an electric

current is a seat of energy of some kind ; and since we can form
no conception of an electric current except as a kinetic pheno-

menon*, its energy must be kinetic energy, that is to say, the

energy which a moving body has in virtue of its motion.

We have already shewn that the electricity in the wire cannot

* Faraday, Exp. Beg. 283.
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be considered as the moving body in which we are to find this

energy, for the energy of a moving body does not depend on

anything external to itself, whereas the presence of other bodies

near the current alters its energy.

We are therefore led to enquire whether there may not be some

motion going on in the space outside the wire, which is not oc-

cupied by the electric current, but in which the electromagnetic

effects of the current are manifested.

I shall not at present enter on the reasons for looking in one

place rather than another for such motions, or for regarding

these motions as of one kind rather than another.

What I propose now to do is to examine the consequences of

the assumption that the phenomena of the electric current are

those of a moving system, the motion being communicated from

one part of the system to another by forces, the nature and laws

of which we do not yet even attempt to define, because we can

eliminate these forces from the equations of motion by the method

given by Lagrange for any connected system.

In the next five chapters of this treatise I propose to deduce

the main structure of the theory of electricity from a dynamical

hypothesis of this kind, instead of following the path which has

led Weber and other investigators to many remarkable discoveries

and experiments, and to conceptions, some of which are as beau-

tiful as they are bold. I have chosen this method because I wish

to shew that there are other ways of viewing the phenomena

which appear to me more satisfactory, and at the same time are

more consistent with the methods followed in the preceding parts

of this book than those which proceed on the hypothesis of direct

action at a distance.



CHAPTER V.

ON THE EQUATIONS OP MOTION OF A CONNECTED SYSTEM.

553.] In the fourth section of the second part of his Mecanique
Analytique, Lagrange has given a method of reducing the
ordinary dynamical equations of the motion of the parts of a
connected system to a number equal to that of the degrees of
freedom of the system.

The equations of motion of a connected system have been
given in a different form by Hamilton, and have led to a great
extension of the higher part of pure dynamics *.

As we shall find it necessary, in our endeavours to bring
electrical phenomena within the province of dynamics, to have
our dynamical ideas in a state fit for direct application to

physical questions, we shall devote this chapter to an exposition

of these dynamical ideas from a physical point of view.

554.] The aim of Lagrange was to bring dynamics under the

power of the calculus. He began by expressing the elementary
dynamical relations in terms of the corresponding relations of

pure algebraical quantities, and from the equations thus obtained

he deduced his final equations by a purely algebraical process.

Certain quantities (expressing the reactions between the parts of

the system called into play by its physical connexions) appear in

the equations of motion of the component parts of the system,

and Lagrange's investigation, as seen from a mathematical point

of view, is a method of eliminating these quantities from the

final equations.

In following the steps of this elimination the mind is exer-

cised in calculation, and should therefore be kept free from the

* See Professor Cayley's ' Report on Theoretical Dynamics,' British Association,
1857 ; and Thomson and Tait's Natural Philosophy.
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intrusion of dynamical ideas. Our aim, on the other hand, is to

cultivate our dynamical ideas. We therefore avail ourselves of

the labours of the mathematicians, and retranslate their results

from the language of the calculus into the language of dynamics,

so that cur words may call up the mental image, not of some

algebraical process, but of some property of moving bodies.

The language of dynamics has been considerably extended by

those who have expounded in popular terms the doctrine of the

Conservation of Energy, and it will be seen that much of the

following statement is suggested by the investigation in Thomson

and Tait's Natural Philosophy, especially the method of begin-

ning with the theory of impulsive forces.

I have applied this method so as to avoid the explicit con-

sideration of the motion of any part of the system except the

coordinates or variables, on which the motion of the whole

depends. It is doubtless important that the student should be

able to trace the connexion of the motion of each part of the

system with that of the variables, but it is by no means

necessary to do this in the process of obtaining the final equa-

tions, which are independent of the particular form of these

connexions.

The Variables.

555.] The number of degrees of freedom of a system is the

number of data which must be given in order completely to

determine its position. Different forms may be given to these

data, but their number depends on the nature of the system

itself, and cannot be altered.

To fix our ideas we may conceive the system connected by

means of suitable mechanism with a number of moveable pieces,

each capable of motion along a straight line, and of no other

kind of motion. The imaginary mechanism which connects

each of these pieces with the system must be conceived to be

free from friction, destitute of inertia, and incapable of being

strained by the action of the applied forces. The use of this

mechanism is merely to assist the imagination in ascribing

position, velocity, and momentum to what appear, in Lagrange's

investigation, as pure algebraical quantities.

Let q denote the position of one of the moveable pieces as

defined by its distance from a fixed point in its line of motion.
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We shall distinguish the values of q corresponding to the dif-

ferent pieces by the suffixes lt 2 , &c. When we are dealing with
a set of quantities belonging to one piece only we may omit the

suffix.

When the values of all the variables (q) are given, the position

of each of the moveable pieces is known, and, in virtue of the
imaginary mechanism, the configuration of the entire system is

determined.

The Velocities.

556.] During the motion of the system the configuration

changes in some definite manner, and since the configuration at

each instant is fully defined by the values of the variables (g),

the velocity of every part of the system, as well as its configura-

tion, will be completely defined if we know the values of the

variables (q), together with their velocities

do
(-37 » or, according to Newton's notation, q\

The Forces.

557.] By a proper regulation of the motion of the variables,

any motion of the system, consistent with the nature of the con-

nexions, may be produced. In order to produce this motion by
moving the variable pieces, forces must be applied to these pieces.

We shall denote the force which must be applied to any
variable qr by Fr . The system of forces (F) is mechanically
equivalent (in virtue of the connexions of the system) to the

system of forces, whatever it may be, which really produces the

motion.

The Momenta.

558.] When a body moves in such a way that its configura-

tion, with respect to the force which acts on it, remains always
the same, (as, for instance, in the case of a force acting on a
single particle in the line of its motion,) the moving force is

measured by the rate of increase of the momentum. If F is

the moving force, and p the momentum,

*~dt'

whence p = Fdt.

The time-integral of a force is called the Impulse of the force;
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so that we may assert that the momentum is the impulse of the

force which would bring the body from a state of rest into the

given state of motion.

In the case of a connected system in motion, the configuration

is continually changing at a rate depending on the velocities (q),

so that we can no longer assume that the momentum is the

time-integral of the force which acts on it.

But the increment bq of any variable cannot be greater than

q'bt, where bt is the time during which the increment takes

place, and / is the greatest value of the velocity during that

time. In the case of a system moving from rest under the action

of forces always in the same direction, this is evidently the final

velocity.

If the final velocity and configuration of the system are given,

we may conceive the velocity to be communicated to the system

in a very small time U, the original configuration differing from

the final configuration by quantities bqu bq
2 , &c, which are less

than q\M, q2 bt, &c, respectively.

The smaller we suppose the increment of time bt, the greater

must be the impressed forces, but the time-integral, or impulse,

of each force will remain finite. The limiting value of the im-

pulse, when the time is diminished and ultimately vanishes, is de-

fined as the instantaneous impulse, and the momentum p, corre-

sponding to any variable q, is defined as the impulse corresponding

to that variable, when the system is brought instantaneously

from a state of rest into the given state of motion.

This conception, that the momenta are capable of being

produced by instantaneous impulses on the system at rest, is

introduced only as a method of defining the magnitude of the

momenta, for the momenta of the system depend only on the

instantaneous state of motion of the system, and not on the

process by which that state was produced.

In a connected system the momentum corresponding to any

variable is in general a linear function of the velocities of all the

variables, instead of being, as in the dynamics of a particle,

simply proportional to the velocity.

The impulses required to change the velocities of the system

suddenly from q l} q2 , &c. to &', &', &c. are evidently equal to

Pi —Pi* P2~P-2> tne cnaDges of momentum of the several

variables.
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Work done by a Small Impulse.

559.] The work done by the force F
x
during the impulse is

the space-integral of the force, or

W=jF
x dqx ,

=fFx qx dt.

If qx is the greatest and qx
' the least value of the velocity qx

during the action of the force, W must be less than

qxjFdt or q\'(px
'-p

x),

and greater than q\" fadt or qi'{px -px)-

If we now suppose the impulse / Fdt to be diminished without

limit, the values of qx and qx
will approach and ultimately

coincide with that of q\, and we may write px —px
= bpx , so

that the work done is ultimately

bW
x
= qx

bp
x ,

or, the work done by a very small impulse is ultimately the

product of the impulse and the velocity.

Increment of the Kinetic Energy.

560.] When work is done in setting a conservative system in

motion, energy is communicated to it, and the system becomes
capable of doing an equal amount of work against resistances

before it is reduced to rest.

The energy which a system possesses in virtue of its motion
is called its Kinetic Energy, and is communicated to it in the

form of the work done by the forces which set it in motion.

If T be the kinetic energy of the system, and if it becomes
T+bT, on account of the action of an infinitesimal impulse
whose components are bp

x , bp2 , &c, the increment hT must be
the sum of the quantities of work done by the components of the
impulse, or in symbols,

bT=q
1
bp

1 + g2 bp2 + Scc
>

= 2(qbp). (1)

The instantaneous state of the system is completely defined if
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the variables and the momenta are given. Hence the kinetic

energy, which depends on the instantaneous state of the system,

can be expressed in terms of the variables (q), and the momenta

(p). This is the mode of expressing T introduced by Hamilton.

When T is expressed in this way we shall distinguish it by the

suffix p , thus, Tp .

The complete variation of Tp is

sy- s(sN +s^)- (2)

The last term may be written

which diminishes with bt, and ultimately vanishes with it when

the impulse becomes instantaneous.

Hence, equating the coefficients of bp in equations (1) and (2),

we obtain dTp / 3 \

*
= ^' ()

or, the velocity corresponding to the variable q is the differ-

ential coefficient of Tp
with respect to the corresponding

momentum p.

We have arrived at this result by the consideration of im-

pulsive forces. By this method we have avoided the considera-

tion of the change of configuration during the action of the

forces. But the instantaneous state of the system is in all

respects the same, whether the system was brought from a state

of rest to the given state of motion by the transient application

of impulsive forces, or whether it arrived at that state in any

manner, however gradual.

In other words, the variables, and the corresponding velocities

and momenta, depend on the actual state of motion of the system

at the given instant, and not on its previous history.

Hence, the equation (3) is equally valid, whether the state of

motion of the system is supposed due to impulsive forces, or to

forces acting in any manner whatever.

We may now therefore dismiss the consideration of impulsive

forces, together with the limitations imposed on their time of

action, and on the changes of configuration during their action.
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Hamilton s Equations of Motion.

561.] We have already shewn that

dTv .

Let the system move in any arbitrary way, subject to the

conditions imposed by its connexions, then the variations of

p and q are j«
Sp= -^U, Sq = qbt. (5)

. =|f»J, (6)

and the complete variation of Tp is

But the increment of the kinetic energy arises from the work
done by the impressed forces, or

bTp =2(Fbq). (8)

In these two expressions the variations 8q are all independent
of each other, so that we are entitled to equate the coefficients

of each of them in the two expressions (7) and (8). We thus

°b^in

F
dp dTp

where the momentum pr and the force Fr belong to the vari-

able g,.*.

There are as many equations of this form as there are

variables. These equations were given by Hamilton. They

shew that the force corresponding to any variable is the sum
of two parts. The first part is the rate of increase of the

momentum of that variable with respect to the time. The

second part is the rate of increase of the kinetic energy per unit

of increment of the variable, the other variables and all the

momenta beinsr constant.

{This proof does not seem conclusive as 5 q is assumed to be equal to jSf,thatis

legitimately deduce from (7) «
dT

to p 8t, so that all we can legitimately deduce from (7) and (8) is

dp
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The Kinetic Energy expressed in Terms of the Momenta and

Velocities.

562.] Let plt p2 , &c. be the momenta, and qlf q.z , &c. the

velocities at a given instant, and let plf p2 , &c, qx , cfe, &c. be

another system of momenta and velocities, such that

Pi = nPi> %= ™?i> &c- (
10 )

It is manifest that the systems p, q will be consistent with

each other if the systems p, q are so.

Now let n vary by 8 n. The work done by the force F1
is

F1
bq

1 =q 1
bip

1
= q1 p1 nbn. (11)

Let n increase from to 1, then the system is brought from

a state of rest into the state of motion (q, p), and the whole work

expended in producing this motion is

(?i#i + ?2#2+ &c-)/ ndn- 2
)

J

But / ndn — \,
J

and the work spent in producing the motion is equivalent to the

kinetic energy. Hence

Tpi = l(p 1 q1 +p2i2+&^ (
13 )

where TPi denotes the kinetic energy expressed in terms of the

momenta and velocities. The variables qlt q2 , &c. do not enter

into this expression.

The kinetic energy is therefore half the sum of the products of

the momenta into their corresponding velocities.

When the kinetic energy is expressed in this way we shall

denote it by the symbol T^. It is a function of the momenta

and velocities only, and does not involve the variables them-

selves.

563.] There is a third method of expressing the kinetic energy,

which is generally, indeed, regarded as the fundamental one.

By solving the equations (3) we may express the momenta in

terms of the velocities, and then, introducing these values in (13),

we shall have an expression for T involving only the velocities

and the variables. When T is expressed in this form we shall

indicate it by the symbol T
4

. This is the form in which the

kinetic energy is expressed in the equations of Lagrange.
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564.] It is manifest that, since T
p , T^, and T^ are three

different expressions for the same thing,

^ + ^-22^ = 0,

or
^

Tp + T4-p1q1-p2qi -&c.= 0. (14)

Hence, if all the quantities p, q, and q vary,

The variations 87? are not independent of the variations hq
and hq, so that we cannot at once assert that the coefficient

of each variation in this equation is zero. But we know, from
equations (3), that

dT
^-j1= 0,&c, (16)

so that the terms involving the variations hp vanish of them-
selves.

The remaining variations hq and hq are now all independent,

so that we find, by equating to zero the coefficients of hq\, &c,

*-?£> *-%**•• <
17

>

or, the components of momentum ar* the differential coefficients

of Tq with respect to the corresponds, velocities.

Again, by equating to zero the coefficients of hqlt &c,

dT, dT<
, x-t^+-t-v =0; (18)dq

1 dq1
v >

or, the differential coefficient of the kinetic energy with respect to

any variable qx
is equal in magnitude out opposite in sign when

T is expressed as a function of the velocities instead of as a
function of the momenta.

In virtue of equation (18) we may write the equation of

motion (9), , dT

F - -^ ^ f2(»
1
_

dt dqx

~~ dqx

'
* '

which is the form in which the equations of motion were given

by Lagrange.
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565.] In the preceding investigation we have avoided the con-

sideration of the form of the function which expresses the

kinetic energy in terms either of the velocities or of the

momenta. The only explicit form which we have assigned to

itis TPi = \(p1q1 +p2 q2 + &c), (21)

in which it is expressed as half the sum of the products of the

momenta each into its corresponding velocity.

We may express the velocities in terms of the differential

coefficients of Tp with respect to the momenta, as in equation (3),

r,=Kftf+4| +te)- <22)

This shews that Tp is a homogeneous function of the second

degree of the momenta plt p2 , &c.

We may also express the momenta in terms of T$, and we

find m 1/. dT< .
dTj . n /9 ,x

r«=*(ft-^ + &d£ + *°-)' (23)

which shews that T^ is a homogeneous function of the second

degree with respect to the velocities qlt q\, &c.

If we write

and «n fcr^, O^^, fa;

then, since T
4
and Tp are functions of the second degree of

q and p respectively, both the P's and the Q's will be functions

of the variables q only, and independent of the velocities and

the momenta. We thus obtain the expressions for T,

2T
q
= P

11 q1
2 +2P

l2 q1q2
+&C, (24)

2 Tp= QnPl* + 2 Q12ptp2 + &C (25)

The momenta are expressed in terms of the velocities by the

linear equations p^ = pu^ +P12 q2 + &c, (26)

and the velocities are expressed in terms of the momenta by the

linear equations ^ _ QnPi + Qi2 p2 + &c. (27)

In treatises on the dynamics of a rigid body, the coefficients

corresponding to Pn , in which the suffixes are the same, are

called Moments of Inertia, and those corresponding to P12 ,
in

which the suffixes are different, are called Products of Inertia.
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We may extend these names to the more general problem which
is now before us, in which these quantities are not, as in the

case of a rigid body, absolute constants, but are functions of

the variables qv q2i &c.

In like manner we may call the coefficients of the form Qn
Moments of Mobility, and those of the form Q12

Products of

Mobility. It is not often, however, that we shall have occasion

to speak of the coefficients of mobility.

566.] The kinetic energy of the system is a quantity essen-

tially positive or zero. Hence, whether it be expressed in terms

of the velocities, or in terms of the momenta, the coefficients

must be such that no real values of the variables can make T
negative.

There are thus a set of necessary conditions which the values

of the coefficients P must satisfy. These conditions are as

follows

:

The quantities Pn , P12 , &c. must all be positive.

The n— 1 determinants formed in succession from the deter-

minant

3i,
PJ
I2»

P"43 >

p ^ B,,

%s,
P P

P P P

p
•-L3n

P
by the omission of terms with suffix 1, then of terms with either

1 or 2 in their suffix, and so on, must all be positive.

The number of conditions for n variables is therefore 2n—l.
The coefficients Q are subject to conditions of the same kind.

567.] In this outline of the fundamental principles of the

dynamics of a connected system, we have kept out of view the

mechanism by which the parts of the system are connected. We
have not even written down a set of equations to indicate how
the motion of any part of the system depends on the variation

of the variables. We have confined our attention to the variables,

their velocities and momenta, and the forces which act on the
pieces representing the variables. Our only assumptions are,

that the connexions of the system are such that the time is not
explicitly contained in the equations of condition, and that

the principle of the conservation of energy is applicable to

the system.
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Such a description of the methods of pure dynamics is not un-

necessary, because Lagrange and most of his followers, to whom

we are indebted for these methods, have in general confined them-

selves to a demonstration of them, and, in order to devote their

attention to the symbols before them, they have endeavoured to

banish all ideas except those of pure quantity, so as not only to

dispense with diagrams, but even to get rid of the ideas of velocity,

momentum, and energy, after they have been once for all sup-

planted by symbols in the original equations. In order to be

able to refer to the results of this analysis in ordinary dynamical

language, we have endeavoured to retranslate the principal equa-

tions of the method into language which may be intelligible with-

out the use of symbols.

As the development of the ideas and methods of pure mathe-

matics has rendered it possible, by forming a mathematical theory

of dynamics, to bring to light many truths which could not have

been discovered without mathematical training, so, if we are to

form dynamical theories of other sciences, we must have our

minds imbued with these dynamical truths as well as with

mathematical methods.

In forming the ideas and words relating to any science, which,

like electricity, deals with forces and their effects, we must keep

constantly in mind the ideas appropriate to the fundamental

science of dynamics, so that we may, during the first develop-

ment of the science, avoid inconsistency with what is already

established, and also that when our views become clearer, the

language we have adopted may be a help to us and not a

hindrance.



CHAPTEB VI.

DYNAMICAL THEOET OF ELECTEOMAGNBTISM.

568.] We have shewn, in Art. 552, that, when an electric

current exists in a conducting circuit, it has a capacity for doing
a certain amount of mechanical work, and this independently of

any external electromotive force maintaining the current. Now
capacity for performing work is nothing else than energy, in

whatever way it arises, and all energy is the same in kind, how-
ever it may differ in form. The energy of an electric current is

either of that form which consists in the actual motion of matter,

or of that which consists in the capacity for being set in motion,
arising from forces acting between bodies placed in certain posi-

tions relative to each other.

The first kind of energy, that of motion, is called Kinetic energy,

and when once understood it appears so fundamental a fact of
nature that we can hardly conceive the possibility of resolving

it into anything else. The second kind of energy, that depending
on position, is called Potential energy, and is due to the action

of what we call forces, that is to say, tendencies towards change
of relative position. With respect to these forces, though we may
accept their existence as a demonstrated fact, yet we always feel

that every explanation of the mechanism by which bodies are set

in motion forms a real addition to our knowledge.

569.] The electric current cannot be conceived except as a
kinetic phenomenon. Even Faraday, who constantly endeavoured
to emancipate his mind from the influence of those suggestions

which the words ' electric current ' and ' electric fluid ' are too apt
to carry with them, speaks of the electric current as ' something
progressive, and not a mere arrangement *.'

* Exp. Bes., 283.
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Tlie effects of the current, such as electrolysis, and the transfer

of electrification from one body to another, are all progressive

actions which require time for their accomplishment, and are

therefore of the nature of motions.

As to the velocity of the current, we have shewn that we know

nothing about it, it may be the tenth of an inch in an hour, or

a hundred thousand miles in a second*. So far are we from

knowing its absolute value in any case, that we do not even

know whether what we call the positive direction is the actual

direction of the motion or the reverse.

But all that we assume here is that the electric current involves

motion of some kind. That which is the cause of electric currents

has been called Electromotive Force. This name has long been

used with great advantage, and has n«ver led to any inconsist-

ency in the language of science. Electromotive force is always

to be understood to act on electricity only, not on the bodies in

which the electricity resides. It is never to be confounded with

ordinary mechanical foree, which acts on bodies only, not on the

electricity in them. If we ever come to know the formal rela-

tion between electricity and ordinary matter, we shall probably

also know the relation between electromotive force and ordinary

force.

570.] When ordinary force acts on a body, and when the body

yields to the force, the work done by the force is measured by

the product of the force into the amount by which the body

yields. Thus, in the case of water forced through a pipe, the

work done at any section is measured by the fluid pressure at

the section multiplied into the quantity of water which crosses

the section.

In the same way the work done by an electromotive force is

measured by the product of the electromotive force into the

quantity of electricity which crosses a section of the conductor

under the action of the electromotive force.

The work done by an electromotive force is of exactly the

same kind as the work done by an ordinary force, and both are

measured by the same standards or units.

Part of the work done by an electromotive force acting on a

conducting circuit is spent in overcoming the resistance of the

circuit, and this part of the work is thereby converted into heat.

* Exp. Res., 1648.
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Another part of the work is spent in producing the electromag-

netic phenomena observed by Ampere, in which conductors are

made to move by electromagnetic forces. The rest of the work
is spent in increasing the kinetic energy of the current, and the

effects of this part of the action are shewn in the phenomena of

the induction of currents observed by Faraday.

We therefore know enough about electric currents to recognise,

in a system of material conductors carrying currents, a dynamical

system which is the seat of energy, part of which may be kinetic

and part potential.

The nature of the connexions of the parts of this system is

unknown to us, but as we have dynamical methods of investiga-

tion which do not require a knowledge of the mechanism of the

system, we shall apply them to this case.

We shall first examine the consequences of assuming the most

general form for the function wHch expresses the kinetic energy

of the system.

571.] Let the system consist of a number of conducting circuits,

the form and position of which are determined by the values of

a system of variables xv x
2 , &c, the number of which is equal

to the number of degrees of freedom of the system.

If the whole kinetic energy of the system were that due to the

motion of these conductors, it would be expressed in the form

T — \{x
x
x-y) x-f + &c. + (x

1x2)
x

x
x
2 + &c,

where the symbols (a^tfj), &c. denote the quantities which we
have called moments of inertia, and (x

x
x
2),

&c. denote the pro-

ducts of inertia.

If X' is the impressed force, tending to increase the coordinate

x
}
which is required to produce the actual motion, then, by

Lagrange's equation, d dT_dT_x,

dt dx dx

When T denotes the energy due to the visible motion only, we
shall indicate it by the suffix,,,, thus, Tm .

But in a system of conductors carrying electric currents, part

of the kinetic energy is due to the existence of these currents.

Let the motion of the electricity, and of anything whose motion

is governed by that of the electricity, be determined by another

set of coordinates y1> y.2 , &c., then T will be a homogeneous func-

tion of squares and products of all the velocities of the two sets
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of coordinates. We may therefore divide T into three portions,

in the first of which, Tm , the velocities of the coordinates x only

occur, while in the second, Tei the velocities of the coordinates

y only occur, and in the third, Tme , each term contains the pro-

duct of the velocities of two coordinates of which one is an x

and the other a y.

We have therefore T = Tm + T4 + Tme ,

where Tm = \ (x
x
xt)

x* + &c. + (x
x
x2) xx

cc2 + &c,

T* = H2/i2/i)ii
2 + &c - + (2/i^2)yiy2 + &c -

J

572.] In the general dynamical theory, the coefficients of

every term may be functions of all the coordinates, both x and

y. In the case of electric currents, however, it is easy to see

that the coordinates of the class y do not enter into the co-

efficients.

For, if all the electric currents are maintained constant, and

the conductors at rest, the whole state of the field will remain

constant. But in this case the coordinates y are variable, though

the velocities y are constant. Hence the coordinates y cannot

enter into the expression for T, or into any other expression of

what actually takes place.

Besides this, in virtue of the equation of continuity, if the

conductors are of the nature of linear circuits, only one variable

is required to express the strength of the current in each

conductor. Let the velocities yx > y2 , &c. represent the strengths

of the currents in the several conductors.

All this would be true, if, instead of electric currents, we had

currents of an incompressible fluid running in flexible tubes.

In this case the velocities of these currents would enter into the

expression for T, but the coefficients would depend only on the

variables x, which determine the form and position of the tubes.

In the case of the fluid, the motion of the fluid in one tube

does not directly affect that of any other tube, or of the fluid in

it. Hence, in the value of T
e , only the squares of the velocities

y, and not their products, occur, and in Tme any velocity y is

associated only with those velocities of the form x which belong

to its own tube.

In the case of electrical currents we know that this restriction

does not hold, for the currents in different circuits act on each
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other. Hence we must admit the existence of terms involving

products of the form yx y% , and this involves the existence of

something in motion, whose motion depends on the strength of

both electric currents yT
and y2 . This moving matter, whatever

it is, is not confined to the interior of the conductors carrying the

two currents, but probably extends throughout the whole space

surrounding them.

573.] Let us next consider the form which Lagrange's equa-

tions of motion assume in this case. Let X' be the impressed

force corresponding to the coordinate x, one of those which

determine the form and position of the conducting circuits. This

is a force in the ordinary sense, a tendency towards change of

position. It is given by the equation

~~
dt dx dx

We may consider this force as the sum of three parts, corre-

sponding to the three parts into which we divided the kinetic

energy of the system, and we may distinguish them by the same

suffixes. Thus X' = X' + X' +X'

The part X'm is that which depends on ordinary dynamical

considerations, and we need not attend to it.

Since T
e
does not contain sc, the first term of the expression for

X'€ is zero, and its value is reduced to

X' = -^-
e dx

This is the expression for the mechanical force which must be

applied to a conductor to balance the electromagnetic force, and

it asserts that it is measured by the rate of diminution of the

purely electrokinetic energy due to the variation of the co-

ordinate x. The electromagnetic force, Xey which brings this

external mechanical force into play, is equal and opposite to

X\, and is therefore measured by the rate of increase of the

electrokinetic energy corresponding to an increase of the co-

ordinate x. The value of X
e , since it depends on squares and

products of the currents, remains the same if we reverse the

directions of all the currents.

The third part of X' is

XT/ d dl me Q>J- me
me ~ dt~aW dx
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The quantity Tme contains only products of the form xy, so that

dT—~ is a linear function of the strengths of the currents y. The
QjQG

first term, therefore, depends on the rate of variation of the

strengths of the currents, and indicates a mechanical force on

the conductor, which is zero when the currents are constant, and

which is positive or negative according as the currents are in-

creasing or decreasing in strength.

The second term depends, not on the variation of the currents,

but on their actual strengths. As it is a linear function with

respect to these currents, it changes sign when the currents

change sign. Since every term involves a velocity x, it is zero

when the conductors are at rest. There are also terms arising

dT
from the time variations of the coefficients of y in —j^- : these

remarks apply also to them.

We may therefore investigate these terms separately. If the

conductors are at rest, we have only the first term to deal with.

If the currents are constant, we have only the second.

574.] As it is of great importance to determine whether any

part of the kinetic energy is of the form Tme , consisting of pro-

ducts of ordinary velocities and strengths of electric currents, it

is desirable that experiments should be made on this subject with

great care.

The determination of the forces acting on bodies in rapid

motion is difficult. Let us therefore attend to the first term,

which depends on the variation of the strength of the current.

If any part of the kinetic energy depends on the product of

an ordinary velocity and the strength of a current, it will

probably be most easily observed when the velocity and the

current are in the same or in opposite directions. We therefore

take a circular coil of a great many windings, and suspend it by

a fine vertical wire, so that its windings are horizontal, and the

coil is capable of rotating about a vertical axis, either in the

same direction as the current in the coil, or in the opposite

direction.

We shall suppose the current to be conveyed into the coil by

means of the suspending wire, and, after passing round the

windings, to complete its circuit by passing downwards through

a wire in the same line with the suspending wire and dipping

into a cup of mercury.
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Since the action of the horizontal component of terrestrial

magnetism would tend to turn this coil round a horizontal axis

when the current flows through it, we shall suppose that the

horizontal component of terrestrial magnetism

is exactly neutralized by means of fixed

magnets, or that the experiment is made at

the magnetic pole. A vertical mirror is

attached to the coil to detect any motion in

azimuth.

Now let a current be made to pass through

the coil in the direction N.E.S.W. If elec-

tricity were a fluid like water, flowing along

the wire, then, at the moment of starting

the current, and as long as its velocity is

increasing, a force would require to be supplied

to produce the angular momentum of the fluid

in passing round the coil, and as this must be
supplied by the elasticity of the suspending

wire, the coil would at first rotate in the

apposite direction or W.S.E.N., and this

would be detected by means of the mirror.

On stopping the current there would be another

movement of the mirror, this time in the same direction as that
of the current.

No phenomenon of this kind has yet been observed. Such an
action, if it existed, might be easily distinguished from the
already known actions of the current by the following pecu-
liarities.

(1) It would occur only when the strength of the current
varies, as when contact is made or broken, and not when the
current is constant.

All the known mechanical actions of the current depend on
the strength of the currents, and not on the rate of variation.

The electromotive action in the case of induced currents cannot
be confounded with this electromagnetic action.

(2) The direction of this action would be reversed when that

of all the currents in the field is reversed.

All the known mechanical actions of the current remain the
same when all the currents are reversed, since they depend on
squares and products of these currents.

Fie. 33.
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If any action of this kind were discovered, we should be able

to regard one of the so-called kinds of electricity, either the

positive or the negative kind, as a real substance, and we should

be able to describe the electric current as a true motion of this

substance in a particular direction. In fact, if electrical motions

were in any way comparable with the motions of ordinary

matter, terms of the form Tme would exist, and their existence

would be manifested by the mechanical force Xme .

According to Fechner's hypothesis, that an electric current

consists of two equal currents of positive and negative elec-

tricity, flowing in opposite directions through "the same con-

ductor, the terms of the second class Tmt would vanish, each

term belonging to the positive current being accompanied by an

equal term of opposite sign belonging to the negative current,

and the phenomena depending on these terms would have no

existence.

It appears to me, however, that while we derive great ad-

vantage from the recognition of the many analogies between the

electric current and a current of material fluid, we must carefully

avoid making any assumption not warranted by experimental

evidence, and that there is, as yet, no experimental evidence to

shew whether the electric current is really a current of a material

substance, or a double current, or whether its velocity is great or

small as measured in feet per second.

A knowledge of these things would amount to at least the

beginnings of a complete dynamical theory of electricity, in

which we should regard electrical action, not, as in this treatise,

as a phenomenon due to an unknown cause, subject only to the

general laws of dynamics, but as the result of known motions of

known portions of matter, in which not only the total effects and

final results, but the whole intermediate mechanism and details of

the motion, are taken as the objects of study.

575.] The experimental investigation of the second term of

dTXme , namely -^, is more difficult, as it involves the observation

of the effect of forces on a body in rapid motion.

The apparatus shewn in Fig. 34, which I had constructed in

1861, is intended to test the existence of a force of this kind.

The electromagnet A is capable of rotating about the horizontal

axis BB\ within a ring which itself revolves about a vertical axis.
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Let A, B, C be the moments of inertia of the electromagnet

about the axis of the coil, the horizontal axis BB\ and a third

axis CC respectively.

Let be the angle which CC makes with the vertical,
<f>
the

azimuth of the axis BB\ and \\f a variable on which the motion
of electricity in the coil depends.

Fig. 34.

Then the kinetic energy T of the electromagnet may be written

2 T = A<j> 2 sin2 d + B62 + C<j>
2 cos2 +E (<j> sin 6 + f)

2
,

where E is a quantity which may be called the moment of inertia

of the electricity in the coil.

If is the moment of the impressed force tending to increase

0, we have, by the equations of dynamics,

d2

= £7772 — {(A — G)<t>
2 sin cos + E<j> cos e(<j> sin + v//)}.

By making *, the impressed force tending to increase
\f/,

equal

to zero, we obtain $sm0 + \j/ = y,



220 ELECTROKINETICS. [576.

a constant, which we may consider as representing the strength

of the current in the coil.

If G is somewhat greater than A ; will be zero, and the equi-

librium about the axis BB' will be stable when

• „ Eysm = 77^—j—. •

(C-A)(f>

This value of depends on that of y, the electric current, and

is positive or negative according to the direction of the current.

The current is passed through the coil by its bearings at B
and B', which are connected with the battery by means of springs

rubbing on metal rings placed on the vertical axis.

To determine the value of 6, a disk of paper is placed at C,

divided by a diameter parallel to BBr
into two parts, one of which

is painted red and the other green.

When the instrument is in motion a red circle is seen at C
when 6 is positive, the radius of which indicates roughly the

value of 6. When 6 is negative, a green circle is seen at C.

By means of nuts working on screws attached to the electro-

magnet, the axis GG' is adjusted to be a principal axis having

its moment of inertia just exceeding that round the axis A, so as

to make the instrument very sensitive to the action of the force

if it exists.

The chief difficulty in the experiments arose from the dis-

turbing action of the earth's magnetic force, which caused the

electromagnet to act like a dip-needle. The results obtained

were on this account very rough, but no evidence of any change

in 6 could be obtained even when an iron core was inserted in

the coil, so as to make it a powerful electromagnet.

If, therefore, a magnet contains matter in rapid rotation, the

angular momentum of this rotation must be very small com-

pared with any quantities which we can measure, and we have
as yet no evidence of the existence of the terms Tme derived from

their mechanical action.

576.] Let us next consider the forces acting on the currents of

electricity, that is, the electromotive forces.

Let Y be the effective electromotive force due to induction,

the electromotive force which must act on the circuit from

without to balance it is F'= — F, and, by Lagrange's equation,

Y--T--- ~ —~~ —
dtdy dy
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Since there are no terms in T involving the coordinate y, the

second term is zero, and Y is reduced to its first term. Hence,

electromotive force cannot exist in a system at rest, and with
constant currents.

Again, if we divide Y into three parts, Ym , Y„ and Ywe ,

corresponding to the three parts of T, we find that, since Tm
does not contain y, Ym = 0.

We also find r=-$^s.
dT at dy

Here -=-^ is a linear function of the currents, and this part of

the electromotive force is equal to the rate of change of this

function. This is the electromotive force of induction dis-

covered by Faraday. We shall consider it more at length
afterwards.

577.] From the part of T, depending on velocities multiplied

d d'F
by currents, we find Y^ = — -—-2?

.

jrp dt dy
Now—p^ is a linear function of the velocities of the con-

ductors. If, therefore, any terms of Tme have an actual existence,
it would be possible to produce an electromotive force indepen-
dently of all existing currents by simply altering the velocities

of the conductors. For instance, in the case of the suspended
coil at Art. 574, if, when the coil is at rest, we suddenly set it in
rotation about the vertical axis, an electromotive force would be
called into action proportional to the acceleration of this motion.
It would vanish when the motion became uniform, and be re-

versed when the motion was retarded.

Now few scientific observations can be made with greater pre-
cision than that which determines the existence or non-existence
of a current by means of a galvanometer. The delicacy of this

method far exceeds that of most of the arrangements for

measuring the mechanical force acting on a body. If, therefore,

any currents could be produced in this way they would be de-
tected, even if they were very feeble. They would be distin-

guished from ordinary currents of induction by the following
characteristics.

(1) They would depend entirely on the motions of the con-
ductors, and in no degree on the strength cf currents or magnetic
forces already in the field.
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(2) They would depend not on the absolute velocities of the

conductors, but on their accelerations, and on squares and

products of velocities, and they would change when the accelera-

tion becomes a retardation, though the absolute velocity is the

same.

Now in all the cases actually observed, the induced currents

depend altogether on the strength and the variation of currents

in the field, and cannot be excited in a field devoid of magnetic

force and of currents. In so far as they depend on the motion

of conductors, they depend on the absolute velocity, and not on

the change of velocity of these motions.

We have thus three methods of detecting the existence of the

terms of the form Tme , none of which have hitherto led to any

positive result. I have pointed them out with the greater care

because it appears to me important that we should attain the

oreatest amount of certitude within our reach on a point bearing

so strongly on the true theory of electricity.

Since, however, no evidence has yet been obtained of such

terms, I shall now proceed on the assumption that they do not

exist, or at least that they produce no sensible effect, an assump-

tion which will considerably simplify our dynamical theory.

We shall have occasion, however, in discussing the relation of

magnetism to light, to shew that the motion which constitutes

light may enter as a factor into terms involving the motion

which constitutes magnetism.
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THEOKY OF ELECTEIO CIRCUITS.

578.] We may now confine our attention to that part of the
kinetic energy of the system which depends on squares and
products of the strengths of the electric currents. We may call

this the Electrokinetic Energy of the system. The part de-
pending on the motion of the conductors belongs to ordinary
dynamics, and we have seen that the part depending on products
of velocities and currents does not exist.

Let A lt A 2 , &c. denote the different conducting circuits. Let
their form and relative position be expressed in terms of the
variables xlt x.,, &c. the number of which is equal to the number
of degrees of freedom of the mechanical system. We shall call

these the Geometrical Variables.

Let
2/1 denote the quantity of electricity which has crossed

a given section of the conductor A
t
since the beginning of the

time t. The strength of the current will be denoted by^, the
fluxion of this quantity.

We shall call yx
the actual current, and yl

the integral cur-
rent. There is one variable of this kind for each circuit in the
system.

Let T denote the electrokinetic energy of the system. It is

a homogeneous function of the second degree with respect to the
strengths of the currents, and is of the form

2
7=U1^ +H2h2 + &c. + Jfla jj2 + &c, (1

)

where the coefficients L, M, &c. are functions of the geometrical
variables x

x , x2 , &c. The electrical variables y1} y2
do not enter

into the expression.

We may call L1} X2 , &c. the electric moments of inertia of the

circuits A lt A 2 , &c, and Ml2 the electric product of inertia of the

two circuits A
x
and A

2 . When we wish to avoid the language of
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the dynamical theory, we shall call L
x
the coefficient of self-

induction of the circuit A x , and Mx2
the coefficient of mutual

induction of the circuits A
x
and A 2 . Mn is also called the poten-

tial of the circuit A x
with respect to A 2 . These quantities depend

only on the form and relative position of the circuits. We shall

find that in the electromagnetic system of measurement they are

quantities of the dimension of a line. See Art. 627.

By differentiating T with respect to yx
we obtain the quantity

p x , which, in the dynamical theory, may be called the mo-

mentum corresponding to yv In the electric theory we shall

call p x
the electrokinetic momentum of the circuit A x . Its

value is Pl
- L

x yx
+MX2y2 + &c.

The electrokinetic momentum of the circuit A
x

is therefore

made up of the product of its own current into its coefficient

of self-induction, together with the sum of the products of the

currents in the other circuits, each into the coefficient of mutual

induction of A x
and that other circuit.

Electromotive Force.

579.] Let Ehe the impressed electromotive force in the circuit

A, arising from some cause, such as a voltaic or thermo-electric

battery, which would produce a current independently of mag-

neto-electric induction.

Let R be the resistance of the circuit, then, by Ohm's law, an

electromotive force Ry is required to overcome the resistance,

leaving an electromotive force E—Ry available for changing the

momentum of the circuit. Calling this force Y\ we have, by

the general equations,

T=z dp_dT f

dt dy

but since T does not involve y, the last term disappears.

Hence, the equation of electromotive force is

The impressed electromotive force E is therefore the sum of

two parts. The first, Ry, is required to maintain the current y
against the resistance R. The second part is required to
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increase the electromagnetic momentum p. This is the electro-

motive force which must be supplied from sources independent

of magneto-electric induction. The electromotive-force arising

from magneto-electric induction alone is evidently — -p , or,
cue

the rate of decrease of the electrokinetic momentum of the cir-

cuit.

Electromagnetic Force.

580.] Let X' be the impressed mechanical force arising from
external causes, and tending to increase the variable x. By the

general equations

T= ddT _dT
dt dx dx

Since the expression for the electrokinetic energy does not
contain the velocity (x), the first term of the second member
disappears, and we find

X'= - —

.

dx

Here X f
is the external force required to balance the forces

arising from electrical causes. It is usual to consider this force

as the reaction against the electromagnetic force, which we shall

call JT, and which is equal and opposite to Xr
.

Hence X = ^,
dx

or, the electromagnetic force tending to increase any variable is

equal to the rate of increase of the electrokinetic energy per unit
increase of that variable, the currents being maintained constant.

If the currents are maintained constant by a battery during a
displacement in which a quantity, W, of work is done by electro-

motive force, the electrokinetic energy of the system will be at

the same time increased by W. Hence the battery will be
drawn upon for a double quantity of energy, or 2 W, in addition
to that which is spent in generating heat in the circuit. This
was first pointed out by Sir W. Thomson*. Compare this

result with the electrostatic property in Art. 93.

* Nichol's Cyclopaedia of the Physical Sciences, ed. 1860, article ' Magnetism,
Dynamical Eelations of.'
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Case of Two Circuits.

581.] Let A
1
be called the Primary Circuit, and A2

the

Secondary Circuit. The electrokinetic energy of the system

may be written

where L and N are the coefficients of self-induction of the

primary and secondary circuits respectively, and M is the co-

efficient of their mutual induction.

Let us suppose that no electromotive force acts on the

secondary circuit except that due to the induction of the primary

current. We have then

Integrating this equation with respect to t, we have

B^y^ +M^ +N^— C, a constant,

where y%
is the integral current in the secondary circuit.

The method of measuring an integral current of short duration

will be described in Art. 748, and it is easy in most cases to

ensure that the duration of the secondary current shall be very

short.

Let the values of the variable quantities in the equation at the

end of the time t be accented, then, if y2 is the integral current,

or the whole quantity of electricity which flows through a section

of the secondary circuit during the time t,

Z*V*= M^ +N^-iMW + N'ti).

If the secondary current arises entirely from induction, its

initial value y2 must be zero if the primary current is constant,

and the conductors are at rest before the beginning of the time t.

If the time t is sufficient to allow the secondary current to die

away, y2
', its final value, is also zero, so that the equation becomes

R2y2
= M^-M'^'.

The integral current of the secondary circuit depends in this

case on the initial and final values of Myx .

Induced Currents.

582.] Let us begin by supposing the primary circuit broken,

or yx
= 0, and let a current y{ be established in it when contact

is made.
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The equation which determines the secondary integral current

is R2y2 = -M^.
When the circuits are placed side by side, and in the same

direction, M' is a positive quantity. Hence, when contact is

made in the primary circuit, a negative current is induced in

the secondary circuit.

When the contact is broken in the primary circuit, the primary
current ceases, and the induced integral current is y2t where

R
2y2=Myx .

The secondary current is in this case positive.

If the primary current is maintained constant, and the form
or relative position of the circuits altered so that M becomes Mf

,

the integral secondary current is y2i where

B
2y2=(M-Myv

In the case of two circuits placed side by side and in the same
direction M diminishes as the distance between the circuits in-

creases. Hence, the induced current is positive when this

distance is increased and negative when it is diminished.

These are the elementary cases of induced currents described
in Art. 530.

Mechanical Action between the Two Circuits.

583.] Let x be any one of the geometrical variables on which
the form and relative position of the circuits depend, the electro-

magnetic force tending to increase x is

y x . 2
dL

. . dM . 9dNz-Me+wte + w-s;'
If the motion of the system corresponding to the variation of

x is such that each circuit moves as a rigid body, L and N will

be independent of x, and the equation will be reduced to the form

v . . dMZ ='**&'
Hence, if the primary and secondary currents are of the same

sign, the force X, which acts between the circuits, will tend to
move them so as to increase M.

If the circuits are placed side by side, and the currents flow
in the same direction, M will be increased by their being
brought nearer together. Hence the force X is in this case an
attraction.
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584.] The whole of the phenomena of the mutual action of

two circuits, whether the induction of currents or the mechanical

force between them, depend on the quantity M, which we have

called the coefficient of mutual induction. The method of calcu-

lating this quantity from the geometrical relations of the circuits

is given in Art. 524, but in the investiga-

tions of the next chapter we shall not

assume a knowledge of the mathematical

form of this quantity. We shall consider

it as deduced from experiments on in-

duction, as, for instance, by observing

the integral current when the secondary

y I y circuit is suddenly moved from a given

I LB position to an infinite distance, or to

P
l PI WON nlL? any position in which we know that

Jt I I Note.— {There is a model in the Cavendish

^|| 1 |l
' Laboratory designed by Maxwell which illustrates

very clearly the laws of the induction of currents.

It is represented in Fig. 84 a. P and Q are two

disks, the rotation of P represents the primary

current, that of Q the secondary. These disks

are connected together by a differential gearing.

The intermediate wheel carries a fly-wheel the

moment of inertia of which can be altered by

moving weights inwards or outwards. The resistance

of the secondary circuit is represented by the friction

of a string passing over Q and kept tight by an

Fig. 34 a. elastic band. If the disk P is set in rotation (a

current started in the primary) the disk Q will turn

in the opposite direction (inverse current when the primary is started). When the

velocity of rotation of P becomes uniform, Q is at rest (no current in the

secondary when the primary current is constant) ; if the disk P is stopped, Q
commences to rotate in the direction in which P was previously moving (direct

current in the secondary on breaking the circuit). The effect of an iron core in

increasing the induction can be illustrated by increasing the moment of inertia of the

fly-wheel.}



CHAPTER VIII.

EXPLOEATION OP THE PIELD BY MEANS OP THE SECONDARY

CIBCUIT.

585.] We have proved in Arts. 582, 583, 584 that the electro-

magnetic action between the primary and the secondary circuit

depends on the quantity denoted by M, which is a function of

the form and relative position of the two circuits.

Although this quantity M is in fact the same as the potential

of the two circuits, the mathematical form and properties of

which we deduced in Arts. 423, 492, 521, 539 from magnetic

and electromagnetic phenomena, we shall here make no reference

to these results, but begin again from a new foundation, without

any assumptions except those of the dynamical theory as stated

in Chapter VII.

The electrokinetic momentum of the secondary circuit consists

of two parts (Art. 578), one, Milt depending on the primary

current ilt while the other, Ni2 , depends on the secondary current

i2 . We are now to investigate the first of these parts, which
we shall denote by p, where

p — Mi
k

. (1)

We shall also suppose the primary circuit fixed, and the

primary current constant. The quantity p, the electrokinetic

momentum of the secondary circuit, will in this case depend only

on the form and position of the secondary circuit, so that if any
closed curve be taken for the secondary circuit, and if the direc-

tion along this curve, which is to be reckoned positive, be chosen,

the value of p for this closed curve is determinate. If the

opposite direction along the curve had been chosen as the

positive direction, the sign of the quantity p would have been

reversed.



230 ELECTROMAGNETIC FIELD. [5^8.

586.] Since the quantity p depends on the form and position

of the circuit, we may suppose that each portion of the circuit

contributes something to the value of p, and that the part con-

tributed by each portion of the circuit depends on the form and

position of that portion only, and not on the position of other

parts of the circuit.

This assumption is legitimate, because we are not now con-

sidering a current, the parts of which may, and indeed do, act on

one another, but a mere circuit, that is, a closed curve along

which a current may flow, and this is a purely geometrical

figure, the parts of which cannot be conceived to have any

physical action on each other.

We may therefore assume that the part contributed by the

element ds of the circuit is Jds, where J is a quantity depend-

ing on the position and direction of the element da. Hence, the

value of p may be expressed as a line-integral

p = fjds, (
2
)

where the integration is to be extended once round the circuit.

587.1 We have next to determine the form of the quantity J.

In the first place, if d s is reversed in direction, J is reversed in

sign. Hence, if two circuits ABCE and AECD
have the arc AEC common, but reckoned in

opposite directions in the two circuits, the sum

of the values of p for the two circuits ABCE
I If 1

Fig. 35. and AECD will be equal to the value of p for

the circuit ABCD, which is made up of the two circuits.

For the parts of the line-integral depending on the arc AEC

are equal but of opposite sign in the two partial circuits, so that

they destroy each other when the sum is taken, leaving only

those parts of the line-integral which depend on the external

boundary of ABCD.
In the same way we may shew that if a surface bounded by a

closed curve be divided into any number of parts, and if the

boundary of each of these parts be considered as a circuit, the

positive direction round every circuit being the same as that

round the external closed curve, then the value of p for the

closed curve is equal to the sum of the values of p for all the

circuits. See Art. 483.

588.] Let us now consider a portion of a surface, the dimen-
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sions of which are so small with respect to the principal radii of

curvature of the surface that the variation of the direction of the

normal within this portion may be neglected. We shall also

suppose that if any very small circuit be carried parallel to

itself from one part of this portion to another, the value ofp for

the small circuit is not sensibly altered. This will evidently be
the case if the dimensions of the portion of surface are small

enough compared with its distance from the primary circuit.

If any closed curve be drawn on this portion of the surface,

the value ofp will be proportional to its area.

For the areas of any two circuits may be divided into small

elements all of the same dimensions, and having the same value

of p. The areas of the two circuits are as the numbers of these

elements which they contain, and the values of p for the two
circuits are also in the same proportion.

Hence, the value of p for the circuit which bounds any
element dS of a surface is of the form

IdS,

where / is a quantity depending on the position of dS and on
the direction of its normal. We have therefore a new expression

p =jJldS, (3)

where the double integral is extended over any surface bounded
by the circuit.

589.] Let ABCD be a circuit, of which AC is an elementary

portion, so small that it may be considered

straight. Let APB and CQB be small equal

areas in the same plane, then the value ofp will

be the same for the small circuits APB and CQB,

or p(APB) = p{CQB).

Hence p(APBQCD) = p(ABQCD) +p(APB),
= p(ABQCD)+p(CQB),

= p(ABCD),
Flg' 86-

or the value ofp is not altered by the substitution of the crooked
line APQC for the straight line AC, provided the area of the
circuit is not sensibly altered. This, in fact, is the principle
established by Ampere's second experiment (Art. 506), in which
a crooked portion of a circuit is shewn to be equivalent to a
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straight portion provided no part of the crooked portion is at a

sensible distance from the straight portion.

If therefore we substitute for the element ds three small

elements, dx, dy, and dz, drawn in succession, so as to form a

continuous path from the beginning to the end of the element ds,

and if Fdx, Gdy, and Hdz denote the elements of the line-

integral corresponding to dx, dy, and dz respectively, then

Jds = Fdx+Gdy+ Hdz. (4)

590.1 We are now able to determine the mode in which the

quantity J depends on the direction of the element ds. For,

by (4),
j=F te

+ G%+H't. (5)
ds ds ds

This is the expression for the resolved part, in the direction of

ds, of a vector, the components of which, resolved in the direc-

tions of the axes of x, y, and z, are F, G, and H respectively.

If this vector be denoted by SI, and the vector from the origin

to a point of the circuit by p, the element of the circuit will be

dp, and the quaternion expression for Jds will be

-S.Wdp.

We may now write equation (2) in the form

or p = - fsMdp. (?)

The vector SI and its constituents F, G, H depend on the

position of ds in the field, and not on the direction in which

it is drawn. They are therefore functions of x, y, z, the co-

ordinates of ds, and not of I, m, n, its direction-cosines.

The vector 21 represents in direction and magnitude the time-

integral of the electromotive intensity which a particle placed at

the point (x, y, z) would experience if the primary current were

suddeoly stopped. We shall therefore call it the Electrokinetic

Momentum at the point (x, y, z). It is identical with the

quantity which we investigated in Art. 405 under the name

of the vector-potential of magnetic induction.

The electrokinetic momentum of any finite line or circuit is

the line-integral, extended along the line or circuit, of the

resolved part of the electrokinetic momentum at each point of

the same.
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591.] Let us next determine the value ofp for the elementary
rectangle ABGJD, of which the sides are dy and dz, the positive
direction being from the direction of the

axis of y to that of z.

Let the coordinates of 0, the centre of

gravity of the element, be x
, y , z , and

let G , H be the values of G and of H
at this point.

The coordinates of A, the middle point
of the first side of the rectangle, are y

and z —-dz. The corresponding value of G is

ldG

Fig. 37.

G=Gn

2 dz
dz + &c, (8)

and the part of the value of p which arises from the side A is

approximately G dy - \
d
^dydz.

(9)

Similarly, for B,

» 2 dz

forC, -G dy~l^ dydz,

forA -H dz+\^dydz.

Adding these four quantities, we find the value of p for the
rectangle, viz. dH dQp= ^--dz-) dy dz-

(
10

)

If we now assume three new quantities, a, b, c, such that

dH^dG \

dy dz
'

dF_ dH
dz ~dx

'

dG dF
dx dy

'

and consider these as the constituents of a new vector 93, then
by Theorem IV, Art. 24, we may express the line-integral of 2[

round any circuit in the form of the surface-integral of 33 over a
surface bounded by the circuit, thus

b =

c =

(A)

p -/( da ds ds
)ds =

J
(la + mb + 7ic)d8, (11)
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or p = fa. 21 cos eds = ffT. 33 cos v dS, (12)

where e is the angle between SI and ds, and tj that between

23 and the normal to dS, whose direction-cosines are I, m, n,

and T . 21, T . 33 denote the numerical values of 21 and 33.

Comparing this result with equation (3), it is evident that the

quantity I in that equation is equal to 33 cos y, or the resolved

part of 33 normal to dS.

592.] We have already seen (Arts. 490, 541) that, according to

Faraday's theory, the phenomena of electromagnetic force and

induction in a circuit depend on the variation of the number of

lines of magnetic induction which pass through the circuit.

Now the number of these lines is expressed mathematically

by the surface-integral of the magnetic induction through any

surface bounded by the circuit. Hence, we must regard the

vector 33 and its components a, b, c as representing what we

are already acquainted with as the magnetic induction and its

components.

In the present investigation we propose to deduce the pro-

perties of this vector from the dynamical principles stated in

the last chapter, with as few appeals to experiment as possible.

In identifying this vector, which has appeared as the result of

a mathematical investigation, with the magnetic induction, the

properties of which we learned from experiments on magnets,

we do not depart from this method, for we introduce no new

fact into the theory, we only give a name to a mathematical

quantity, and the propriety of so doing is to be judged by the

agreement of the relations of the mathematical quantity with

those of the physical quantity indicated by the name.

The vector 33, since it occurs in a surface-integral, belongs

evidently to the category of fluxes described in Art. 12. The

vector 21, on the other hand, belongs to the category of forces,

since it appears in a line-integral.

593.] We must here recall to mind the conventions about

positive and negative quantities and directions, some of which

were stated in Art. 23. We adopt the right-handed system of

axes, so that if a right-handed screw is placed in the direction of

the axis of x, and a nut on this screw is turned in the positive

direction of rotation, that is, from the direction of y to that of z,

it will move along the screw in the positive direction of x.
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We also consider vitreous electricity and austral magnetism

as positive. The positive direction of an electric current, or

of a line of electric induction, is the direction in which positive

electricity moves or tends to move, and the positive direction of

a line of magnetic induction is the direction in which a compass

needle points with that end which turns to the north. See

Fig. 24, Art. 498, and Fig. 25, Art. 501.

The student is recommended to select whatever method ap-

peal's to him most effectual in order to fix these conventions

securely in his memory, for it is far more difficult to remember

a rule which determines in which of two previously indifferent

ways a statement is to be made, than a rule which selects one

way out of many.

Fig. 38.

594.] We have next to deduce from dynamical principles the

expressions for the electromagnetic force acting on a conductor

carrying an electric current through the magnetic field, and for

the electromotive force acting on the electricity within a body

moving in the magnetic field. The mathematical method which

we shall adopt may be compared with the experimental method

used by Faraday* in exploring the field by means of a wire,

and with what we have already done in Art. 490, by a method

founded on experiments. What we have now to do is to

determine the effect on the value of p, the electrokinetic

momentum of the secondary circuit, due to given alterations

of the form of that circuit.

Let AA'
'
, BB' be two parallel straight conductors connected

by the conducting arc C, which may be of any form, and by
a straight conductor AB, which is capable of sliding parallel

to itself along the conducting rails AA' and BB'.

* Exp. Res., 3082, 3087, 3118.
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Let the circuit thus formed be considered as the secondary-

circuit, and let the direction ABC be assumed as the positive

direction round it.

Let the sliding piece move parallel to itself from the position

AB to the position A'B'. We have to determine the variation

of p, the electrokinetic momentum of the circuit, due to this

displacement of the sliding piece.

The secondary circuit is changed from ABC to A'B'G, hence,

by Art. 587, p (A'B'C)-p (ABC) = p (AA'B'B). (1 3)

We have therefore to determine the value ofp for the parallel-

ogram AA'B'B. If this parallelogram is so small that we may

neglect the variations of the direction and magnitude of the

magnetic induction at different points of its plane, the value

of p is, by Art. 591, 93 cos r\ . AA'B'B, where 33 is the magnetic

induction, and tj the angle which it makes with the positive

direction of the normal to the parallelogram AA'B'B.

We may represent the result geometrically by the volume of

the parallelepiped, whose base is the parallelogram AA'B'B,

and one of whose edges is the line AM, which represents in

direction and magnitude the magnetic induction S3. If the

parallelogram is in the plane of the paper, and if AM is drawn

upwards from the paper, or more generally, if the directions of

the circuit AB, of the magnetic induction AM, and of the dis-

placement AA', form a right-handed system when taken in this

cyclical order, the volume of the parallelepiped is to be taken

positively.

The volume of this parallelepiped represents the increment of

the value of p for the secondary circuit due to the displacement

of the sliding piece from AB to A!B'.

Electromotive Force acting on the Sliding Piece.

595.] The electromotive force produced in the secondary

circuit by the motion of the sliding piece is, by Art. 579,

*—% <">

If we suppose AA' to be the displacement in unit of time,

then AA' will represent the velocity, and the parallelepiped will

represent ^, and therefore, by equation (14), the electromotive

force in the negative direction BA.



597*] MAGNETIC INDUCTION. 237

Hence, the electromotive force acting on the sliding piece AB,
in consequence of its motion through the magnetic field, is

represented by the volume of the parallelepiped, whose edges

represent in direction and magnitude—the velocity, the mag-
netic induction, and the sliding piece itself, and is positive when
these three directions are in right-handed cyclical order.

Electromagnetic Force acting on the Sliding Piece.

596.] Let i2 denote the current in the secondary circuit in the

positive direction ABC, then the work done by the electro-

magnetic force on AB while it slides from the position AB to

the position A'B' is (M'—M) i
x

i2 , where M and if are the

values of M12 in the initial and final positions of AB. But
{M—M) ix is equal to p'—p, and this is represented by the

volume of the parallelepiped on AB, AM, and A A'. Hence, if

we draw a line parallel to AB to represent the quantity AB . i2 ,

the parallelepiped contained by this line, by AM, the magnetic

induction, and by AA', the displacement, will represent the

work done during this displacement.

For a given distance of displacement this will be greatest

when the displacement is perpendicular to the parallelogram

whose sides are AB and AM. The electromagnetic force is

therefore represented by the area of the parallelogram on AB
and AM multiplied by i

2 , and is in the direction of the normal
to this parallelogram, drawn so that AB, AM, and the normal
are in right-handed cyclical order.

Four Definitions of a Line of Magnetic Induction.

597.] If the direction AA', in which the motion of the sliding

piece takes place, coincides with AM, the direction of the mag-
netic induction, the motion of the sliding piece will not call

electromotive force into action, whatever be the direction of AB,
and if AB carries an electric current there will be no tendency

to slide along AA'.

Again, if AB, the sliding piece, coincides in direction with

AM, the direction of magnetic induction, there will be no elec-

tromotive force called into action by any motion of AB, and
a current through AB will not cause AB to be acted on by
mechanical force.
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We may therefore define a line of magnetic induction in four

different ways. It is a line such that

(1) If a conductor be moved along it parallel to itself it will

experience no electromotive force.

(2) If a conductor carrying a current be free to move along

a line of magnetic induction it will experience no tendency to

do so.

(3) If a linear conductor coincide in direction with a line of

magnetic induction, and be moved parallel to itself in any direc-

tion, it will experience no electromotive force in the direction of

its length.

(4) If a linear conductor carrying an electric current coincide

in direction with a line of magnetic induction it will not ex-

perience any mechanical force.

General Equations of Electromotive Intensity.

598.] We have seen that E, the electromotive force due to in-

duction acting on the secondary circuit, is equal to — ~ , where

j-/^ +"£+*&* «
To determine the value of E, let us differentiate the quantity

under the integral sign with respect to t, remembering that if the

secondary circuit is in motion, x, y, and z are functions of the

time. We obtain

_ r,dFdx dGdy dHdz^.,
~~~J^dt ds dt ds dt ds*

r,dFdx dGdy dH dz\dx

J^dx ds dx ds dx ds ' dt

r,dF dx dG dy dH dz\dy ,

J ^ dy ds dy ds dy ds ' dt

dF dx dGdy dHdz\dz ,

dz ds dz ds dz ds' dt

' dsdt dsdt dsdt' ' ^ '

Now consider the second line of the integral, and substitute

d C d TT
from equations (A), Art. 591, the values of -j-

t
and -5—

• This
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line then becomes,

dy ,dz dFdx dFdy dFdz^dx
-/(< ds dx ds dy ds dz ds* dt '

which we may write

dy h dz dF^dXjr, dy .ydz dj<\

J V ds ds ds

'

dt

Treating the third and fourth lines in the same way, and col-

CLOfs Cult (1/2/

lecting the terms in -j- » -~- » and -j- > remembering that

P/dFdx -c^scn, 7 „dx ,„.

and therefore that the integral, when taken round the closed

curve, vanishes,

r, r, dy , dz dF^dx ,s
-J(.

e -£- b#-#)**•
r, dz dx dO s dy ,

+
J(

aM- e dt-w)ck ds

P/j dx dy dH\dz 7 /A ,

+
j(

b
di- a$-luhs

ds- <4)

We may write this expression in the form

t

dx dy T>dz-

*-/cps + «2 +s5)* (5)

where F-M-r - c
dt

, dz dF
oH~~dt

n dzQ=a
di-

dx dO
~ C

dt~ ~dt

*-**- dy dH
~ a

dt dt

air w Equations of
— —— — -j— i V Electromotive (15)

"'
Intensity.

dV
dx

dy

d*
dz

The terms involving the new quantity * are introduced for

the sake of giving generality to the expressions for P, Q, B.

They disappear from the integral when extended round the

closed circuit. The quantity * is therefore indeterminate as far

as regards the problem now before us, in which the electro-

motive force round the circuit is to be determined. We shall

find, however, that when we know all the circumstances of the

problem, we can assign a definite value to *£, and that it re-

presents, according to a certain definition, the electric potential

at the point (x, y, z)

.
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The quantity under the integral sign in equation (5) re-

presents the electromotive intensity acting on the element ds

of the circuit.

If we denote by T . (§., the numerical value of the resultant of

P, Q, and R, and by e, the angle between the direction of this

resultant and that of the element ds, we may write equation (5),

E= fT.® cos ids. (6)

The vector @ is the electromotive intensity at the moving

element ds. Its direction and magnitude depend on the position

and motion of ds, and on the variation of the magnetic field, but

not on the direction of ds. Hence we may now disregard the

circumstance that ds forms part of a circuit, and consider it

simply as a portion of a moving. body, acted on by the electro-

motive intensity <£. The electromotive intensity has already

been defined in Art. 68. It is also called the resultant electrical

intensity, being the force which would be experienced by a unit

of positive electricity placed at that point. We have now ob-

tained the most general value of this quantity in the case of

a body moving in a magnetic field due to a variable electric

system.

If the body is a conductor, the electromotive force will pro-

duce a current ; if it is a dielectric, the electromotive force will

produce only electric displacement.

The electromotive intensity, or the force on a particle, must be

carefully distinguished from the electromotive force along an arc

of a curve, the latter quantity being the line-integral of the

former. See Art. 69.

599.] The electromotive intensity, the components of which are

defined by equations (B), depends on three circumstances. The

first of these is the motion of the particle through the magnetic

field. The part of the force depending on this motion is ex-

pressed by the first two terms on the right of each equation. It

depends on the velocity of the particle transverse to the lines of

magnetic induction. If © is a vector representing the velocity,

and S3 another representing the magnetic induction, then if (St
is

the part of the electromotive intensity depending on the motion,

<$
X
=V.®%, (

7
)

or, the electromotive intensity is the vector part of the product

of the magnetic induction multiplied by the velocity, that is to
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say, the magnitude of the electromotive intensity is represented by
the area of the parallelogram, whose sides represent the velocity

and the magnetic induction, and its direction is the normal to

this parallelogram, drawn so that the velocity, the magnetic in-

duction, and the electromotive intensity are in right-handed

cyclical order.

The third term in each of the equations (B) depends on the

time-variation of the magnetic field. This may be due either

to the time-variation of the electric current in the primary

circuit, or to motion of the primary circuit. Let @2
be the part

of the electromotive intensity which depends on these terms.

Its components are

__dF _dG
} d _^,

dt dt dt

d%
and these are the components of the vector, — ~7r or — 2f.

Hence, &, = -& (8)

The last term of each equation (B) is due to the variation of

the function ^ in different parts of the field. We may write

the third part of the electromotive intensity, which is due to this

cause, (S
3
= _ v*. (9)

The electromotive intensity, as defined by equations (B), may
therefore be written in the quaternion form,

(g = F.@33-Sl-V*. (10)

On the Modification of the Equations of Electromotive Intensity

when the Axes to which they are referred are moving in Space.

600.] Let x', y', z' be the coordinates of a point referred to a

system of rectangular axes moving in space, and let x, y, z be the

coordinates of the same point referred to fixed axes.

Let the components of the velocity of the origin of the moving

system be u, v, w, and those of its angular velocity u>
x , a>

2 , a>
3

referred to the fixed system of axes, and let us choose the fixed

axes so as to coincide at the given instant with the moving

ones, then the only quantities which will be different for the two

systems of axes will be those differentiated with respect to the

bx
time. If — denotes a component velocity at a point moving

dor dx
in rigid connexion with the moving axes, and -j? and —rr those



242 ELECTKOMAGNETIC FIELD. [600.

of any moving point, having the same instantaneous position,

referred to the fixed and the moving axes respectively, then

dx _ bx dx' . »

dt
=z

Ji
+

~dt'
{ '

with similar equations for the other components.

By the theory of the motion of a body of invariable form,

bx— = u + b>
2
z-uB y,

-|= v + w
3x - co

x z, J-
(2)

bz

Since J7
is a component of a directed quantity parallel to x, if

dF' dF
— ,- be the value of -rr referred to the moving axes, it may be

shewn that

dF' dFbx dFby dFbz n „ dF .

~df
=
d^U +

djjlt
+

~dz~Tt
+ G^- H^ + ~dt' (

3
)

d F dF
Substituting for -y- and —=— their values as deduced from the

° ay dz

equations (A) of magnetic induction, and remembering that, by (2),

d bx _ d by _ d bz _ , .

d^U~°' dxti~
a

*' faTt~~
,°" {)

we find

dF _dFbx ¥ dbx dOby p d by dHbz d bz

dt ~~ dx bt dxbt dx bt dxbt dx bt dxbt

by , bz dF

If we now put hx hy , z-*- F
~bt

+ G u +H bi'
(6 >

dF _ d*' by .bz dF
dt ~~ dx~ C

bt
+b

bi
+

dt' W
The equation for P, the component of the electromotive inten-

sity parallel to x, is, by (B),

dt dt dt dx* ^ '

referred to the fixed axes. Substituting the values of the quanti-

ties as referred to the moving axes, we have
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eft/
h
dz' dF d(* + V)^~ C

~dt~°~dt dt~ dx ' W
for the value of P referred to the moving axes.

601.] It appears from this that the electromotive intensity is

expressed by a formula of the same type, whether the motions

of the conductors be referred to fixed axes or to axes moving in

space, the only difference between the formulae being that in

the case of moving axes the electric potential * must be changed

into V + V.
In all cases in which a current is produced in a conducting

circuit, the electromotive force is the line-integral

taken round the curve. The value of 4* disappears from this

integral, so that the introduction of ¥' has no influence on its

value. In all phenomena, therefore, relating to closed circuits

and the currents in them, it is indifferent whether the axes

to which we refer the system be at rest or in motion. See

Art. 668.

On the Electromagnetic Force acting on a Conductor ivhich

carries an Electric Current through a Magnetic Field.

602.] We have seen in the general investigation, Art. 583, that

if x
L

is one of the variables which determine the position and

form of the secondary circuit, and if Xx is the force acting on

the secondary circuit tending to increase this variable, then

v dM . .*!=^V (1)

Since ix is independent of x
x , we may write

*w-/(jt + »£ + *!)* w
and we have for the value of X

x ,

^4A4>4:+4> «
Now let us suppose that the displacement consists in moving

every point of the circuit through a distance h x in the direction

of £C, hx being any continuous function of s, so that the different

parts of the circuit move independently of each other, while the

circuit remains continuous and closed.
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Also let X be the total force in the direction of x acting on

the part of the circuit from s = to s = s, then the part corre-

dX
sponding to the element ds will be -7- ds. We shall then have

the following expression for the work done by the force during

the displacement,

J ds V dbx^ ds ds ds'

where the integration is to be extended round the closed curve,

remembering that bx is an arbitrary function of s. We may

therefore perform the differentiation with respect to 5 a? in the

same way that we differentiated with respect to t in Art. 598,

remembering that

dx „ dy , dz /R s

We thus find

I" >* ds =^t - »
d£)^+Hflw- (•>

The last term vanishes when the integration is extended

round the closed curve, and since the equation must hold for all

forms of the function bx, we must have

dX . f dy ,dzs . .

an equation which gives the force parallel to x on any unit

element of the circuit. The forces parallel to y and z are

dY . / dz dx^ . >

dF = ^(aS- c s)' (8)

dZ . (.. dx dy^ , .

-^ =^b
Ts-

a
ds>-

_

(9)

The resultant force on the element is given in direction and

magnitude by the quaternion expression i2 V. dp%$, where i2 is the

numerical measure of the current, and dp and S3 are vectors

representing the element of the circuit and the magnetic in-

duction, and the multiplication is to be understood in the Hamil-

tonian sense.

603.] If the conductor is to be treated not as a line but as a

body, we must express the force on the element of length, and the

current through the complete section, in terms of symbols denoting

the force per unit of volume, and the current per unit of area.

Let X, F, Z now represent the components of the force referred
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to unit of volume, and u, v, w those of the current referred to

unit of area. Then, if S represents the section of the conductor,

which we shall suppose small, the volume of the element

ds will be Sds, and u = -^ -j- • Hence, equation (7) will become

*^=S(vc-wb), (10)

!

(Equations of

Electromagnetic (C)
Force.)

Here X, Y, Z are the components of the electromagnetic force

on an element of a conductor divided by the volume of that

element; u, v, w are the components of the electric current

through the element referred to unit of area, and a, b, c are the

components of the magnetic induction at the element, which are

also referred to unit of area.

If the vector $ represents in magnitude and direction the force

acting on unit of volume of the conductor, and if (£ represents

the electric current flowing through it,

8 = F.<£B. (11)

[The equations (B) of Art. 598 may be proved by the following method, derived
from Professor Maxwell's Memoir on A Dynamical Theory of the Electromagnetic
Field. Phil. Trans. 1865, pp. 459-512.
The time variation of —p may be taken in two parts, one of which depends and the

other does not depend on the motion of the circuit. The latter part is clearly

C(dF, dCi dH \

-J{lt
dx+

-dt
dy+

-di
dz)-

To find the former let us consider an arc 5 s forming part of a circuit, and let us

imagine this arc to move along rails, which may be taken as parallel, with velocity v

whose components are x, y, z, the rest of the circuit being meanwhile supposed

stationary. We may then suppose that a small parallelogram is generated by the

moving arc, the direction-cosines of the normal to which are

ny—mz li—nx mx— ly
k

' *' " = vsin0 ' vsind ' v sin '

where I, in, n are the direction-cosines of 8s, and is the angle between v and 8s.

To verify the signs of X, fi, v we may put m - — 1, x = v; they then become

0, 0, —1 as they ought to do with a right-handed system of axes.

Now let a, b, be the components of magnetic induction, we then have, due to the

motion of Ss in time 8 1,

Sp = {a\ + bfi + cv) vSt5ssia8.

If we suppose each part of the circuit to move in a similar manner the resultant

effect will be the motion of the circuit as a whole, the currents in the rails forming a
balance in each case of two adjacent arcs. The time variation of —p due to the

motion of the circuit is therefore

— f{a (ny—mz) + two similar terms} ds

taken round the circuit

= f(cy—bz)dx + two similar integrals.

The results in Art. 602 for the components of electromagnetic force may be deduced
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from the above expression for 8p ; viz. let the arc Ss he displaced in the direction

V, m', ri through a distance Ssr

, then

8p = {V (cm— on) + two similar terms} SsSs'.

Now let X be the a;-componeut of the force upon the arc s, then for unit current we
find by Art. 596, dX= dp

ds dx
= cm— 6n.]

Equations of the Electromagnetic Field.

{ If we assume that electric currents always flow in closed circuits, we can without

introducing the vector-potential deduce equations which will determine the state of

the electromagnetic field.

For let i be the strength of the current round any circuit which we shall assume

to be at rest. The electrokinetic energy T due to this current is

#to + mb + nc) dS,

where dS is an element of a surface bounded by the current

Hen

equals

Hence — -r —r the total electromotive force round the circuit tending to increase i
at di

-jf(
l

Tt
+m

di
+n

di)
ds ->

hence ifX Y, Z are the components of the electromotive intensity/„, . f Inda db dc s ,_
{Xdx+Ydy + Zdz) =

-JJ
(I— +m^ +n—)dS; (1)

but by Stokes' Theorem the left-hand side of this equation is equal to

//{ V dv dz J \dz dx J \dx dy ) J-dy dz J \dz dx J \dx dy ) \

Equating this integral to the right-hand side of equation (1), we obtain, since the

surface closing up the current is quite arbitraiy,

dZ dY da

dy dz dt
'

dX dZ db

dz dx
~~

dt'

dY_dX _dc
dx dy dt

'

These with the relations

dy dB
iiru ~ dy

da
"3P

i2,4 irv ~ dz

dB
dx

da
ilTW

dz dy'

X r Z
n =

a'
V--,

,
*» —

a

specific resistance is a
;

K dX KdY KdZ
% ~ 4tt dt

, » ~~
Ait dt'

to =
4tt dt

in an insulator whose specific inductive capacity is -K", are sufficient to determine the

state of the electromagnetic field. The boundary conditions at any surface are that

the magnetic induction normal to the surface should be continuous, and that the

magnetic force parallel to the surface should also be continuous.

This method of investigating the electromagnetic field has the merit of simplicity.

It has been strongly supported by Mr. Heaviside. It is not however so general as

the method in the text, which could be applied even if the currents did not always

flow in closed circuits.

}



CHAPTEK IX.

GENERAL EQUATIONS OP THE ELECTROMAGNETIC FIELD.

604.] In our theoretical discussion of electrodynamics we
began by assuming that a system of circuits carrying electric

currents is a dynamical system, in which the currents may be

regarded as velocities, and in which the coordinates corresponding

to these velocities do not themselves appear in the equations.

It follows from this that the kinetic energy of the system, in

so far as it depends on the currents, is a homogeneous quadratic

function of the currents, in which the coefficients depend only

on the form and relative position of the circuits. Assuming

these coefficients to be known, by experiment or otherwise,

we deduced, by purely dynamical reasoning, the laws of the

induction of currents, and of electromagnetic attraction. In

this investigation we introduced the conceptions of the electro-

kinetic energy of a system of currents, of the electromagnetic

momentum of a circuit, and of the mutual potential of two
circuits.

We then proceeded to explore the field by means of various

configurations of the secondary circuit, and were thus led to

the conception of a vector 21, having a determinate magnitude

and direction at any given point of the field. We called this

vector the electromagnetic momentum at that point. This

quantity may be considered as the time-integral of the electro-

motive intensity which would be produced at that point by the

sudden removal of all the currents from the field. It is

identical with the quantity already investigated in Art. 405

as the vector-potential of magnetic induction. Its components

parallel to x, y, and z are F, G, and H. The electromagnetic

momentum of a circuit is the line-integral of 21 round the circuit.
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We then, by means of Theorem IV, Art. 24, transformed the

line-integral of 21 into the surface-integral of another vector, S3,

whose components are a, b, c, and we found that the phenomena

of induction due to motion of a conductor, and those of electro-

magnetic force can be expressed in terms of S3. We gave to

53 the name of the magnetic induction, since its properties are

identical with those of the lines of magnetic induction as

investigated by Faraday.

We also established three sets of equations : the first set,

(A), are those of magnetic induction, expressing it in terms of

the electromagnetic momentum. The second set, (B), are those

of electromotive intensity, expressing it in terms of the motion

of the conductor across the lines of magnetic induction, and

of the rate of variation of the electromagnetic momentum.

The third set, (C), are the equations of electromagnetic force,

expressing it in terms of the current and the magnetic in-

duction.

The current in all these cases is to be understood as the

actual current, which includes not only the current of con-

duction, but the current due to variation of the electric dis-

placement.

The magnetic induction S3 is the quantity which we have

already considered in Art. 400. In an unmagnetized body it

is identical with the force on a unit magnetic pole, but if the

body is magnetized, either permanently or by induction, it is

the force which would be exerted on a unit pole, if placed in

a narrow crevasse in the body, the walls of which are per-

pendicular to the direction of magnetization. The components

of 33 are a, b, c.

It follows from the equations (A), by which a, b, c are defined,

that
*? ^ ^£ _
dx dy dz~~

This was shewn at Art. 403 to be a property of the magnetic

induction.

605.] We have defined the magnetic force within a magnet,

as distinguished from the magnetic induction, to be the force

on a unit pole placed in a narrow crevasse cut parallel to the

direction of magnetization. This quantity is denoted by «£)> and

its components by a, /3, y. See Art. 398.
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If 3 is the intensity of magnetization, and A> B
y
C its

components, then, by Art. 400,

a = a + 4:TtA
1 \

b = /3+4tt-B, V (Equations of Magnetization.) (D)

C=y+4irC. )

We may call these the equations of magnetization, and they

indicate that in the electromagnetic system the magnetic in-

duction 33, considered as a vector, is the sum, in the Hamiltonian
sense, of two vectors, the magnetic force «£), and the magnetiza-

tion 3 multiplied by 4 tt, or

8 = $ + 4*3-

In certain substances, the magnetization depends on the mag-
netic force, and this is expressed by the system of equations of

induced magnetism given at Arts. 426 and 435.

606.] Up to this point of our investigation we have deduced
everything from purely dynamical considerations, without any
reference to quantitative experiments in electricity or magnetism.
The only use we have made of experimental knowledge is to

recognise, in the abstract quantities deduced from the theory,

the concrete quantities discovered by experiment, and to denote

them by names which indicate their physical relations rather

than their mathematical generation.

In this way we have pointed out the existence of the electro-

magnetic momentum 21 as a vector whose direction and mag-
nitude vary from one part of space to another, and from this we
have deduced, by a mathematical process, the magnetic induction,

S3, as a derived vector. We have not, however, obtained any
data for determining either 21 or S3 from the distribution of

currents in the field. For this purpose we must find the mathe-
matical connexion between these quantities and the currents.

We begin by admitting the existence of permanent magnets,

the mutual action of which satisfies the principle of the

conservation of energy. We make no assumption with respect

to the laws of magnetic force except that which follows from
this principle, namely, that the force acting on a magnetic pole

must be capable of being derived from a potential.

We then observe the action between currents and magnets,

and we find that a current acts on a magnet in a manner
apparently the same as another magnet would act if its strength,
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form, and position were properly adjusted, and that the magnet

acts on the current in the same way as another current. These

observations need not be supposed to be accompanied by

actual measurements of the forces. They are not therefore to

be considered as furnishing numerical data, but are useful only

in suggesting questions for our consideration.

The question these observations suggest is, whether the mag-

netic field produced by electric currents, as it is similar to that

produced by permanent magnets in many respects, resembles it

also in being related to a potential ?

The evidence that an electric circuit produces, in the space

surrounding it, magnetic effects precisely the same as those

produced by a magnetic shell bounded by the circuit, has been

stated in Arts. 482-485.

We know that in the case of the magnetic shell there is a

potential, which has a determinate value for all points outside

the substance of the shell, but that the values of the potential

at two neighbouring points, on opposite sides of the shell, differ

by a finite quantity.

If the magnetic field in the neighbourhood of an electric

current resembles that in the neighbourhood of a magnetic shell,

the magnetic potential, as found by a line-integration of the

magnetic force, will be the same for any two lines of integration,

provided one of these lines can be transformed into the other by

continuous motion without cutting the electric current.

If, however, one line of integration cannot be transformed

into the other without cutting the current, the line-integral of

the magnetic force along the one line will differ from that along

the other by a quantity depending on the strength of the

current. The magnetic potential due to an electric current is

therefore a function having an infinite series of values with

a common difference, the particular value depending on the

course of the line of integration. Within the substance of the

conductor, there is no such thing as a magnetic potential.

607.] Assuming that the magnetic action of a current has

a magnetic potential of this kind, we proceed to express this

result mathematically.

In the first place, the line-integral of the magnetic force round

any closed curve is zero, provided the closed curve does not

surround the electric current.
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In the next place, if the current passes once, and only once,

through the closed curve in the positive direction, the line-

integral has a determinate value, which may be used as a
measure of the strength of the current. For if the closed curve

alters its form in any continuous manner without cutting the

current, the line-integral will remain the same.

In electromagnetic measure, the line-integral of the magnetic
force round a closed curve is numerically equal to the current

through the closed curve multiplied by 4-n-.

If we take for the closed curve the rectangle whose sides

are dy and dz, the line-integral of the magnetic force round the

parallelogram is d d
(Ty~di)

dydz
>

and if u, v, w are the components of the flow of electricity, the
current through the parallelogram is

udydz.

Multiplying this by 4 tt, and equating the result to the line-

integral, we obtain the equation

4 -^L_^i \~~
dy dz '

with the similar equations

rlr, i7„ l
(Equations of /17 x

4 itV = — _ ^L
, } Electric Currents.) {&)

dz dx
. d/3 da

ax dy
which determine the magnitude and direction of the electric

currents when the magnetic force at every point is given.

When there is no current, these equations are equivalent to

the condition that

adx + fidy+ ydz = —D 12,

or that the magnetic force is derivable from a magnetic poten-
tial in all points of the field where there are no currents.
By differentiating the equations (E) with respect to x, y, and z

respectively, and adding the results, we obtain the equation

du dv dw
dx dy dz~ '

which indicates that the current whose components are u, v, w
is subject to the condition of motion of an incompressible fluid,

and that it must necessarily flow in closed circuits.
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This equation is true only if we take u, v, and w as the com-

ponents of that electric flow which is due to the variation of

electric displacement as well as to true conduction.

We have very little experimental evidence relating to the

direct electromagnetic action of currents due to the variation of

electric displacement in dielectrics, but the extreme difficulty

of reconciling the laws of electromagnetism with the existence

of electric currents which are not closed is one reason among

many why we must admit the existence of transient currents

due to the variation of displacement. Their importance will be

seen when we come to the electromagnetic theory of light.

608.] We have now determined the relations of the principal

quantities concerned in the phenomena discovered by Orsted,

Ampere, and Faraday. To connect these with the phenomena

described in the former parts of this treatise, some additional

relations are necessary.

When electromotive intensity acts on a material body, it pro-

duces in it two electrical effects, called by Faraday Induction

and Conduction, the first being most conspicuous in dielectrics,

and the second in conductors.

In this treatise, static electric induction is measured by what

we have called the electric displacement, a directed quantity or

vector which we have denoted by 3), and its components by

/» 9> fr-

Iii isotropic substances, the displacement is in the same

direction as the electromotive intensity which produces it, and

is proportional to it, at least for small values of this intensity.

This may be expressed by the equation

_. 1 T7-~ (Equation of Electric /t?\

2>=^#@, Displacement.) (*

)

where K is the dielectric capacity of the substance. See

Art. 68.

In substances which are not isotropic, the components /, g, h

of the electric displacement 3) are linear functions of the com-

ponents P, Q, R of the electromotive intensity @.

The form of the equations of electric displacement is similar

to that of the equations of conduction as given in Art. 298.

These relations may be expressed by saying that K is, in

isotropic bodies, a scalar quantity, but in other bodies it is a

linear and vector function, operating on the vector @.
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609.] The other effect of electromotive intensity is conduction.

The laws of conduction as the result of electromotive intensity

were established by Ohm, and are explained in the second part of

this treatise, Art. 241. They may be summed up in the equation

St = C(S, (Equation of Conductivity.) (G)

where (§ is the electromotive intensity at the point, j? is the

density of the current of conduction, the components of which
are p, q, and r, and G is the conductivity of the substance,

which in the case of isotropic substances, is a simple scalar

quantity, but in other substances becomes a linear and vector

function operating on the vector @. The form of this function
is given in Cartesian coordinates in Art. 298.

610.] One of the chief peculiarities of this treatise is the
doctrine which it asserts, that the true electric current (£, that
on which the electromagnetic phenomena depend, is not the
same thing as ft, the current of conduction, but that the time-
variation of 3), the electric displacement, must be taken into

account in estimating the total movement of electricity, so that
we must write,

(£ = £ + £>,

or, in terms of the components,

(Equation of True Currents.) (H)

u= P+ dt

da

dh

dt

(H*)

611.] Since both St and 3) depend on the electromotive intensity

($:, we may express the true current (£ in terms of the electro-

motive intensity, thus

or, in the case in which C and K are constants,

1 ^dP \

4tt dt

4 n dt

„n 1 Tr dR
4-7T dt

(I*)
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612.] The volume-density of the free electricity at any point

is found from the components of electric displacement by the

equation _df_ dg dh
(J)

p ~ dx dy dz'

613.] The surface-density of electricity is

<r=lf+'mg + nh + l'f + m'g' + n'h\ (K)

where I, m, n are the direction-cosines of the normal drawn from

the surface into the medium in which/, g, h are the components

of the displacement, and V, m', nf
are those of the normal drawn

from the surface into the medium in which they are/, g', h'.

614] When the magnetization of the medium is entirely

induced by the magnetic force acting on it, we may write the

equation of induced magnetization,

» = M $, m
where n is the coefficient of magnetic permeability, which may

be considered a scalar quantity, or a linear and vector function

operating on £, according as the medium is isotropic or not.

615.] These may be regarded as the principal relations among

the quantities we have been considering. They may be com-

bined so as to eliminate some of these quantities, but our object

at present is not to obtain compactness in the mathematical

formulae, but to express every relation of which we have any

knowledge. To eliminate a quantity which expresses a useful

idea would be rather a loss than a gain in this stage of our

enquiry.

There is one result, however, which we may obtain by com-

bining equations (A) and (E), and which is of very great im-

portance.

If we suppose that no magnets exist in the field except in the

form of electric circuits, the distinction which we have hitherto

maintained between the magnetic force and the magnetic in-

duction vanishes, because it is only in magnetized matter that

these quantities differ from each other.

According to Ampere's hypothesis, which will be explained in

Art. 833, the properties of what we call magnetized matter are

due to molecular electric circuits, so that it is only when we

regard the substance in large masses that our theory of mag-

netization is applicable, and if our mathematical methods are

supposed capable of taking account of what goes on within the
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individual molecules, they will discover nothing but electric

circuits, and we shall find the magnetic force and the magnetic
induction everywhere identical. In order, however, to be able
to make use of the electrostatic or of the electromagnetic system
of measurement at pleasure we shall retain the coefficient ju,

remembering that its value is unity in the electromagnetic
system.

616.] The components of the magnetic induction are by
equations (A), Art. 591,

_dH_dG
\~ dy dz'

b==
dF dH
dz dx

_dO dF
dx ~~ dy

The components of the electric current are by equations (E),

Art. 607, given by
^u = dy_d£\

dy dz

'

4:T!V = da

dz

dp

—
, y

dx

4tiw= —T- —
da

dx ~ dy' I

According to our hypothesis, a, b, c are identical with pa, fxfi,

fiy respectively. We therefore obtain {when n is constant}

d2G d2F_ d2F d2H
dy2

AlT/XU —
dz2 dzdx

If we write

dxdy

J= dF dG dH
~ dx dy dz*

and*
^dx*

we may write equation (1),

d?_

dy2

d?,
+

dz2)'

(1)

(2)

(3)

dJ

Similarly,

^fxu^^ + V'F.]
dx

dy

dz I

(4)

* The negative sign is employed here in order to make our expressions consistent
with those in which Quaternions are employed.
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If we write F = m fff%
dxdydz,

N

G'=ixJlf
V-dxdydz\ (5)

H' = pff[™ dxdydz,)

*=*!!&**""> (6)

where r is the distance of the given point from the element

(x, y, z) and the integrations are to be extended over all space,

then F=F-^ ^

dx'

G = G'-p
dy

dz

(7)

The quantity x disappears from the equations (A), and it is

not related to any physical phenomenon. If we suppose it to be

zero everywhere, J will also be zero everywhere, and equations

(5), omitting the accents, will give the true values of the

components of 21.

617.] We may therefore adopt, as a definition of 21, that it

is the vector-potential of the electric current, standing in the

same relation to the electric current that the scalar potential

stands to the matter of which it is the potential, and obtained

by a similar process of integration, which may be thus de-

scribed :

—

From a given point let a vector be drawn, representing in

magnitude and direction a given element of an electric current,

divided by the numerical value of the distance of the element

from the given point. Let this be done for every element of

the electric current. The resultant of all the vectors thus

found is the potential of the whole current. Since the current

is a vector quantity, its potential is also a vector. See Art. 422.

When the distribution of electric currents is given, there is

one, and only one, distribution of the values of 21, such that 21

is everywhere finite and continuous, and satisfies the equations

V2 2l= 4<jrfx(S, £.V2l=0,

and vanishes at an infinite distance from the electric system.
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This value is that given by equations (5), which may be written

in the quaternion form

21 = fx 1 1 1 — dxdydz.

Quaternion Expressionsfor the Electromagnetic Equations.

618.] In this treatise we have endeavoured to avoid any
process demanding from the reader a knowledge of the Calculus
of Quaternions. At the same time we have not scrupled to

introduce the idea of a vector when it was necessary to do so.

When we have had occasion to denote a vector by a symbol,
we have used a German letter, the number of different vectors
being so great that Hamilton's favourite symbols would have
been exhausted at once. Whenever therefore a German letter

is used it denotes a Hamiltonian vector, and indicates not only
its magnitude but its direction. The constituents of a vector
are denoted by Koman or Greek letters.

The principal vectors which we have to consider are

Victor!*
Constituents.

The radius vector of a point p xyz
The electromagnetic momentum at a point $1 FGH
The magnetic induction 55 ab c

The (total) electric current (£ uvw
The electric displacement £> f 9 h
The electromotive intensity (g PQR
The mechanical force g XYZ
The velocity of a point ® or p x y z

The magnetic force ^ <* /3 y
The intensity of magnetization 3f ABC
The current of conduction £ pq r
We have also the following scalar functions

:

The electric potential *.

The magnetic potential (where it exists) 12.

The electric density c.

The density of magnetic ' matter ' m.
Besides these we have the following quantities, indicating

physical properties of the medium at each point :

—

C, the conductivity for electric currents.

K
y
the dielectric inductive capacity.

ft, the magnetic inductive capacity.
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These quantities are, in isotropic media, mere scalar functions

of /a, but in general they are linear and vector operators on the

vector functions to which they are applied. K and n are certainly

always self-conjugate, and C is probably so also.

619.] The equations (A) of magnetic induction, of which the

first is, dH d,G
~ dy dz

may now be written S3 = V.V 21,

where V is the operator

. d . d 7
d

and V indicates that the vector part of the result of this operation

is to be taken.

Since 21 is subject to the condition £.V2l=0,V2lisa pure

vector, and the symbol V is unnecessary.

The equations (B) of electromotive force, of which the first is

r- dF d*

become @ = V. (&8-9X-V*.

The equations (C) of mechanical force, of which the first is

X — cv-bw +eP-m-^^

become $ = 7®23 + e(g-mVa.

The equations (D) of magnetization, of which the first is

a = a + lirA,

become S3 = £ + 4 tt%

The equations (E) of electric currents, of which the first is

_dy _d@
~~ dy dz'

become 4jt(£ = J
7-

. V^P*

The equation of the current of conduction is, by Ohm's Law,

That of electric displacement is

47T

* {In the 1st and and editions of this work - ^- was written for P in this equation.

The correction is due to Prof. G. F. Fitzgerald Trans. B. S. Dublin, 1883.}
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The equation of the total current, arising from the variation of

the electric displacement as well as from conduction, is

<S = ff+ 2X
When the magnetization arises from magnetic induction,

We have also, to determine the electric volume-density,

To determine the magnetic volume-density,

m = S.V%
When the magnetic force can be derived from a potential,

£= -Vli.

APPENDIX TO CHAPTER IX.

The expressions (5) are not in general accurate if the electromagnetic

field contains substances of different magnetic permeabilities, for in that
case, at the surface of separation of two surfaces of different magnetic
permeabilities, there will in general be free magnetism ; this will con-
tribute terms to the expression for the vector potential which are
given by equations (22), p. 30. The boundary equations at the surface
separating two media whose magnetic permeabilities are ^ and jjl

2 , and
where Flt Glf ff

1
and F

t , G2 , ff2 denote the values of the components of
the vector potential on the two sides of the surface of separation, I, m, n
the direction cosines of the normal to this surface ; are (1), since the
normal induction is continuous,

V dy dz)^ V dz dx )^ \dx dy )

V dy dz)^ \ dz dx )^ \dx dy)
and (2), since the magnetic force along the surface is continuous,

l/dff
t dG,s 1 /jg,_ggU

H, ^ dy dz J n^ dy dz '

I
"

= L(AFl
dHl\ l

(
dF

2_ dH2\

jn, V dz dx ) fx2
\ dz dx )

m

^ dx dy ) jm2
V dx dy

)'
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The expressions (5) do not in general satisfy both these surface conditions.

It is therefore best to regard F, G, H as given by the equations

V2 G=^TTflV

V2 i? = 47TflW

and the preceding boundary conditions.}

{It does not appear legitimate to assume that ¥ in equations (B)

represents the electrostatic potential when the conductors are moving,

for in deducing those equations Maxwell leaves out the term

ds\ dt dt di'

since it vanishes when integrated round a closed circuit. If we insert this

term, then ¥ is no longer the electrostatic potential but is the sum of

this potential, and $% dy „dz
* dt dt dt

This has an important application to a problem which has attracted

much attention, that of a sphere rotating with angular velocity <o about

a vertical axis in a uniform magnetic field where the magnetic force is

vertical and equal to c. Equations (B) become in this case, supposing

the sphere to have settled down into a steady state,

d*
P = coax—7—

j

ax

dV
Q = ccoy-^>

__
d*
dz

Since the sphere is a conductor and in a steady state, and since

t- , 9. , — are the components of the current,

dP dQ dR _ 0>
dx dy dz

cZ
2* <&* d2*

hence 2c™ = daf
+
If

+
dz*

'

This equation has usually been interpreted to mean that throughout the

sphere there is a distribution of electricity whose volume density is

-ca,/27r, but this is only legitimate if we assume that * is the

electrostatic potential.

If in accordance with the investigation by which equations (B) were

deduced we assume that, * being the electrostatic potential,

dx dv dz
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or in this case ¥ = *+ <a{Gx— Fy),
then, since (*.*.*\ (r F x „/<*# dF,

= 2c,
we see that since ^^ ^2^. ^2^,

^2" + dp~
+^ =2cft)

'

d2* tf
2

<J> <Z
2 *

that is, there is no distribution of free electricity throughout the

volume of the sphere.

There is therefore nothing in the equations of the electromagnetic

field which would lead us to suppose that a rotating sphere contains free

electricity.

Equations of the Electromagnetic Field expressed in
Polar and Cylindrical Co-ordinates.

If F, G, H are the components of the vector potential along the

radius vector, the meridian and a parallel of latitude respectively,

a, b, c the components of the magnetic induction, a, /3, y the components
of the magnetic force, and u, v, w the components of the current in those

directions, then we can easily prove that

1 UF d . . „„ v )
b =

r-^d\dt-Tr(
r8mdE

tf>

l$d dF)

|^(rsin^)-^(^)|,rsm a

4?rv= 1 (da d . . n . )

r\dr K P)
ddS

If P, Q, R are the components of the electromotive intensity along

the radius vector, the meridian and a parallel of latitude,

da 1 ( d . . . _. d „,

)

*--?srsWr,,,,"&-
(!?<

r
«r

db 1 idP d

dt r sin 6

de

~dt
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If the cylindrical co-ordinates are p, 6, z, and if F, G, H are the com-

ponents of the vector potential parallel to p, 0, z; a, b, c the components

of the magnetic induction, a, /3, y the components of the magnetic force,

and u, v, w the components of the current in these directions, then

dF dH

a ~ pldd dz

dz dp

da dy
47TV = -5 -J-»dz dp

lid. aX da)

If F, Q, R are the components of the electromotive intensity parallel

to p, 0, z,

da 1 idR d . „.l

di k^__^?i
di~ \dz dpy
dc 1 ( d . n . dP\

dt=—pWpQ)-de\'



CHAPTER X.

DIMENSIONS OF ELECTRIC UNITS.

620.] Every electromagnetic quantity may be defined with
reference to the fundamental units of Length, Mass, and Time.
If we begin with the definition of the unit of electricity, as
given in Art. 65, we may obtain definitions of the units of every
other electromagnetic quantity, in virtue of the equations into
which they enter along with quantities of electricity. The
system of units thus obtained is called the Electrostatic System.

If, on the other hand, we begin with the definition of the unit
magnetic pole, as given in Art. 374, we obtain a different system
of units of the same set of quantities. This system of units is

not consistent with the former system, and is called the Electro-
magnetic System.

We shall begin by stating those relations between the different

units which are common to both systems, and we shall then
form a table of the dimensions of the units according to each
system.

621.] We shall arrange the primary quantities which we have
to consider in pairs. In the first three pairs, the product of the
two quantities in each pair is a quantity of energy or work. In
the second three pairs, the product of each pair is a quantity of
energy referred to unit of volume.

First Three Pairs.

Electrostatic Pair.
Symbol.

(1) Quantity of electricity e

(2) Electromotive force, or electric potential . . E
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Magnetic Pair. Symbol.

(3) Quantity of free magnetism, or strength of a pole m
(4) Magnetic potential ^

Electrokinetic Pair.

(5) Electrokinetic momentum of a circuit . . • p

(6) Electric current ^

Second Three Pairs.

Electrostatic Pair.

(7) Electric displacement (measured by surface-density) 2)

(8) Electromotive intensity ®

Magnetic Pair.

(9) Magnetic induction 23

(10) Magnetic force "V

Electrokinetic Pair.

(11) Intensity of electric current at a point . . (£

(12) Vector potential of electric currents . . . 21

622 The following relations exist between these quantities.

In the first place, since the dimensions ol energy are -^- ,

r M "I

and those of energy referred to unit of volume \j 2̂ > we have

the following equations of dimensions

:

[e^] = [mii]=[pC] = [^], (1)

[M] = [^] = [S2l] =
[^J. (2)

Secondly, since e, p, and 21 are the time-integrals of C, E,

and ($ respectively,
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Thirdly, since E, 12, and p are the line-integrals of (§, £,
and 21 respectively,

KHSH*]-w w
Finally, since e, G, and m are the surface-integrals of 2), (E,

and S3 respectively,

[£]-KH«]-w <
5
'

623.] These fifteen equations are not independent, and in

order to deduce the dimensions of the twelve units involved, we
require one additional equation. If, however, we take either

e or m as an independent unit, we can deduce the dimensions of

the rest in terms of either of these.

CL2M~\
(3) and (5) [p] = [m] =

[±^-J
= [m].

(4) and (6) [0\ = [O] = [|] =[^]-

« m -£] -©]•

<I0
> »] -&] -S?|-

(») M =[^J=[f]-
* [\Ve have also

[|g]
- [£].]
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624.] The relations of the first ten of these quantities may be

exhibited by means of the following arrangement :

—

e, 2), <£>, C and 12.

m and p, S3, @, E.

E, (§, S3, m and p.

C and £2, «£), 2), e.

The quantities in the first line are derived from e by the same

operations as the corresponding quantities in the second line are

derived from m. It will be seen that the order of the quantities

in the first line is exactly the reverse of the order in the second

line. The first four of each line have the first symbol in the

numerator. The second four in each line have it in the de-

nominator.

All the relations given above are true whatever system of

units we adopt.

625.] The only systems of any scientific value are the electro-

static and the electromagnetic systems. The electrostatic system

is founded on the definition of the unit of electricity, Arts. 41,

42, and may be deduced from the equation

which expresses that the resultant electric intensity @ at any

point, due to the action of a quantity of electricity e at a

distance L, is found by dividing e by L\ Substituting in the

equations of dimensions (l) and (8), we find

[LM-\ __[«] ("ml _ V M 1

L^-rU2 .!' lLT\-\.mT¥

whence [«] = [ZUf*^-1
], m = [tf-M*],

in the electrostatic system.

The electromagnetic system is founded on a precisely similar

definition of the unit of strength of a magnetic pole, Art. 374,

leading to the equation m

whence [^] = [^] , [^] = g]

,

and [e] = [Z*if*], \m\ = [L^M^T^],

in the electromagnetic system. From these results we find the

dimensions of the other quantities.
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626.] Table of Dimensions.

Dimensions in

Symbol
Electrostatic Electromagnetic

* ' System. System.

Quantity of electricity .... e [L^M^T~ l

]
[Z*Jf*].

Li

:
e

olSei;
leetro

"} • • * p»"*i ^*n.
Quantity of magnetism ,

Electrokinetic momentum t • \
m

l [Z*if*] [&MIT- 1
].

of a circuit ) ^

£S£SL} • • • • • 13
[W2] lLiMiT^~

ssEar"*} • • • • * [£
"iM4T-

]
[M] -

Electromotive intensity . ... (S [£-* .flf* 2
1-1

] [X*MT~2
].

Magnetic induction 33 [i~*Jf*] [i~* M^T' 1
].

Magnetic force £ [i^Jf^T"2
] [L-^M^T- 1

].

Strength of cuirent at a point (S [i~* Jf* T~2
] [L~* M* T"1

].

Vector potential & [i"*Jf*] [iiMf1
].

627.] We have already considered the products of the pairs of

these quantities in the order in which they stand. Their ratios

are in certain cases of scientific importance. Thus

Electrostatic Electromagnetic
Symbol. System. System.

e rTz~\

-= = capacity of an accumulator . . q [L]
\~r\-

r coefficient of self-induction \
rr2

ji — \ of a circuit, or electro- > . L -=- [Z].

v magnetic capacity J

2) _ ( specific inductive capacity i ™ ,. ,

(S
~"

( of dielectric )
"- *

S3 ... rT2 ~\

^- = magnetic inductive capacity . . fx 72 [°]-

-^ — resistance of a conductor . . . . R \j\ hr*
($ _ ( specific resistance of a )

r/yT1
rZ2

~|

6~
( substance j

* ' *

T L J W
628.] If the units of length, mass, and time are the same in the

two systems, the number of electrostatic units of electricity con-

J?
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tained in one electromagnetic unit is numerically equal to a certain

velocity, the absolute value of which does not depend on the mag-

nitude of the fundamental units employed. This velocity is an im-

portant physical quantity, which we shall denote by the symbol v.

Number of Electrostatic Units in one Electromagnetic Unit.

For e, C, G, 3), £, (£, v.

For m, p, E, 33, <S, 21, -•

For electrostatic capacity, dielectric inductive capacity, and

conductivity, v\

For electromagnetic capacity, magnetic inductive capacity,

and resistance, -7 •

Several methods of determining the velocity v will be given

in Arts. 768-780.

In the electrostatic system the specific dielectric inductive

capacity of air is assumed equal to unity. This quantity is

therefore represented by -j in the electromagnetic system.

In the electromagnetic system the specific magnetic inductive

capacity of air is assumed equal to unity. This quantity is

therefore represented by —
l
in the electrostatic system.

Practical System of Electric Units.

629.] Of the two systems of units, the electromagnetic is of

the greater use to those practical electricians who are occupied

with electromagnetic telegraphs. If, however, the units of

length, time, and mass are those commonly used in other scientific

work, such as the metre or the centimetre, the second, and the

gramme, the units of resistance and of electromotive force will

be so small that to express the quantities occurring in practice

enormous numbers must be used, and the units of quantity and

capacity will be so large that only exceedingly small fractions of

them can ever occur in practice. Practical electricians have there-

foreadopted a set of electrical units deduced by the electromagnetic

system from a large unit of length and a small unit of mass.

The unit of length used for this purpose is ten million of

metres, or approximately the length of a quadrant of a meridian

of the earth.
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The unit of time is, as before, one second.

The unit of mass is IO-11 grammes, or one hundred millionth

part of a milligramme.

The electrical units derived from these fundamental units

have been named after eminent electrical discoverers. Thus the
practical unit of resistance is called the Ohm, and is represented
by the resistance-coil issued by the British Association, and
described in Art. 340. It is expressed in the electromagnetic
system by a velocity of 10,000,000 metres per second.

The practical unit of electromotive force is called the Volt,
and is not very different from that of a Daniell's cell. Mr.
Latimer Clark has recently invented a very constant cell, whose
electromotive force is almost exactly 1-454 Volts.

The practical unit of capacity is called the Farad. The
quantity of electricity which flows through one Ohm under the
electromotive force of one Volt during one second, is equal to the
charge produced in a condenser whose capacity is one Farad by
an electromotive force of one Volt.

The use of these names is found to be more convenient in
practice than the constant repetition of the words 'electro-

magnetic units,' with the additional statement of the particular
fundamental units on which they are founded.

When very large quantities are to be measured, a large unit is

formed by multiplying the original unit by one million, and
placing before its name the prefix mega.

In like manner by prefixing micro a small unit is formed, one
millionth of the original unit.

The following table gives the values of these practical units in
the different systems which have been at various times adopted.

Fundamental

Units.

Pbactical

System.

B. A. Report,

1863.
Thomson. Weber.

Length, Earth's Quadrant, Metre, Centimetre, Millimetre,

Time, Second, Second, Second, Second,

Mass. 10~u Gramme. Gramme. Gramme. Milligramme.

Resistance Ohm IO7 10» 10 10

Electromotive force Volt 105 10s 10u

Capacity Farad io-7 io-» io- 10

Quantity Farad
(charged to a Volt.)

io- 2 io-1 10



CHAPTEE XI.

ON ENERGY AND STRESS IN THE ELECTROMAGNETIC FIELD.

Electrostatic Energy.

630.] The energy of the system may be divided into the

Potential Energy and the Kinetic Energy.

The potential energy due to electrification has been already

considered in Art. 85. It may be written

F=*S(«*), (!)

where e is the charge of electricity at a place where the electric

potential is *, and the summation is to be extended to every

place where there is electrification.

If /, g, h are the components of the electric displacement, the

quantity of electricity in the element of volume dx dydz is

-d w=*fff& + %+%)**'d» d« (s)

where the integration is to be extended throughout all space.

631.] Integrating this expression by parts, and remembering

that when the distance, r, from a given point of a finite elec-

trified system becomes infinite, the potential * becomes an

infinitely small quantity of the order r~\ and that /, g, h become

infinitely small quantities of the order r~2
,
the expression is

reduced to

'--'///(/S+'S^*** (4)

where the integration is to be extended throughout all space.
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If we now write P, Q, R for the components of the electro-

motive intensity, instead of =— » =— and =- > we find
dx dy dz

W = i fff(Pf+Qg + Rh)dxdydz* (5)

Hence, the electrostatic energy of the whole field will be the

same if we suppose that it resides in every part of the field where
electrical force and electrical displacement occur, instead of being

confined to the places where free electricity is found.

The energy in unit of volume is half the product of the electro-

motive force and the electric displacement, multiplied by the

cosine of the angle which these vectors include.

In Quaternion language it is — % £.($2).

Magnetic Energy.

f632.] We may treat the energy due to magnetization in a way
similar to that pursued in the case of electrification, Art. 85. If

A, B, C are the components of magnetization and a, /3, y the

components of magnetic force, the potential energy of the system
of magnets is then, by Art. 389,

-
zfff(

A " +BP + Cy) dm dy dz, (6)

the integration being extended over the space occupied by mag-
netized matter. This part of the energy, however, will be
included in the kinetic energy in the form in which we shall

presently obtain it.

633.] We may transform this expression when there are no
electric currents by the following method.

We know that Oa db dc _
dx dy dz~ ' '

* {This expression for the electrostatic energy was deduced in the first volume on
the assumption that the electrostatic force could be derived from a potential function.
This proof will not hold when part of the electromotive intensity is due to
electromagnetic induction. If however we take the view that this part of the
energy arises from the polarized state of the dielectric and is per unit volume
1

g^(/
2 + 9

,2 + A2)> the potential energy will then only depend on the polarization

of the dielectric no matter how it is produced. Thus the energy will, since

—f - P g - O
h - I?

4ttjK: ' 4nK **' 4-nK
be equal to % (P/+ Qg + Sh) per unit volume.

}

f See Appendix I at the end of this Chapter.
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Hence, by Art. 97, if

da n da da /Q .

a = -^' /3== -^' y = -^' (8)

as is always the case in magnetic phenomena where there are no

'

fff(aa + bp + cy)dxdydz=0, (9)

the integral being extended throughout all space, or

'{[a + 47rA)a+((3 + 4TrB)p + (y + 4: TrC)y}dxdydz= 0. (10)

Hence, the energy due to a magnetic system

-I fff(Aa + Bl3 + Cy)dxdydz = ~frf(a2 + p2+ y
2)dxdydz,

= ±fff&dzdydz. (11)

Mectrokinetic Energy.

634] We have already, in Art. 578, expressed the kinetic

energy of a system of currents in the form

T=\2(pi), (12)

where p is the electromagnetic momentum of a circuit, and i is

the strength of the current flowing round it, and the summation

extends to all the circuits.

But we have proved, in Art. 590, that p may be expressed as

a line-integral of the form

where F, G, H are the components of the electromagnetic mo-

mentum, 81, at the point (x,y,z), and the integration is to be ex-

tended round the closed circuit s. We therefore find

If u, v, w are the components of the density of the current at

any point of the conducting circuit, and if 8 is the transverse

section of the circuit, then we may write

.dx „ .dy a .dz ~ , .

ds ds ds

and we may also write the volume

Sds = dxdydz,
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and we now find

T = \ f[f{Fu + Gv + Hw)dxdydz, (16)

where the integration is to be extended to every part of space

where there are electric currents.

635.] Let us now substitute for u, v, w their values as given

by the equations of electric currents (E), Art. 607, in terms of

the components a, £, y of the magnetic force. We then have

where the integration is extended over a portion of space in-

cluding all the currents.

If we integrate this by parts, and remember that, at a great

distance r from the system, a, fi, and y are of the order of

magnitude r~3
, {and that at a surface separating two media, F

t

G, H, and the tangential magnetic force are continuous,} we find

that when the integration is extended throughout all space, the

expression is reduced to

r * CfC\ (dH dG
\ »(dF dH \ (dG d$\{-, 7 j r. a \

By the equations (A), Art. 591, of magnetic induction, we may
substitute for the quantities in small brackets the components
of magnetic induction a, b, c, so that the kinetic energy may be

written

T =— fff(aa+ bp + cy) dxdydz, (1 9)

where the integration is to be extended throughout every part of

space in which the magnetic force and magnetic induction have
values differing from zero.

The quantity within brackets in this expression is the product

of the magnetic induction into the resolved part of the magnetic
force in its own direction.

In the language of quaternions this may be written more simply,

where S3 is the magnetic induction, whose components are a, b, c,

and ^ is the magnetic force, whose components are a, /3, y.

636.] The electrokinetic energy of the system may therefore

be expressed either as an integral to be taken where there are

electric currents, or as an integral to be taken over every part of
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the field in which magnetic force exists. The first integral,

however, is the natural expression of the theory which supposes

the currents to act upon each other directly at a distance, while

the second is appropriate to the theory which endeavours to

explain the action between the currents by means of some

intermediate action in the space between them. As in this

treatise we have adopted the latter method of investigation,

we naturally adopt the second expression as giving the most

significant form to the kinetic energy.

According to our hypothesis, we assume the kinetic energy to

exist wherever there is magnetic force, that is, in general, in

every part of the field. The amount of this energy per unit of

volume is S .$&$, and this energy exists in the form of some
8 IT

kind of motion of the matter in every portion of space.

When we come to consider Faraday's discovery of the effect

of magnetism on polarized light, we shall point out reasons for

believing that wherever there are lines of magnetic force, there

is a rotatory motion of matter round those lines. See Art. 821.

Magnetic and Electrokinetic Energy compared.

637.] We found in Art. 423 that the mutual potential energy

of two magnetic shells, of strengths </> and <£', and bounded by

the closed curves s and s' respectively, is

. rreos e , 7 ,

(/><£ / / as as
,

where e is the angle between the directions of ds and ds', and r

is the distance between them.

We also found in Art. 521 that the mutual energy of two

circuits s and s\ in which currents i and i
f
flow, is

H
I

ds ds'.

If i, i' are equal to <£, (// respectively, the mechanical action

between the magnetic shells is equal to that between the cor-

responding electric circuits, and in the same direction. In the

case of the magnetic shells the force tends to diminish their

mutual potential energy, in the case of the circuits it tends to

increase their mutual energy, because this energy is kinetic.

It is impossible, by any arrangement of magnetized matter, to
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produce a system corresponding in all respects to an electric

circuit, for the potential of the magnetic system is single valued

at every point of space, whereas that of the electric system is

many-valued.

But it is always possible, by a proper arrangement of infinitely

small electric circuits, to produce a system corresponding in all

respects to any magnetic system, provided the line of integration

which we follow in calculating the potential is prevented from

passing through any of these small circuits. This will be more
fully explained in Art. 833.

The action of magnets at a distance is perfectly identical with

that of electric currents. We therefore endeavour to trace both

to the same cause, and since we cannot explain electric currents

by means of magnets, we must adopt the other alternative, and
explain magnets by means of molecular electric currents.

638.] In our investigation of magnetic phenomena, in Part III

of this treatise, we made no attempt to account for magnetic

action at a distance, but treated this action as a fundamental
fact of experience. We therefore assumed that the energy of a

magnetic system is potential energy, and that this energy is

diminished when the parts of the system yield to the magnetic
forces which act on them.

If, however, we regard magnets as deriving their properties from
electric currents circulating within their molecules, their energy
is kinetic, and the force between them is such that it tends to

move them in a direction such that if the strengths of the cur-

rents were maintained constant the kinetic energy would increase.

This mode of explaining magnetism requires us also to abandon
the method followed in Part III, in which we regarded the magnet
as a continuous and homogeneous body, the minutest part of

which has magnetic properties of the same kind as the whole.

We must now regard a magnet as containing a finite, though
very great, number of electric circuits, so that it has essentially

a molecular, as distinguished from a continuous structure.

If we suppose our mathematical machinery to be so coarse

that our line of integration cannot thread a molecular circuit,

and that an immense number of magnetic molecules are contained

in our element of volume, we shall still arrive at results similar

to those of Part III, but if we suppose our machinery of a finer

order, and capable of investigating all that goes on in the



276 ENERGY AND STRESS. [64O.

interior of the molecules, we must give up the old theory of

magnetism, and adopt that of Ampere, which admits of no

magnets except those which consist of electric currents.

We must also regard both magnetic and electromagnetic

energy as kinetic energy, and we must attribute to it the proper

sign, as given in Art. 635.

In what follows, though we may occasionally, as in Art. 639,

&c, attempt to carry out the old theory of magnetism, we shall

find that we obtain a perfectly consistent system only when we

abandon that theory and adopt Ampere's theory of molecular

currents, as in Art. 644.

The energy of the field therefore consists of two parts only,

the electrostatic or potential energy

W =
%fff(

pf+ Qg + Bh) dxdydz,

and the electromagnetic or kinetic energy

T = — // / (aa + b(3+ cy)dxdydz

ON THE FORCES WHICH ACT ON AN ELEMENT OF A BODY

PLACED IN THE ELECTEOMAGNETIC FIELD.

Forces acting on a Magnetic Element.

*639.] The potential energy of the element dxdydz of a body

magnetized with an intensity whose components are A, B, C,

and placed in a field of magnetic force whose components are

a, /3, y, is _ (J. a + Bfi + Gy) dxdydz.

Hence, if the force urging the element to move without rotation

in the direction of x is Xx
dxdydz,

1 dx dx dx v '

and if the moment of the couple tending to turn the element

about the axis of x from y towards z is Ldxdydz,

L = By-C(3. (2)

The forces and the moments corresponding to the axes of y

and z may be written down by making the proper substitutions.

640.] If the magnetized body carries an electric current, of

which the components are u, v, w, then, by equations (C), Art. 603,

* See Appendix II at the end of this Chapter.
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there will be an additional electromagnetic force whose com-
ponents are X

2 , Y2 ,
Z2 , of which X2 is given by

X2
= vc— wb. (3)

Hence, the total force, X, arising from the magnetism of the

molecule, as well as the current passing through it, is

X = Ap+B^ +Cp + vc-wb.
dx dx ax W

The quantities a, b, c are the components of magnetic induction,

and are related to a, /9, y, the components of magnetic force, by
the equations given in Art. 400,

a = o. + 4:ttA,
•

b = 0+4775, -

(5)

C — y + 4 7i G. .

The components of the current, u, v, w
} can be expressed in

terms of a, /3, y by the equations of Art. 607,

ay dz

da
4lTV = -7-

dz

4ttw =

Hence

_dp
dx

dy

dx
da

dy

(6)

„ 1 (, .da „ dp dy , (da d$\ ,
/da dy^)

1 ( da 7 da da 1 d , n „ „J , ,

By Art. 403,
c?a db dc
-JT + 3- + -7- = °-
ao? <X2/ cfe;

(8)

Multiplying this equation, (8), by a, and dividing by 47r, we
may add the result to (7), and we find

also, by (2), £ = -L((6_M
7_(«,_ y)^)) (10)

= -(&y-C0), (11)

where X is the force referred to unit of volume in the direction

of x, and L is the moment of the forces (per unit volume) about

this axis.



278 ENERGY AND STRESS. [64 1.

On the Explanation of these Forces by the Hypothesis of a
Medium in a State of Stress.

641.] Let us denote a stress of any kind referred to unit of

area by a symbol of the form Phh , where the first suffix, h ,

indicates that the normal to the surface on which the stress is

supposed to act is parallel to the axis of h, and the second

suffix, j, indicates that the direction of the stress with which

the part of the body on the positive side of the surface acts on

the part on the negative side is parallel to the axis of k.

The directions of h and k may be the same, in which case the

stress is a normal stress. They may be oblique to each other, in

which case the stress is an oblique stress, or they may be perpen-

dicular to each other, in which case the stress is a tangential

stress.

The condition that the stresses shall not produce any tendency

to rotation in the elementary portions of the body is

P — P^hk — -^kh'

In the case of a magnetized body, however, there is such a

tendency to rotation, and therefore this condition, which holds

in the ordinary theory of stress, is not fulfilled.

Let us consider the effect of the stresses on the six sides of

the elementary portion of the body dxdydz, taking the origin

of coordinates at its centre of gravity.

On the positive face dydz, for which the value of x is \ dx,

the forces are

—

dP
Parallel to x, (Pxx + 1 -^ dx\ dydz = X+x ,

dP
Parallel to y, (Pxv +\^dx) dydz = Y+x ,

dP
ParaUel to 0, (Px%+l^dx) dydz = Z+x .

}
(I 2

)

The forces acting on the opposite side, —X-x ,
— Y_x , and

— Z__xi may be found from these by changing the sign of dx.

We may express in the same way the systems of three forces

acting on each of the other faces of the element, the direction

of the force being indicated by the capital letter, and the face on
which it acts by the suffix.
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If Xdxdydz is the whole force parallel to x acting on the
element,

X dxdydz = X+x +X+y +X+z+ X_x + X_ v + X_Zy

whence X=$-p + — J> + — P /iq\
dx *** dy vx+ dz

**'
(
13

J

If L dxdydz is the moment of the forces about the axis of x
tending to turn the element from y to 0,

Ldxdydz = \dy{Z+v~Z.y)-\dz{Y+z-Y_ z),

= {PVz-PzV) dxdydz,
whence L = Pys-Pty .

(
14

)

Comparing the values of X and L given by equations (9) and
(1 1) with those given by (13) and (14), we find that, if we make

5. = ~ {aa-l (a2+ /3
2 +y% \

y (i6)

4

Pv„=~{bp-l(a* + p*+ y*)},

p
- = k h* p« = k e *>

lL = k ca
> p*>=L ay>

the force arising from a system of stress of which these are the
components will be statically equivalent, in its effects on each
element of the body, to the forces arising from the magnetiza-
tion and electric currents.

642.] The nature of the stress of which these are the com-
ponents may be easily found, by making the axis of x bisect

the angle between the directions of the magnetic force and
the magnetic induction, and taking the axis of y in the plane
of these directions, and measured towards the side of the

magnetic force.

If we put «£) for the numerical value of the magnetic force,

53 for that of the magnetic induction, and 2e for the angle

between their directions,
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a — tr> cos e,

a = 33 cos e,

/3 = - £ sin e,

b = — 33 sin e,

7 = 0,

= 0;/

[642.

(16)

^ = i-( + 23£cos2 *-i£ 2
),\

47T

P„, = i-(-33£sin2 e-i£2
),

4TT

p — P — P — T- —
*ya — 'za; — -'ay — ^xa »

P = -— 33$ cose sine,

ij»= -—33& cose sine.

V (17)

Hence, the state of stress may be considered as compounded

of—

(1) A pressure equal in all directions = — £2
.

(2) A tension along the line bisecting the angle between the

directions of the magnetic force and the magnetic induction

= —-33«£Jcos2 e.

(3) A pressure along the line bisecting the exterior angle

between these directions = —- 336 sin2 e.

47T

(4) A couple tending to turn every element of the substance

in the plane of the two directions from, the direction of magnetic

induction to the direction of magnetic force = — 33«£> sin 2 e.

When the magnetic induction is in the same direction as the

magnetic force, as it always is in fluids and non-magnetized

solids, then e = 0, and making the axis of x coincide with the

direction of the magnetic force,

4tt
(23£ -\&), *vv ~~ ***

8w '
(18)

and the tangential stresses disappear.

The stress in this case is therefore a hydrostatic pressure

—#2
, combined with a longitudinal tension — 33$ along the

lines of force.
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643.] When there is no magnetization, S3 = $, and the stress

is still further simplified, being a tension along the lines of

force equal to — 4?
2
, combined with a pressure in all directions

at right angles to the line of force, numerically equal also to

— «£)
2

. The components of stress in this important case are

Pxx = ~(a*-B*-y%\
07T

^=^(y2-a2 -/32
),

4 It

Pzx = -EL = — ya,

47T '

y (19)

The ^--component of the force arising from these stresses on an
element of the medium referred to unit of volume is

Y d_p
i

d_p
,

d_p
~~ dx " dy *** dz

**'

- 1
Sa

da
n
dB dy\± 1

S d@ , o da l , M dy da)
-rATx~^- y Tx\

+ rA a^^^Ty\ + rA a
Tz^yTz\

4tir ^dx dy dz* ±ir
y ^dz dx> lit ^dx dy>

Now da dB dy
dx dz

da dy
dz dx~ '

dB da
dx dy

where m is the density of austral magnetic matter referred to

unit of volume, and v and w are the intensities of electric

currents perpendicular to y and z respectively. Hence,
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X = am + vy-wp.
|

(Equationg of

Similarly Y = Bm +Wa—Uy, > Electromagnetic (20)

r, „ \
Force.)Z= ym + U(3—Va. )

644.] If we adopt the theories of Ampere and Weber as to

the nature of magnetic and diamagnetic bodies, and assume that

magnetic and diamagnetic polarity are due to molecular electric

currents, we get rid of imaginary magnetic matter, and find that

everywhere m = 0, and

da
+
d£

+
dy = (21)

ax dy dz

so that the equations of electromagnetic force become

X = vy— w/3, \

Y — wa— Uy, > (22)

Z = u(3— Va. )

These are the components of the mechanical force referred

to unit of volume of the substance. The components of the

magnetic force are a, 0, y, and those of the electric current are

u, v, w. These equations are identical with those already

established. (Equations (C), Art. 603.)

645.] In explaining the electromagnetic force by means of

a state of stress in a medium, we are only following out the

conception of Faraday*, that the lines of magnetic force tend

to shorten themselves, and that they repel each other when

placed side by side. All that we have done is to express the

value of the tension along the lines, and the pressure at right

angles to them, in mathematical language, and to prove that the

state of stress thus assumed to exist in the medium will actually

produce the observed forces on the conductors which carry

electric currents.

We have asserted nothing as yet with respect to the mode

in which this state of stress is originated and maintained in the

medium. We have merely shewn that it is possible to conceive

the mutual action of electric currents to depend on a particular

kind of stress in the surrounding medium, instead of being

a direct and immediate action at a distance.

Any further explanation of the state of stress, by means of

the motion of the medium or otherwise, must be regarded as

* Exp. Bes., 3266, 3267, 3268.
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a separate and independent part of the theory, which may stand
or fall without affecting our present position. See Art. 832.
In the first part of this treatise, Art. 108, we shewed that the

observed electrostatic forces may be conceived as operating
through the intervention of a state of stress in the surrounding
medium. We have now done the same for the electromagnetic
forces, and it remains to be seen whether the conception of
a medium capable of supporting these states of stress is consistent
with other known phenomena, or whether we shall have to put
it aside as unfruitful.

In a field in which electrostatic as well as electromagnetic
action is taking place, we must suppose the electrostatic stress

described in Part I to be superposed on the electromagnetic
stress which we have been considering.

646.] If we suppose the total terrestrial magnetic force to be
10 British units (grain, foot, second), as it is nearly in Britain,
then the tension along the lines of force is 0-128 grains weight
per square foot. The greatest magnetic tension produced by
Joule* by means of electromagnets was about 140 pounds
weight on the square inch.

De*c

S
185f

°nS AUnaU °fEUctricity> voL v
* P- 187 (184°) J or Philosophical Magazine,



APPENDIX I.

[The following note, derived from a letter written by Professor Clerk Maxwell to

Professor Chrystal, is important in connexion with Arts. 389 and 632 :

—

In Art. 389 the energy due to the presence of a magnet whose mag-

netization components are A
x , Bx , Clf placed in a field whose magnetic

force components are a
2 , /32 , y2 , is

—fff (A
1
a
2+Bx /32+ C

x y2) dxdydz,

where the integration is confined to the magnet in virtue of A
x , Blt C,

being zero everywhere else.

But the whole energy is of the form

~ £/// { (A + A) («i+ a
2) + &c. } dxdydz,

the integration extending to every part of space where there are mag-

netized bodies, and A 2i B2 , C2
denoting the components of magnetization

at any point exterior to the magnet.

The whole energy thus consists of four parts :

—

-\///{A
1
a
1+ &c.) dxdydz, (1)

which is constant if the magnetization of the magnet is rigid

;

-4 fff<A «i+ & dxdydz, (2)

which is equal, by Green's Theorem, to

- \fff(A i "a+ &c-) dxdydz, (3)

and — \fff{A
2
a
2+ &c.) dxdydz, (4)

which last we may suppose to arise from rigid magnetizations and there-

fore to be constant.

Hence the variable part of the energy of the moveable magnet, as

rigidly magnetized, is the sum of the expressions (2) and (3), viz.,

-///(A
1
at +Blp1+ C1 y%

)dxdydz.

Remembering that the displacement of the magnet alters the values of

<x
2 , /32 , y2 , but not those of Alt Blt Gl , we find for the component of the

force on the magnet in any direction </>
—

If instead of a magnet we have a body magnetized by induction, the

expression for the force must be the same, viz., writing A
x
= na, &c,

we have f f C , da„
,

_c?/3„ , dy^ _ , .

In this expression a is put for 0^4- a
2 , &c, but if either the magnetized

body be small or k be small we may neglect a
2
in comparison with a

2 ,

and the expression for the force becomes, as in Art. 440,

^l/f/<(°?+ P*+ f)dxdydz.

The work done by the magnetic forces while a body of small inductive

capacity, magnetized inductively, is carried off to infinity is only half

of that for the same body rigidly magnetized to the same original

strength, for as the induced magnet is carried off it loses its strength.]

im



APPENDIX II.

[Objection has been taken to the expression contained in Art. 639 for

the potential energy per unit volume of the medium arising from mag-
netic forces, for the reason that in finding that expression in Art. 389 we
assumed the force components a, ft, y to be derivable from a potential,

whereas in Arts. 639, 640 this is not the case. This objection extends
to the expression for the force X, which is the space variation of the
energy. The purpose of this note is to bring forward some considerations

tending to confirm the accuracy of the text.]

{The force on a piece of magnetic substance carrying a current may for

convenience of calculation be divided into two parts, (i) the force on the

element in consequence of the presence of the current, (2) the force

due to the magnetism in the element. The first part will be the same
as the force on an element of a non-magnetic substance, the components
being respectively,

yv—(3w, (u, v, w being components

aw— yu, -j of current, a, /3, y those

fiu— av, (of magnetic force,

To calculate the second force imagine a long narrow cylinder cut out

of the magnetic substance, the axis of the cylinder being parallel to the

direction of magnetization.

If / is the intensity of magnetization the force parallel to x on the

magnet per unit volume is

jda

ds

or, if A, B, C are the components of /,

. da T.da ~daA^ +B^ + C--,
dx dy dz

dx ^dx J v <w? '

The total force on the element parallel to cc is therefore

yv-(3«,+A%+B(^-±™)+ C{^+^v),

or v(y+4vC)-w(a + 4tirB) +A^ +B
(^ +C^,v ' v dx dx dx

J
da _c?/3 ~dy

i.e. vc-wb + A ^-+ B-j^+ C-^-,
dx dx dx

the expression in the text.}



CHAPTER XII.

CURRENT-SHEETS.

647.] A current-sheet is an infinitely thin stratum of con-

ducting matter, bounded on both sides by insulating media, so

that electric currents may flow in the sheet, but cannot escape

from it except at certain points called Electrodes, where currents

are made to enter or to leave the sheet.

In order to conduct a finite electric current, a real sheet must

have a finite thickness, and ought therefore to be considered

a conductor of three dimensions. In many cases, however, it is

practically convenient to deduce the electric properties of a real

conducting sheet, or of a thin layer of coiled wire, from those of

a current-sheet as defined above.

We may therefore regard a surface of any form as a current-

sheet. Having selected one side of this surface as the positive

side, we shall always suppose any lines drawn on the surface to

be looked at from the positive side of the surface. In the case

of a closed surface we shall consider the outside as positive. See

Art. 294, where, however, the direction of the current is defined

as seen from the negative side of the sheet.

The Current-function.

648.] Let a fixed point A on the surface be chosen as origin,

and let a line be drawn on the surface from A to another point

P. Let the quantity of electricity which in unit of time crosses

this line from left to right be 0, then <£ is called the Current-

function at the point P.

The current-function depends only on the position of the

point P and is the same for any two forms of the line AP,
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provided this line can be transformed by continuous motion
from one form to the other without passing through an electrode.
For the two forms of the line will enclose an area within which
there is no electrode, and therefore the same quantity of
electricity which enters the area across one of the lines must
issue across the other.

If s denote the length of the line AP, the current across ds

from left to right will be ^$-ds.
as

If
<f>

is constant for any curve, there is no current across it.
Such a curve is called a Current-line or a Stream-line.

649.] Let \jr be the electric potential at any point of the sheet,
then the electromotive force along any element ds of a curve
wiU be d+ J

~ds-
ds

>

provided no electromotive force exists except that which arises
from differences of potential.

If <// is constant for any curve, the curve is called an Equi-
potential Line.

650.] We may now suppose that the position of a point on
the sheet is denned by the values of and yj, at that point.
Let ds

x be the length of the element of the equipotential line ^
intercepted between the two current lines and

<f> + d<f,, and let
ds

2 be the length of the element of the current line <j> intercepted
between the two equipotential lines f and ^ + cty. We may
consider ds, and ds2 as the sides of the element d^d* of the
sheet. The electromotive force -d+ in the direction of ds9
produces the current d(f> across ds

x
.

Let the resistance of a portion of the sheet whose length
is ds

2 ,
and whose breadth is ds

x , be

ds2
ds

x

'

where o- is the specific resistance of the sheet referred to unit of
area, then ^s

whence ^1 = a ^h.
d(p d\\r

651.] If the sheet is of a substance which conducts equally
well in all directions, ds

x
is perpendicular to dsr In the case
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of a sheet of uniform resistance o- is constant, and if we make

\jr = (T\fr

f

, we shall have § 8 g^

and the stream-lines and equipotential lines will cut the surface

into little squares.

It follows from this that if fa and fa' are conjugate functions

(Art. 183) of </> and \//, the curves fa may be stream-lines in the

sheet for which the curves fa' are the corresponding equi-

potential lines. One case, of course, is that in which fa = y\r'

and fa'
= — <}>. In this case the equipotential lines become

current-lines, and the current-lines equipotential lines *.

If we have obtained the solution of the distribution of electric

currents in a uniform sheet of any form for any particular case,

we may deduce the distribution in any other case by a proper

transformation of the conjugate functions, according to the

method given in Art. 190.

652.] We have next to determine the magnetic action of a

current-sheet in which the current is entirely confined to the

sheet, there being no electrodes to convey the current to or from

the sheet.

In this case the current-function
<f>
has a determinate value at

every point, and the stream-lines are closed curves which do not

intersect each other, though any one stream-line may intersect

itself.

Consider the annular portion of the sheet between the stream-

lines (j> and cf) + bfa This part of the sheet is a conducting cir-

cuit in which a current of strength 5 <j> circulates in the positive

direction round that part of the sheet for which <j> is greater

than the given value. The magnetic effect of this circuit is the

same as that of a magnetic shell of strength b (j> at any point not

included in the substance of the shell. Let us suppose that the

shell coincides with that part of the current-sheet for which
<f>

has a greater value than it has at the given stream-line.

By drawing all the successive stream-lines, beginning with

that for which
(f>

has the greatest value, and ending with that

for which its value is least, we shall divide the current-sheet

into a series of circuits. Substituting for each circuit its corre-

sponding magnetic shell, we find that the magnetic effect of the

* See Thomson, Camb. Math. Journ., vol. iii. p. 286.
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current-sheet at any point not included in the thickness of the
sheet is the same as that of a complex magnetic shell, whose
strength at any point is C+

<f>,
where G is a constant.

If the current-sheet is bounded, then we must make G+<f) =
at the bounding curve. If the sheet forms a closed or an in-

finite surface, there is nothing to determine the value of the
constant G.

653.] The magnetic potential at any point on either side of
the current-sheet is given, as in Art. 415, by the expression

£l=JJ^<j><i08edS
i

where r is the distance of the given point from the element of

surface dS, and is the angle between the direction of r, and
that of the normal drawn from the positive side of dS.

This expression gives the magnetic potential for all points not
included in the thickness of the current-sheet, and we know
that for points within a conductor carrying a current there is no
such thing as a magnetic potential.

The value of 12 is discontinuous at the current-sheet, for

if 12j is its value at a point just within the current-sheet,

and X2
2
its value at a point close to the first but just outside

the current-sheet,

I2
2
= I2

1
+ 4ir<|),

where <£ is the current-function at that point of the sheet.

The value of the component of magnetic force normal to the
sheet is continuous, being the same on both sides of the sheet.

The component of the magnetic force parallel to the current-
lines is also continuous, but the tangential component per-

pendicular to the current-lines is discontinuous at the sheet. If

* is the length of a curve drawn on the sheet, the component of

magnetic force in the direction of ds is, for the negative side,

d®T. j f lt - x . .

,

dil dO., dd>~ > and for the positive side, — -r=-S = _l _4 ff _r.ds r ds ds ds
The component of the magnetic force on the positive side

therefore exceeds that on the negative side by — 4 tt -^ • At a
ds

given point this quantity will be a maximum when ds is per-

pendicular to the current-lines.
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On the Induction of Electric Currents in a Sheet of

Infinite Conductivity.

654.] It was shewn in Art. 579 that in any circuit

where E is the impressed electromotive force, p the electro-

kinetic momentum of the circuit, R the resistance of the circuit,

and i the current round it. If there is no impressed electro-

cIt)

motive force and no resistance, then -^- = 0, or p is constant.

Now p, the electrokinetic momentum of the circuit, was

shewn in Art. 588 to be measured by the surface-integral of

magnetic induction through the circuit. Hence, in the case

of a current-sheet of no resistance, the surface-integral of mag-

netic induction through any closed curve drawn on the surface

must be constant, and this implies that the normal component

of magnetic induction remains constant at every point of the

current-sheet.

655.] If, therefore, by the motion of magnets or variations

of currents in the neighbourhood, the magnetic field is in any

way altered, electric currents will be set up in the current-sheet,

such that their magnetic effect, combined with that of the

magnets or currents in the field, will maintain the normal

component of magnetic induction at every point of the sheet

unchanged. If at first there is no magnetic action, and no

currents in the sheet, then the normal component of magnetic

induction will always be zero at every point of the sheet.

The sheet may therefore be regarded as impervious to mag-

netic induction, and the lines of magnetic induction will be

deflected by the sheet exactly in the same way as the lines

of flow of an electric current in an infinite and uniform con-

ducting mass would be deflected by the introduction of a

sheet of the same form made of a substance of infinite re-

sistance.

If the sheet forms a closed or an infinite surface, no magnetic

actions which may take place on one side of the sheet will

produce any magnetic effect on the other side.
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Theory of a Plane Current-sheet.

656.] We have seen that the external magnetic action of
a current-sheet is equivalent to that of a magnetic shell whose
strength at any point is numerically equal to

<f>,
the current-

function. When the sheet is a plane one, we may express all

the quantities required for the determination of electromagnetic
effects in terms of a single function, P, which is the potential
due to a sheet of imaginary matter spread over the plane with
a surface-density </>. The value ofP is of course

P=jftdx'dy', (1)

where r is the distance from the point (x, y, z) for which P is

calculated, to the point (x\ y', 0) in the plane of the sheet, at
which the element dx'dy' is taken.

To find the magnetic potential, we may regard the magnetic
shell as consisting of two surfaces parallel to the plane of xy, the

first, whose equation is z = \ c, having the surface-density *£
, and

the second, whose equation is z — — £c, having the surface-

density — -

.

The potentials due to these surfaces will be

-Pi r\ and P , cX

respectively, where the suffixes indicate that z - - is put for z

in the first expression, and z + | for z in the second. Expanding

these expressions by Taylor's Theorem, adding them, and then
making c infinitely small, we obtain for the magnetic potential
due to the sheet at any point external to it,

dPa = -dz" &
657.] The quantity P is symmetrical with respect to the

plane of the sheet, and is therefore the same when — z is

substituted for z.

X2, the magnetic potential, changes sign when —z is put for z.

At the positive surface of the sheet

dP
i2 = -^ = 2^- (3)
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At the negative surface of the sheet

fl=-f=- 2 **- w
Within the sheet, if its magnetic effects arise from the mag-

netization of its substance, the magnetic potential varies con-

tinuously from 2ir<f) at the positive surface to — 2 7r<£ at the

negative surface.

If the sheet contains electric currents, the magnetic force within

it does not satisfy the condition of having a potential. The mag-

netic force within the sheet is, however, perfectly determinate.

The normal component,

da_d?P
dz ~ dz

is the same on both sides of the sheet and throughout its

substance.

If a and /3 be the components of the magnetic force parallel to

x and to y at the positive surface, and a', $' those on the negative

.=-».£ = -* <«)

Within the sheet the components vary continuously from a

and y3 to a and /3'.

^ A . dH dG da \The equations -^-- — = j—
dy dz dx

dF dH _ da
dz dx dy

dG_dF __da
dx dy ~~ dz

which connect the components F, G, H of the vector-potential

due to the current-sheet with the scalar potential a, are satisfied

if we make dP dP , , v

dy dx
We may also obtain these values by direct integration, thus

for F {we have by Art. 616 if n is everywhere equal to unity},

=ft"-If+&*<*

(8)
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Since the integration is to be estimated over the infinite plane
sheet, and since the first term vanishes at infinity, the expression
is reduced to the second term ; and by substituting

d 1 , d 1— - for _-_,
ay

r

dy r
and remembering that

<f>
depends on x' and y\ and not on x, y z

we obtain d -^

= ^'t>y(i).

If 12' is the magnetic potential due to any magnetic or electric
system external to the sheet, we may write

P'^-Ja'dz, (10)

and we shall then have

ev air a,PF =W G = -d^' s'=°< (»)
for the components of the vector-potential due to this system.

658.] Let us now determine the electromotive intensity at any
point of the sheet, supposing the sheet fixed.

Let X and Y be the components of the electromotive intensity
parallel to x and y respectively, then, by Art. 598, we have
{writing* for*} * d*x

-~di(F+F)-dx-' (
12

)

If the electric resistance of the sheet is uniform and equal to <r,

X = <ru, Y = <rv, (14)
where u and v are the components of the current, and if

<f>
is

the current-function,

u~w *=-£ (»)

But, by equation (3), 27rd> = ——
dz

at the positive surface of the current-sheet. Hence, equations
(12) and (13) may be written

2*dydz dydt {^+ r)
di' <le>

ivdxdz dxdt K ' 'dy'
" 7

>
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where the values of the expressions are those corresponding to

the positive surface of the sheet.

If we differentiate the first of these equations with respect to x,

and the second with respect to y, and add the results, we obtain

ft + ft = 0. (18)
dx- dy-

The only value of ^ which satisfies this equation, and is finite

and continuous at every point of the plane, and vanishes at an

infinite distance, is ^ = 0. (19)

Hence the induction of electric currents in an infinite plane

sheet of uniform conductivity is not accompanied with differences

of electric potential in different parts of the sheet.

Substituting this value of
\f/,

and integrating equations (16),

(17), we obtain a dP dP dP'

2,d^-dt-W= f{Z '
t} - (20)

Since the values of the currents in the sheet are found by

differentiating with respect to x or y, the arbitrary function of z

and t will disappear. We shall therefore leave it out of account.

If we also write for— , the single symbol R, which represents
2 it

a certain velocity, the equation between P and P' becomes

ndP dP dP' ,olXR
dz~

=
dt

+ -W (21)

659.] Let us first suppose that there is no external magnetic

system acting on the current-sheet. We may therefore suppose

P' — 0. The case then becomes that of a system of electric

currents in the sheet left to themselves, but acting on one

another by their mutual induction, and at the same time losing

their energy on account of the resistance of the sheet. The

result is expressed by the equation

*§=§ <22 >

the solution of which is P = F {x, y, (z + Bt)}. (23)

* Hence, the value of P at any point on the positive side

* [The equations (20) and (22) are proved to be true only at the surface of the

sheet for which z = 0. The expression (23) satisfies (22) generally, and therefore

also at the surface of the sheet. It also satisfies the other conditions of the problem,

and is therefore a solution. ' Any other solution must differ from this by a system

of closed currents, depending on the initial state of the sheet, not due to any external

cause, and which therefore must decay rapidly. Hence, since we assume an eternity

of past time, this is the only solution of the problem.' See Professor Clerk Maxwell's

Paper, Royal Soc. Proc, xx. pp. 160-168.]
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of the sheet whose coordinates are x, y, z, and at a time t, is

equal to the value of P at the point x. y, (z + Rt) at the instant
when t = 0.

If therefore a system of currents is excited in a uniform plane
sheet of infinite extent and then left to itself, its magnetic effect

at any point on the positive side of the sheet will be the same
as if the system of currents had been maintained constant in
the sheet, and the sheet moved in the direction of a normal from
its negative side with the constant velocity R. The diminution
of the electromagnetic forces, which arises from a decay of the
currents in the real case, is accurately represented by the
diminution of the forces on account of the increasing distance in

the imaginary case.

660.] Integrating equation (21) with respect to t, we obtain

F+p
'=f

Jt
is

dL
<24 >

If we suppose that at first P and F are both zero, and that
a magnet or electromagnet is suddenly magnetized or brought
from an infinite distance, so as to change the value of P'
suddenly from zero to P\ then, since the time-integral in

the second member of (24) vanishes with the time, we must
have at the first instant P — ~ P' at the surface of the sheet.

Hence, the system of currents excited in the sheet by the

sudden introduction of the system to which P' is due, is such
that at the surface of the sheet it exactly neutralizes the

magnetic effect of this system.

At the surface of the sheet, therefore, and consequently at all

points on the negative side of it, the initial system of currents

produces an effect exactly equal and opposite to that of the

magnetic system on the positive side. We may express this

by saying that the effect of the currents is equivalent to that

of an image of the magnetic system, coinciding in position

with that system, but opposite as regards the direction of its

magnetization and of its electric currents. Such an image is

called a negative image.

The effect of the currents in the sheet at a point on the

positive side of it is equivalent to that of a positive image of

the magnetic system on the negative side of the sheet, the

lines joining corresponding points being bisected at right angles

by the sheet.



296 CURRENT-SHEETS. [662.

The action at a point on either side of the sheet, due to the

currents in the sheet, may therefore be regarded as due to an

image of the magnetic system 011 the side of the sheet opposite

to the point, this image being a positive or a negative image

according as the point is on the positive or the negative side of

the sheet.

661.] If the sheet is of infinite conductivity, R = 0, and the

right-hand side of (24) is zero, so that the image will represent

the effect of the currents in the sheet at any time.

In the case of a real sheet, the resistance R has some finite

value. The image just described will therefore represent the

effect of the currents only during the first instant after the

sudden introduction of the magnetic system. The currents will

immediately begin to decay, and the effect of this decay will be

accurately represented if we suppose the two images to move

from their original positions, in the direction of normals drawn

from the sheet, with the constant velocity R.

662.] We are now prepared to investigate the system of

currents induced in the sheet by any system, M, of magnets or

electromagnets on the positive side of the sheet, the position and

strength of which vary in any manner.

Let P\ as before, be the function from which the direct action

of this system is to be deduced by the equations (3), (9), &c,

then— bt will be the function corresponding to the system re-

dt

presented by^ bt This quantity, which is the increment of

M in the time bt, may be regarded as itself representing a

magnetic system.

If we suppose that at the time t a positive image of the system

dM
bt is formed on the negative side of the sheet, the magnetic

dt

action at any point on the positive side of the sheet due to this

image will be equivalent to that due to the currents in the sheet

excited by the change in M during the first instant after the

change, and the image will continue to be equivalent to the

currents in the sheet, if, as soon as it is formed, it begins

to move in the negative direction of z with the constant

velocity R.

If we suppose that in every successive element of the time an
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image of this kind is formed, and that as soon as it is formed
it begins to move away from the sheet with velocity R, we shall

obtain the conception of a trail of images, the last of which is

in process of formation, while all the rest are moving like a
rigid body away from the sheet with velocity P.

663.] If P' denotes any function whatever arising from the

action of the magnetic system, we may find P, the corresponding

function arising from the currents in the sheet, by the following

process, which is merely the symbolical expression for the theory
of the trail of images.

Let PT denote the value of P (the function arising from the

currents in the sheet) at the point (x, y, z + Bt), and at the time
t— r, and let P/ denote the value of P' (the function arising

from the magnetic system) at the point (x, y, ~(z+R T)), and at

the time t— r. Then

dPT „dPT dPT

dr^^-lit' (
25

)

and equation (21) becomes

dr dt

and we obtain by integrating with respect to r from
to t = 00

, r dP!

Jo dt

(26)

r =

(27)

as the value of the function P, whence we obtain all the pro-
perties of the current-sheet by differentiation, as in equations

(3), (9), &c*
664.] As an example of the process here indicated, let us take

* {This proof may be arranged as follows : let $ r be the value of P at the time t—

r

at the point x, y,— (z + R t), the rest of the notation being the same as in the text.
Then since $p r is a function of x, y, z + Rt, t— rvte have

dr dz dt '

and since by the footnote on page 294 equation (21) is satisfied at all points in the
field and not merely in the plane, we have

dr dt

hence $r=-/ ^dr;
u • » J0 M
but since P has the same value at any point as at the image of the point in the plane
sheet, $T -PT)

* * '

hence p — _ C
K dP'r, ,

7. ^^
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the case of a single magnetic pole of strength unity, moving

with uniform velocity in a straight line.

Let the coordinates of the pole at the time t be

£=u£, i\ = 0, (=c + \\)t.

The coordinates of the image of the pole formed at the time

t— r are

£=U(<- T), 77 = 0, C= -(<: + >» (*-r) + Rt),

and if r is the distance of this image from the point (x, y, z),

r2 = (x-u(t-T)Y+y2 + (z + c + ^(t-T) +R T)

2
.

To obtain the potential due to the trail of images we have to

calculate d f
M

oLt

dt ' r

If we write Q
2 = u2 + (JB- tt))

2
,

f — = - I log {Qr + it (x-ut) + (R-)x) (2 + 04 w*)},

JO T h>

+ a term infinitely great which however will disappear on differ-

entiation with regard to t, the value of r in this expression being

found by making r = in the expression for r given above.

Differentiating this expression with respect to t, and putting

t= 0, we obtain the magnetic potential due to the trail of

images,

1 * T
Q =

Q̂ Qr + iix + (R—m){e + c)

By differentiating this expression with respect to x or z, we

obtain the components parallel to x or z respectively of the

magnetic force at any point, and by putting x = 0, z = c, and.

r = 2c in these expressions, we obtain the following values of

the components of the force acting on the moving pole itself,

1 u { \y _ u2
)X= -^Q +R-wl +

Q Q(Q + R-w)\'

7- i_ 5!
u _ » 2

\*.

665.] In these expressions we must remember that the motion

is supposed to have been going on for an infinite time before the

* {These expressions may be written in the simpler forms

X = - — B "

4c»QQ + .H-»'
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time considered. Hence we must not take it) a positive quan-
tity, for in that case the pole must have passed through the
sheet within a finite time.

If we make u = 0, and \x> negative, X = 0, and

Z=± »
4 c*R + n>

or the pole as it approaches the sheet is repelled from it.

If we make tt> = 0, we find Q2 = u2 + R\

X = ——
-, t=t7^

—
ft. and Z —

The component X represents a retarding force acting on the
pole in the direction opposite to that of its own motion. For a
given value of R, Xis a maximum when u = 1-27 R.
When the sheet is a non-conductor, R = oc and X = 0.

When the sheet is a perfect conductor, R = and X = 0.

The component Z represents a repulsion of the pole from the
sheet. It increases as the velocity it increases, and ultimately

becomes — when the velocity is infinite. It has the same

value when R is zero.

666.] When the magnetic pole moves in a curve parallel to

the sheet, the calculation becomes more complicated, but it is

easy to see that the effect of the nearest portion of the trail of

images is to produce a force acting on the pole in the direction

opposite to that of its motion. The effect of the portion of the
trail immediately behind this is of the same kind as that of a
magnet with its axis parallel to the direction of motion of the
pole at some time before. Since the nearest pole of this magnet
is of the same name with the moving pole, the force will consist

partly of a repulsion, and partly of a force parallel to the former
direction of motion, but backwards. This may be resolved into

a retarding force, and a force towards the concave side of the

path of the moving pole.

667.] Our investigation does not enable us to solve the case

in which the system of currents cannot be completely formed, on
account of a discontinuity or boundary of the conducting sheet.

It is easy to see, however, that if the pole is moving parallel

to the edge of the sheet, the currents on the side next the edge
will be enfeebled. Hence the forces due to these currents will

be less, and there will not only be a smaller retarding force, but,
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since the repulsive force is least on the side next the edge, the

pole will be attracted towards the edge.

Theory of Arago's Rotating Disk.

668.] Arago discovered * that a magnet placed near a rotating

metallic disk experiences a force tending to make it follow the

motion of the disk, although when the disk is at rest there is

no action between it and the magnet.

This action of a rotating disk was attributed to a new kind

of induced magnetization, till Faraday f explained it by means

of the electric currents induced in the disk on account of its

motion through the field of magnetic force.

To determine the distribution of these induced currents, and

their effect on the magnet, we might make use of the results

already found for a conducting sheet at rest acted on by a

moving magnet, availing ourselves of the method given in

Art. 600 for treating the electromagnetic equations when re-

ferred to a moving system of axes. As this case, however, has

a special importance, we shall treat it in a direct manner, be-

ginning by assuming that the poles of the magnet are so far

from the edge of the disk that the effect of the limitation of the

conducting sheet may be neglected.

Making use of the same notation as in the preceding articles

(656-667), we find {equations 13, § 598, writing \fr for *} for

the components of the electromotive intensity parallel to x and y

respectively, dy d\fr \

~~
' dt dx' I /.v

_ _ dx _d^
\

~~
dt dy)

where y is the resolved part of the magnetic force normal to

the disk.

If we now express u and v in terms of
<f>,

the current-function,

-& — 2- <2>

and if the disk is rotating about the axis of z with the angular

velocity w, dy dx

It
= (*x

> 7*=—* <
3
>

* Annates de Chimie et de Physique, Tome 32, pp. 213-223, 1826.

f Exp. Res., 81.
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Substituting these values in equations (1), we find

d(b d\lr

d<f> _ dy\r

dx ~~ ^y dy

Multiplying (4) by x and (5) by y, and adding, we obtain

<'%-'*£)->•<? +*>-{*%+*%) (6)

Multiplying (4) by y and (5) by — x, and adding, we obtain

/ d(j) d$\ d\l/ d\lr

If we now express these equations in terms of r and 6, where

x = r cos 6, *y = r sin d, (8)

they become <r -^ = ycor2— r -p

>

(9)

dr~ dd

Equation (10) is satisfied if we assume any arbitrary function

X of r and } and make d*

<TT~=~- (10)

(11)

Substituting these values in equation (9), it becomes

Dividing by o-r
2
, and restoring the coordinates x and y, this

becomes d\ d\ <oJ + d£
=

' 7' (H)

This is the fundamental equation of the theory, and expresses

the relation between the function, x? and the component, y, of

the magnetic force resolved normal to the disk.

Let Q be the potential, at any point on the positive side of the

disk, due to imaginary attracting matter distributed over the

disk with the surface-density x>

At the positive surface of the disk

f = -2»X- (IS)
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Hence the first member of equation (14) becomes

dx2 + dy2 ~ 2irdz K dx2
+

dy*'
}

But since Q satisfies Laplace's equation at all points external

to the disk, d*Q d?Q__<PQ^ ,

J7)
dx1 dy2 ~~

dz2
'

and equation (14) becomes

<r dzQ ,. v

2^^ = t° y- (18)

Again, since Q is the potential due to the distribution x, the

potential due to the distribution <£, or ^—, will be -p- • From

this we obtain for the magnetic potential due to the currents in

the disk, d2Q . .

and for the component of the magnetic force normal to the

disk due to the currents,

_ _ *9l - i!^_ f2 (rt
7l ~ dz~~ dtidz2 V ;

If i2
2

is the magnetic potential due to external magnets, and

if we write
* = -fn2

dz, (2i)P' =

(23)

the component of the magnetic force normal to the disk due to

the magnets will be ^pr

We may now write equation (18), remembering that

v = yi+y2 .

a_(PQ _ d3Q _ d?P_

2ndzs " d6dz2
~ (a

dz2 '

Integrating twice with respect to z, and writing R for — >

(
JI5-«)« = -P '- ^

If the values of P and Q are expressed in terms of r, the dis-

tance from the axis of the disk, and of £ and ( two new variables

such that t> v>

2£ = z+-$
t 2C=z--6, (25)

CO CO
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equation (24) becomes, by integration with respect to £

Q=J~FdC (26)

669.] The form of this expression taken in conjunction with
the method of Art. 662 shews that the magnetic action of the
currents in the disk is equivalent to that of a trail of images of
the magnetic system in the form of a helix.

If the magnetic system consists of a single magnetic pole of
strength unity, the helix will lie on the cylinder whose axis is

that of the disk, and which passes through the magnetic pole.
The helix will begin at the position of the optical image of the
pole in the disk. The distance, parallel to the axis, between

consecutive coils of the helix will be 2 it— • The magnetic effect

of the trail will be the same as if this helix had been mao-netized
everywhere in the direction of a tangent to the cylinder perpen-
dicular to its axis, with an intensity such that the magnetic
moment of any small portion is numerically equal to the length
of its projection on the disk.

The calculation of the effect on the magnetic pole would be
complicated, but it is easy to see that it will consist of—

(1) A dragging force, parallel to the direction of motion of
the disk.

(2) A repulsive force acting from the disk.

(3) A force towards the axis of the disk.

When the pole is near the edge of the disk, the third of these
forces may be overcome by the force towards the edge of the
disk, indicated in Art. 667 *.

All these forces were observed by Arago, and described by
him in the Annates de Chimie for 1826. See also Felici, in
Tortolini's Annals, iv, p. 173 (1853), and v, p. 35 ; and E.
Jochmann, in Crelles Journal, lxiii, pp. 158 and 329 ; also in Pogg.
Ann. cxxii, p. 214 (1864). In the latter paper the equations
necessary for determining the induction of the currents on
themselves are given, but this part of the action is omitted in
the subsequent calculation of results. The method of iinao-es

given here was published in the Proceedings of the Royal Society
for Feb. 15, 1872.

* {if a is the distance of a pole from the axis of the disk, c its height above the disk
we can prove that for small values of oj, the dragging force on the pole is m'aw/Zc^B
the repulsive force m2a2w2/8c2 iZ 2

, the force towards the axis m'aoj'/icB?
}

'



304 CURRENT-SHEETS. [67O.

Spherical Current-Sheet.

670.] Let
<f>

be the current-function at any point Q of a

spherical current-sheet, and let P be the potential at a given

point, due to a sheet of imaginary

matter distributed over the sphere

with surface-density cf>, it is re-

quired to find the magnetic po-

tential and the vector-potential of

the current-sheet in terms of P.

Let a denote the radius of the

sphere, r the distance of the given

_. point from the centre, and p the

reciprocal of the distance of the

aiven point from the point Q on the sphere at which the current-

function is </>.

The action of the current-sheet at any point not in its sub-

stance is identical with that of a magnetic shell whose strength

at any point is numerically equal to the current-function.

The mutual potential of the magnetic shell and a unit pole

placed at the point P is, by Art. 410,

dpHf4>irdS.
da

Since p is a homogeneous function of the degree — 1 in r and a,

dp dp
da dr

da~ adr [P >'

and a=-ff±l-r (pr)dS.

Since r and a are constant throughout the surface-integration,

But if P is the potential due to a sheet of imaginary matter

of surface-density </>, rrJ p= Upds,

and a, the magnetic potential of the current-sheet, may be

expressed in terms of P in the form

il— j~ (Pr).
adr s

'
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671.] We may determine F, the ^-component of the vector-
potential, from the expression given in Art. 416,

,=//(m tr n
Tr)

ds
-

where £, -q, ( are the coordinates of the element dS, and I, m, n
are the direction-cosines of the normal.

Since the sheet is a sphere, the direction-cosines of the normal
are

j € V C

so that »|!-»|? = {,<«-0-fl»-*)}£.

= {«(i-y)-y(f-»)}£-,

__ zdp ydp
~ ady adz'

Multiplying by <f>dS}
and integrating over the surface of the

sphere, we find
F ^J_l__V_dP

ady a dz'

Similarly G=* <*£- Z
-

(*l,
a dz adx

jj. _ydP __ xdP
adx a dy'

The vector % whose components are F, G, H, is evidently
perpendicular to the radius vector r, and to the vector whose

dP dP , dPcomponents are -^ , — , and — If We determine the lines

of intersection of the spherical surface whose radius is r, with
the series of equipotential surfaces corresponding to values of P
in arithmetical progression, these lines will indicate by their
direction the direction of 21, and by their proximity the magni-
tude of this vector.

In the language of Quaternions,

Hl=-V.pVP.
a r
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672.] If we assume as the value of P within the sphere

where Y
{
is a spherical harmonic of degree i, then outside the

Sphere PW^fV,.
dP dP'

The current-function
<f>

is since (-^ -r-

)

r=a= 4tt</>, given

by the equation _ 2^+11^ .„

The magnetic potential within the sphere is

a = -(i+i)-A(-)
%

7it

and outside 12'= i- -A ( -) K.

For example, let it be required to produce, by means of a wire

coiled into the form of a spherical shell, a uniform magnetic

force M within the shell. The magnetic potential within the

shell is, in this case, a solid harmonic of the first degree of the

form a = - Mr cos 0,

where M is the magnetic force. Hence A = \ a2M, and

3 ,,
<f> = —-Ma cos 0.r

8tt

The current-function is therefore proportional to the distance

from the equatorial plane of the sphere, and therefore the

number of windings of the wire between any two small circles

must be proportional to the distance between the planes of these

circles.

If iV is the whole number of windings, and if y is the strength

of the current in each winding,

<f>
= \ Ny COS 6.

Hence the magnetic force within the coil is

- r 4-n-iVy

3 a

673.] Let us next find the method of coiling the wire in order

to produce within the sphere a magnetic potential of the form of

a solid zonal harmonic of the second degree,

£2 = - 3- A -Al1-coB
29- 1).
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Here </> = -^-(f cos2 0-i).

If the whole number of windings is N, the number between
the pole and the polar distance is £iVsin2

0.

The windings are closest at latitude 45°. At the equator the
direction of winding changes, and in the other hemisphere the
windings are in the contrary direction.

Let y be the strength of the current in the wire, then within
the shell a ~ r2

<2 = -T iVy^(fcOS2
0-i).

Let us now consider a conductor in the form of a plane closed
curve placed anywhere within the shell with its plane perpen-
dicular to the axis. To determine its coefficient of induction we

d£l
have to find the surface-integral of — -j- over the plane bounded

by the curve, putting y = 1.

Now n =- 2̂ X{z*-U*? + y
2
)},

, d& 8tt „r

Hence, if £ is the area of the closed curve, its coefficient of
induction is

ft

M=P-z
NSz.

5cr

If the current in this conductor is /, there will be, by Art. 583,
a force Z, urging it in the direction of z, where

and, since this is independent of x, y, z, the force is the same in
whatever part of the shell the circuit is placed.

674.] The method given by Poisson, and described in Art. 437,

may be applied to current-sheets by substituting for the body,
supposed to be uniformly magnetized in the direction of z with
intensity I, a current-sheet having the form of its surface, and
for which the current-function is

<i>
= Iz. (j)

The currents in the sheet will be in planes parallel to that of xy,

and the strength of the current round a slice of thickness dz will
be Idz.
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The magnetic potential due to this current-sheet at any point

outside it will be ^ rdV

{where V is the gravitation potential due to the sheet when
the surface-density is unity.

}

At any point inside the sheet it will be

dV
il=-4.TrIz-I~- (3)

dz v '

The components of the vector-potential are

F=I^, ff— /^, H=0. (4)dy dx v '

These results can be applied to several cases occurring in

practice.

675.] (1) A plane electric circuit of any form.

Let V be the potential due to a plane sheet of any form of

which the surface-density is unity, then, if for this sheet we
substitute either a magnetic shell of strength I or an electric

current of strength I round its boundary, the values of Q. and of

F, G, H will be those given above.

(2) For a solid sphere of radius a,

V = — when r is greater than a, (5)

and V=— (3 a2 —

r

2
) when r is less than a. (6)

Hence, if such a sphere is magnetized parallel to z with inten-

sity i, the magnetic potential will be

4 7T €u& =— I -^z outside the sphere, (7)

and 12 = — Iz inside the sphere. (8)

If, instead of being magnetized, the sphere is coiled with wire
in equidistant circles, the total strength of current between two
small circles whose planes are at unit distance being I, then out-

side the sphere the value of il is as before, but within the sphere

o = -£'«- W
This is the case already discussed in Art. 672.

(3) The case of an ellipsoid uniformly magnetized parallel to

a given line has been discussed in Art. 437.

If the ellipsoid is coiled with wire in parallel and equidistant

planes, the magnetic force within the ellipsoid will be uniform.
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(4) A Cylindric Magnet or Solenoid.

676.] If the body is a cylinder having any form of section and
bounded by planes perpendicular to its generating lines, and if

V
x is the potential at the point (x, y, z) due to a plane area of

surface-density unity coinciding with the positive end of the

solenoid, and V
2
the potential at the same point due to a plane

area of surface-density unity coinciding with the negative end,

then, if the cylinder is uniformly and longitudinally magnetized
with intensity unity, the potential at the point (x, y, z) will be

n = V
1
-V2 . (10)

If the cylinder, instead of being a magnetized body, is uni-

formly lapped with wire, so that there are n windings of wire in

unit of length, and if a current, y, is made to flow through this

wire, the magnetic potential outside the solenoid is as before,

a = ny(V
x-V& (11)

but within the space bounded by the solenoid and its plane ends

a = ny{-4Tiz+V
1-Vi ). (12)

The magnetic potential is discontinuous at the plane ends of

the solenoid, but the magnetic force is continuous.

If rlt r.,, the distances of the centres of inertia of the positive

and negative plane ends respectively from the point (x, y, z), are

very great compared with the transverse dimensions of the

solenoid, we may write

U = 7' rt = ±. (13)
'l '2

where A is the area of either section.

The magnetic force outside the solenoid is therefore very small,

and the force inside the solenoid approximates to a force parallel

to the axis in the positive direction and equal to 4titny.

If the section of the solenoid is a circle of radius a, the values

of V1
and Vz may be expressed in the series of spherical har-

monics given in Thomson and Tait's Natural Philosophy,

Art. 546, Ex. II.,

of r>
17*2 l.i r* 1.1.3r6

7 . ) , /t ..= 2.|_r^+a+|-P2-^-i^P4 +2Xg^i6-&cjwhenr<a, (14)

V = 2*U^
2 -i4^P

2 +^^P4-&4 when r>a. (15)
C r 2.4 rd * 2.4.6 r6 4

)
v '
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In these expressions r is the distance of the point (x, y, z)

from the centre of one of the circular ends of the solenoid, and
the zonal harmonics, Ply JP

Z , &c, are those corresponding to the

angle 9 which r makes with the axis of the cylinder.

The differential coefficient with respect to z of the first of these

expressions is discontinuous when 6 = --, but we must remember

that within the solenoid we must add to the magnetic force

deduced from this expression a longitudinal force Inny.

677.] Let us now consider a solenoid so long that in the part

of space which we consider, the terms depending on the distance

from the ends may be neglected.

The magnetic induction through any closed curve drawn
within the solenoid is ^-nnyA', where A' is the area of the

projection of the curve on a plane normal to the axis of the

solenoid.

If the closed curve is outside the solenoid, then, if it encloses

the solenoid, the magnetic induction through it is kimyA,
where A is the area of the section of the solenoid. If the closed

curve does not surround the solenoid, the magnetic induction

through it is zero.

If a wire be wound n' times round the solenoid, the coefficient

of induction between it and the solenoid is

M=4:-nnn'A. (16)

By supposing these windings to coincide with n windings of

the solenoid, we find that the coefficient of self-induction of unit

of length of the solenoid, taken at a sufficient distance from its

extremities, is L=4:iTn2A. (17)
Near the ends of a solenoid we must take into account the

terms depending on the imaginary distribution of magnetism on
the plane ends of the solenoid. The effect of these terms is to

make the coefficient of induction between the solenoid and a

circuit which surrounds it less than the value 4ttu A, which it

has when the circuit surrounds a very long solenoid at a great

distance from either end.

Let us take the case of two circular and coaxal solenoids of

the same length I. Let the radius of the outer solenoid be clt

and let it be wound with wire so as to have n
x
windings in unit

of length. Let the radius of the inner solenoid be c2 , and let the

number of windings in unit of length be n 2 , then the coefficient
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of induction between the solenoids, if we neglect the effect of

the ends, is M—Gg, (18)

where G = ±ixn
x , (19)

and g = itc^ln2 . (20)

678.] To determine the effect of the positive end of the

solenoid we must calculate the coefficient of induction on the

outer solenoid due to the circular disk which forms the end of

the inner solenoid. For this purpose we take the second ex-

pression for V, as given in equation (15), and differentiate it

with respect to r. This gives the magnetic force in the direction

of the radius. We then multiply this expression by 2-nr2 d\x,

and integrate it with respect to p from p = 1 to \i =
Vz2 + c*

This gives the coefficient of induction with respect to a single

winding of the outer solenoid at a distance z from the positive

end. We then multiply this by dz and integrate with respect to

z from z = I to z = 0. Finally, we multiply the result by n
x
n

2 ,

and so find the effect of one of the ends in diminishing the

coefficient of induction.

We thus find for M, the value of the coefficient of mutual in-

duction between the two cylinders,

M = 4ir
2n

1
n

2 c2
2
(l— 2c

1
a), (21)

, 1
c
l
+l— r 1.3 1 c2

2
, cA

where a = i ~ ( 1 V

)

2
c
x

2.4 2.3 Cj
2 ^ r*>

1.3.5 1 c2
4

/ 1 c,
5 5cA . ,

+ 2X6-4T5^(-2- 2^ + 2F) + &C- <
22

>

where r is put, for brevity, instead of VW+c^.
It appears from this, that in calculating the mutual induction

of two coaxal solenoids, we must use in the expression (20)
instead of the true length I the corrected length I— 2cx

a, in

which a portion equal to ac
x

is supposed to be cut off at each
end. When the solenoid is very long compared with its ex-

ternal radius, c 2 c 1

a = * ~ tVA ~ tIitti + &c- (23)

679.] When a solenoid consists of a number of layers of wire

of such a diameter that there are n layers in unit of length, the

number of layers in the thickness dr is ndr, and we have

G = 4 7r / n2dr, and g = ttI n2r2dr. (24)



312 CURRENT-SHEETS. [68o.

If the thickness of the wire is constant, and if the induction

take place between an external coil whose outer and inner radii

are x and y respectively, and an inner coil whose outer and inner

radii are y and z, then, neglecting the effect of the ends,

Gg = ^2 ln 2n 2{x-y){y*-z% (25)

That this may be a maximum, x and z being given, and y
variable, zz

x = *y-i~2' (26)

This equation gives the best relation between the depths of

the primary and secondary coil for an induction-machine

without an iron core.

If there is an iron core of radius z, then remains as before,

but r
g = irl n2 (r2 + 47TKZ2)dr, (27)

= -nln2 {̂

~~ Z
+ 4iTKZ2 (y-z)y (28)

If y is given, the value of z which gives the maximum value

of#is 12™
* =l * 12^+1 <29 >

When, as in the case of iron, k is a large number, z = \y, nearly.

If we now make x constant, and y and z variable, we obtain

the maximum value of Gg, k being large,

x:y.z::±: 3:2. (30)

The coefficient of self-induction of a long solenoid whose outer

and inner radii are x and yy
having a long iron core whose

radius is z, is per unit length

4tt \ttI 7i
2
(p

2 + 4:7TKZ
2)dr + TT ns (r2 + 4:TTKZ

2)drin2dp,

= $TT2n4 (x—y)2 (x2 + 2xy + 3y2 + 24:TTKZ2
). (31)

680.] We have hitherto supposed the wire to be of uniform
thickness. We shall now determine the law according to which
the thickness must vary in the different layers in order that, for

a given value of the resistance of the primary or the secondary

coil, the value of the coefficient of mutual induction may be a
maximum.

Let the resistance of unit of length of a wire, such that n
windings occupy unit of length of the solenoid, be pn2

.
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The resistance of the whole solenoid is

R = 2 itpi I n*rdr. (32)

The condition that, with a given value of R, may be a

maximum is __ = <? __ f where G is some constant.

This gives n2 proportional to -, or the thickness of the wire of
r

the exterior coil must be proportional to the square root of the
radius of the layer.

In order that, for a given value of R, g may be a maximum

n*= C
(
r + —^-)' (33)

Hence, if there is no iron core, the thickness of the wire of the
interior coil should be inversely as the square root of the radius of
the layer, but if there is a core of iron having a high capacity for

magnetization, the thickness of the wire should be more nearly
directly proportional to the square root of the radius.

An Endless Solenoid.

681.] If a solid be generated by the revolution of a plane area
A about an axis in its own plane, not cutting it, it will have the
form of a ring. If this ring be coiled with wire, so that the
windings of the coil are in planes passing through the axis of
the ring, then, if n is the whole number of windings, the current-

function of the layer of wire is <p =

—

nyd, where 6 is the
2 IT

angle of azimuth about the axis of the rino-.

If 12 is the magnetic potential inside the ring and Of that
outside, then a~Qf = - 47r<j!>+C = - 2nyd + C.

Outside the ring, Of must satisfy Laplace's equation, and must
vanish at an infinite distance. From the nature of the problem
it must be a function of 6 only. The only value of Df which
fulfils these conditions is zero. Hence

12'= 0, a = -2nyd + C.

The magnetic force at any point within the ring is perpen-
dicular to the plane passing through the axis, and is equal to

2ny-, where r is the distance from the axis. Outside the ring

there is no magnetic force.
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If the form of a closed curve be given by the coordinates z, r,

and 6 of its tracing point as functions of s, its length from a

fixed point, the magnetic induction through the closed curve

may be found by integration round it of the vector-potential,

the components of which are

F=2ny%, G=2nyll, H = 0.

C s z dv
We thus find 2 ny / --r-ds

Jo ras

taken round the curve, provided the curve is wholly inside the

ring. If the curve lies wholly without the ring, but embraces it,

the magnetic induction through it is

2nyi 7di'
ds'= 2nya'

where a is the linear quantity / — -p, ds\ and the accented

coordinates refer not to the closed curve, but to a single winding

of the solenoid.

The magnetic induction through any closed curve embracing

the ring is therefore the same, and equal to 2 ny a. If the closed

curve does not embrace the ring, the magnetic induction through

it is zero.

Let a second wire be coiled in any manner round the ring

not necessarily in contact with it, so as to embrace it n' times.

The induction through this wire is 2nn'ya, and therefore

31, the coefficient of induction of the one coil on the other, is

M— 2nn'a.

Since this is quite independent of the particular form or

position of the second wire, the wires, if traversed by electric

currents, will experience no mechanical force acting between

them. By making the second wire coincide with the first, we

obtain for the coefficient of self-induction of the ring-coil

L = 2 n2a.



CHAPTER XIII.

PARALLEL CURRENTS.

Cylindrical Conductors.

682.] In a very important class of electrical arrangements the
current is conducted through round wires of nearly uniform
section, and either straight, or such that the radius of curvature
of the axis of the wire is very great compared with the radius of
the transverse section of the wire. In order to be prepared to
deal mathematically with such arrangements, we shall begin
with the case in which the circuit consists of two very lonor

parallel conductors, with two pieces joining their ends, and we
shall confine our attention to a part of the circuit which is so far
from the ends of the conductors that the fact of their not being
infinitely long does not introduce any sensible change in the
distribution of force.

We shall take the axis of z parallel to the direction of the
conductors, then, from the symmetry of the arrangements in the
part of the field considered, everything will depend on H, the
component of the vector-potential parallel to z.

The components of magnetic induction become, by equations

(A)> dH
a =d^> «

c = 0.

For the sake of generality we shall suppose the coefficient of
magnetic induction to be /x, so that a =(xa, b = /*£, where a and
/3 are the components of the magnetic force.
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The equations (E) of electric currents, Art. 607, give

d8 da , x

u=0, V=0, *vw = 1
----. (3)

683.] If the current is a function of r, the distance from the

axis of z, and if we write

x = r cos 6, and y = r sin 6, (4)

and 3 for the magnetic force, in the direction in which 6 is

measured perpendicular to the plane through the axis of z, we

have dp 1 n 1 d ln x lK ,

dr r rdr

If C is the whole current flowing through a section bounded

by a circle in the plane xy> whose centre is the origin and whose

radius is r, „ r* ...

C= 2irrwdr =\pr. (o)

It appears, therefore, that the magnetic force at a given point

due to a current arranged in cylindrical strata, whose common

axis is the axis of 2, depends only on the total strength of the

current flowing through the strata which lie between the given

point and the axis, and not on the distribution of the current

among the different cylindrical strata.

For instance, let the conductor be a uniform wire of radius a,

and let the total current through it be C, then, if the current is

uniformly distributed through all parts of the section, w will be

constant, and Q — vwa\ (
7
)

The current flowing through a circular section of radius r,

r being less than a, is C"= irwr2
. Hence at any point within the

wire,

p =^= 2C T.. (8)

Outside the wire 8 = 2 — •
(
9
)

In the substance of the wire there is no magnetic potential, for

within a conductor carrying an electric current the magnetic

force does not fulfil the condition of having a potential.

Outside the wire the magnetic potential is

a = -2C0. (10)

Let us suppose that instead of a wire the conductor is a metal

tube whose external and internal radii are a
x
and a2 ,

then, if C is

the current through the tubular conductor,

C = Ttw(a*-a£). (11)
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The magnetic force within the tube is zero. In the metal of the
tube, where r is between a

x
and a

2 ,

and outside the tube, G
/3 = 2-,

(13)

the same as when the current flows through a solid wire.

684.] The magnetic induction at any point is b = up, and
since, by equation (2), djj

H = -Lpdr. (15)

The value ofH outside the tube is

A~2N Clogr, (is)

where [x is the value of /x in the space outside the tube, and A is

a constant, the value of which depends on the position of the
return current.

In the substance of the tube,

H=A- 2^Cloga
1
+-^--

9
(a»-^+ 2a2Hog-)> (17)

In the space within the tube H is constant, and

H=A-2»
Q
Cloga1+ »C(l + J^log%- (18)

1 2 1

685.] Let the circuit be completed by a return current, flowing
in a tube or wire parallel to the first, the axes of the two currents
being at a distance b. To determine the kinetic energy of the
system we have to calculate the integral

T = \jjJHwdx dydz. (1 9)

If we confine our attention to that part of the system which
lies between two planes perpendicular to the axes of the con-
ductors, and distant I from each other, the expression becomes

T =\l / JHwdxdy. (20)

If we distinguish by an accent the quantities belonging to the
return current, we may write this

X =JjHw
'dx

'

dy'+ffH'wdxdy -hJJHwdxdy + [JH'w'dx'dy'. (21)
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Since the action of the current on any point outside the tube

is the same as if the same current had been concentrated at the

axis of the tube, the mean value of H for the section of the

return current is A — 2 /x Clog b, and the mean value of H' for

the section of the positive current is A'— 2n C log b.

Hence, in the expression for T, the first two terms may be

written AC-2HCC log b, and A'C - 2/x OCT log b.

Integrating the two latter terms in the ordinary way, and

adding the results, remembering that G+ Cf— 0, we obtain the

value of the kinetic energy T. Writing this \LC2
, where L is

the coefficient of self-induction of the system of two conductors,

we find as the value of L for length I of the system

,!-<»- 3a/2 4a2
'* W<1 /oo\+ *" L/2-<2 + K2-<2

)
2 g <\' (22)

If the conductors are solid wires, a2 and a/ are zero, and

f = 2 Mo log-^-/ + i(^ + /)* (23)

It is only in the case of iron wires that we need take account

of the magnetic induction in calculating their self-induction. In

other cases we may make fx , j*, and f/ all equal to unity. The

smaller the radii of the wires, and the greater the distance

between them, the greater is the self-induction.

Tofind the Repulsion, X, between the Two Portions of Wire.

686.] By Art. 580 we obtain for the force tending to increase b,

= 2^„|02
, (24)

which agrees with Ampere's formula, when fi = 1, as in air.

687.] If the length of the wires is great compared with the

distance between them, we may use the coefficient of self-

induction to determine the tension of the wires arising from the

action of the current.

* {if the wires are magnetic, the magnetism induced in them will disturb the

magnetic field and we cannot apply the preceding reasoning. Equations (22), (23)

and (25) are only strictly true when /« = /*' = p .
}
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If Z is this tension,

z — i^ r?2

= G2\^ih + ^\ (25)

In one of Ampere's experiments the parallel conductors con-
sist of two troughs of mercury connected with each other by a
floating bridge of wire. When a current is made to enter at the
extremity of one of the troughs, to flow along it till it reaches
one extremity of the floating wire, to pass into the other trough
through the floating bridge, and so to return along the second
trough, the floating bridge moves along the troughs so as to
lengthen the part of the mercury traversed by the current.

Fig. 40.

Professor Tait has simplified the electrical conditions of this

experiment by substituting for the wire a floating siphon of glass
filled with mercury, so that the current flows in mercury through-
out its course.

This experiment is sometimes adduced to prove that two
elements of a current in the same straight line repel one another,
and thus to shew that Ampere's formula, which indicates such
a repulsion of collinear elements, is more correct than that of
Grassmann, which gives no action between two elements in the
same straight line ; Art. 526.

But it is manifest that since the formulae both of Ampere and
of Grassmann give the same results for closed circuits, and since

we have in the experiment only a closed circuit, no result of the
experiment can favour one more than the other of these theories.
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In fact, both formulae lead to the very same value of the

repulsion as that already given, in which it appears that b,

the distance between the parallel conductors, is an important

element.

When the length of the conductors is not very great compared

with their distance apart, the form of the value of L becomes

somewhat more complicated.

688.] As the distance between the conductors is diminished,

the value of L diminishes. The limit to this diminution is when

the wires are in contact, or when 6 = ax + a/. In this case if

f*o =** — '*'= l
>

L= 2l{log
(^±^ + i}. (26):

1 1

This is a minimum when ax
= a/, and then

i = 2£(log4 + £),

= 2Z(l-8863),

= 3-7726 I. (27)

This is the smallest value of the self-induction of a round wire

doubled on itself, the whole length of the wire being 2 1.

Since the two parts of the wire must be insulated from each

other, the self-induction can never actually reach this limiting

value. By using broad flat strips of metal instead of round

wires the self-induction may be diminished indefinitely.

On the Electromotive Force required to produce a Current of

Varying Intensity along a Cylindrical Conductor.

689.] When the current in a wire is of varying intensity, the

electromotive force arising from the induction of the current on

itself is different in different parts of the section of the wire,

being in general a function of the distance from the axis of the

wire as well as of the time. If we suppose the cylindrical

conductor to consist of a bundle of wires all forming part of the

same circuit, so that the current is compelled to be of uniform

strength in every part of the section of the bundle, the method of

calculation which we have hitherto used would be strictly

applicable. If, however, we consider the cylindrical conductor

as a solid mass in which electric currents are free to flow in

obedience to electromotive force, the intensity of the current will

not be the same at different distances from the axis of the
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cylinder, and the electromotive forces themselves will depend on
the distribution of the current in the different cylindric strata of
the wire.

The vector-potential H> the density of the current w, and the
electromotive intensity at any point, must be considered as func-
tions of the time and of the distance from the axis of the wire.
The total current, C, through the section of the wire, and the

total electromotive force, E, acting round the circuit, are to be
regarded as the variables, the relation between which we have to
find.

Let us assume as the value of H,

H=S+T + T1
ri + &c. + Tnr

2*+..., (1)

where 8, T0> Tlt &c. are functions of the time.
Then, from the equation

d2H 1 dH
~d^ + rd^ =-^w

' (2)

we find —ttw — T
1 + &cc. + n2Tn r

2n-2+ .... (3)

If p denotes the specific resistance of the substance per unit of
volume, the electromotive intensity at any point is pw, and this
may be expressed in terms of the electric potential and the
vector-potential H by equations (B), Art. 598,

d* dHpW =-d^-W (
4
)

rf* ds dTn dT, 9 „ dT

Comparing the coefficients of like powers of r in equations
(3) and (5),

T
i
= -

P (d-*
+

di
+ w)> <

6
)

n
P n* dt W

Hence we may write -7- = — > (o\
dt dz * '

T-T t- 77^ T w" l d°T „^1 '~ 1
' ^--p-dt-- T

»=7&iy-dr' <
10

)
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690.] To find the total current C, we must integrate w over

the section of the wire whose radius is a,

fa
C=2tt wrdr. (11)

./o

Substituting the value of nw from equation (3), we obtain

C = -(T1
a2 + kc. +nTna

2n + ...). (12)

The value of H at any point outside the wire depends only on

the total current G, and not on the mode in which it is distri-

buted within the wire. Hence we may assume that the value of

H at the surface of the wire is AG, where A is a constant to be

determined by calculation from the general form of the circuit.

Putting E— AG when r = a, we obtain

AG = S+T + Txa
2 + %cc. + Tna

2n + .... (13)

2

If we now write— = a, a is the value of the conductivity of

P

unit of length of the wire, and we have

z dT 2a? d2T nan dnT Q
>>

(14)

dT a2 d2T a" dnT /ieX

To eliminate T from these equations we must first reverse the

series (14). We thus find

We have also from (14) and (15)

From the last two equations we find

(
.dG dS.~_.dC la*<PC + i a3^_ 1 a4^ + &c _ / 16)a

(
A dt~M) +C+UM~™ dt

2+1[* a
dt*

T™ a
dt*

+&G'-°' {1C)

If I is the whole length of the circuit, R its resistance, and E
the electromotive force due to other causes than the induction of

the current on itself,

dS E I . v

TB-T'
ass

B' {17]

KdC l
2 d2C r l

s d3G , l*d*G iSi /1Q ,

E^RC+ l{A + \)Tt-^ŵ ,ww-^WŴ ^^)
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The first term, RG, of the right-hand member of this equation
expresses the electromotive force required to overcome the resist-

ance according to Ohm's law.

dC
The second term, l(A + £)^-> expresses the electromotive force

which would be employed in increasing the electrokinetic mo-
mentum of the circuit, on the hypothesis that the current is of
uniform strength at every point of the section of the wire.
The remaining terms express the correction of this value,

arising from the fact that the current is not of uniform strength
at different distances from the axis of the wire. The actual
system of currents has a greater degree of freedom than the
hypothetical system, in which the current is constrained to be
of uniform strength throughout the section. Hence the electro-
motive force required to produce a rapid change in the strength
of the current is somewhat less than it would be on this
hypothesis.

The relation between the time-integral of the electromotive
force and the time-integral of the current is

fBdt = Rjcdt + l(A + i)G-T\
l^ + SiC . (19)

If the current before the beginning of the time has a constant
value C

, and if during the time it rises to the value Clt and
remains constant at that value, then the terms involving the
differential coefficients of G vanish at both limits, and

JEdt = Rfcdt + l(A + J)^- C
), (20)

the same value of the electromotive impulse as if the current had
been uniform throughout the wire *.

* {if the currents flowing through the wire are periodic and vary as c'p*, the
equation corresponding to (18) when /* is no longer assumed to be unity may be written

\ 12 K 180 B° •r
+U* +/V 48 & + -\dt

Thus the syBtem behaves as if the resistance were

and the self-induction

1 it'Pj? 1 fi'Pp*

12 K 180 B3
+—

1A 11 ^Pp*

Thus the effective resistance is increased when the currents are oscillatory, and
the self-induction is diminished. As Maxwell points out, this effect is due to the
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On the Geometrical Mean Distance of Two Figures in a Plane *

691.] In calculating the electromagnetic action of a current

flowing in a straight conductor of any given section on the

* Trans. B. S. JEdin., 1871-2.

alteration in the distribution of the current. When the current is alternating it is no

longer equally distributed over the section of the conductor, but has a tendency

to leave the middle and crowd towards the surface of the conductor, since by doing

go it diminishes the self-induction and therefore the Kinetic Energy. The inertia of

the system, in accordance with a general law of dynamics, makes the current tend to

distribute itself so that while fulfilling the condition that the whole flow across any

cross section is given, the Kinetic Energy is as small as possible ; and this tendency

gets more and more powerful as the rapidity with which the momentum of the system

is reversed is increased. An inspection of equation { 22 } , Art. 685, will show that the

self-induction of a system, and therefore the Kinetic Energy for a given current, is

diminished by making the current denser near the surface of the wire than inside,

for this corresponds to the case of the current flowing through tubes, and equation { 22 }

shows that the self-induetion for tubes is less than for solid wires of the same radius.

As the rush of the current towards the side of the tube leaves it a smaller area to

flow through, we can readily understand the increase in the resistance to alternating

as compared with steady currents. As this subject is one of great importance some

further results are given here, the proofs of which will be given in the Supplementary

Volume. See also Rayleigh, Phil. Mag. XXI. p. 381.

The relation between the current and the electromotive force is expressed by the

equation _g Qp inaJ (ina) 'dC m
I Its a 2,

</ (ina) at

where n2 = Airfiip/p, and /„ is Bessel's function of zero order.

Since by the differential equation satisfied by this function

/„"(») 1 Jp(x)

/,'(*)* -V0O '

we have

*o<?>) _ -. ri
*J \x)-

X
dx'

= -2 + 2z2S2 + 2x iSi + 2-a?
6£6 + ...

,

where Sa , Sit St ... are the sums of the reciprocals of the squares, fourth and sixth

powers ... of the roots of the equation

= 0,

l-;r—, +'U 2.4.4.6 2.4.6.4.6.8

Hence by Newton's method we find

8 - - x i

4 ~ 4* 12

'

o_l I
x>«~ 4s 48'

S*
=

i*
x

is0»

1 J3_

= 0.
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current in a parallel conductor whose section is also given, we
have to find the integral

/ / / /
l°g r dx dy dx'dy\

where dx dy is an element of the area of the first section, dx' dy'
an element of the second section, and r the distance between
these elements, the integration being extended first over every
element of the first section, and then over every element of the
second.

Hence substituting in equation (1) this value for
*- a °^

ma
l we ffetJ '(ina) '

8

- = £-?- U + J- rvv a*

\
i /"-^p«\

4
i

l *a?\ u\ p ) ~\m\~~p~~) + -\

*r~
+

2 48 p*
+ 8640^ -/'

which agrees with (18) when y, = 1. This series is not convenient if na is large, butm that case Jo (ma) ~ -ij (ina) ; Heine's Kugelfunctionen, p. 248, 2nd Edition.Hence when the rate of alternation is so rapid that fipa'/p is a large quantity
E C P
7 — 5

—

n + AipC :
t 2ira r

'

and since »2= 4
nfliP

,

P

I 2ira? \
v

2ita?p'

Thus the resistance per unit length is

fPPf* 1*

12 ir a2
J

'

and increases indefinitely as p increases.
The self-induction per unit length is

' + \/z
PH

2va?p
and approaches the limit A when p is infinite.

The magnetic force at a point inside the wire may be shown to be

2C J '(inr)

a J \ina)
When na is large, e"°Ja (ina) = — i

V w2»a
so that if r = a— x, the magnetic force at a distance x from the surface of the wire is

20 — e-nx.

V a(a—x)
Thus if n be very large, the magnetic force, and therefore the intensity of the

current, diminishes very rapidly as we recede from the surface, so that the inner
portion of the wire is free from magnetic force and current. Since /u4 occurs
in n, these effects will be much more apparent in iron wires than in those made of
non-magnetic metals.}
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If we now determine a line R, such that this integral is equal

to A-iA^ogR,

where Ax
and A2 are the areas of the two sections, the length of

R will be the same whatever unit of length we adopt, and

whatever system of logarithms we use. If we suppose the

sections divided into elements of equal size, then the logarithm

of R, multiplied by the number of pairs of elements, will be

equal to the sum of the logarithms of the distances of all the

pairs of elements. Here R may be considered as the geometrical

mean of all the distances between pairs of elements. It is

evident that the value of R must be intermediate between the

greatest and the least values of r.

If RA and RB are the geometrical mean distances of two figures,

A and B, from a third, C, and if RA +s is that of the sum of the

two figures from C, then

(A + B) logRA+S = A logRA + B logRB .

By means of this relation we can determine R for a compound

figure when we know R for the parts of the figure.

ggo "I
Examples*

(1) Let R be the mean distance from the point to the line

AB. Let OP be perpendicular to AB, then

AB{\ogR+l) = AP log OA+PB log 0B + OPAOB.

Fig. 41.

(2) For two lines (Fig. 42) of lengths a and b drawn perpen-

dicular to the extremities of a line of length c and on the same

side of it

:

ab (2 logR + 3) = (c
2- (a- bf) log Vc2 + (a-b) 2 + c2 log c

+ (a2-

c

2
) log VaF+c2 + (6

2-

c

2
) log Vb2 + c

2

—c(a—b) tan-1 -^— + ac tan-1 - + be tan-1 - •

v '
c c c

* {In these Examples all the logarithms are Napierian.}
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b

Fig. 42.

(3) For two lines, PQ and RS (Fig. 43), whose directions
intersect at ;

PQ . RS(2 logR + 3) = logPR (2 OP. OR sin2 -PK2 cos 0)
+ log Q£ (2 OQ . 0£ sin2 - QS2 cos 0)
- log PS (2 OP. OS sin2 - PS2 cos 0)
- logQi*(20Q.OEsin20-QJR2 cosO)

-smO{OP2.SPR-OQ 2.SQR+OR*.pRQ-OS2.PsQ}.

Fig. 43.

(4) For a point and a rectangular area ABCD (Fig. 44).

Let OP, OQ, OR, OS, be perpendiculars on the sides, then
AB. AD(2 logR + 3) = 2 . OP. OQ log OA + 2 . OQ . Oi2 log 05

+ 2.0i2.0>S'logOO+2.0/S.OPlogOi)

+ OP2
. D"O.A + OQ2

. AOB
+ or\ tidc+ os2

. con.

Fig. 44.

(5) It is not necessary that the two figures should be different,

for we may find the geometrical mean of the distances between
every pair of points in the same figure. Thus, for a straight line

of length a, logP = loga-f,
or R = ae~%,

-R = 0-22313a.
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(6) For a rectangular area whose sides are a and b,

a2 / p b\ /, a2

3
b a a

When the rectangle is a square, whose side is a,

logR = loga + ilog2 + |- f|,

R = 0-44705a.

(7) The geometrical mean distance of a point from a circular

line is equal to the greater of the two quantities, its distance

from the centre of the circle, and the radius of the circle.

(8) Hence the geometrical mean distance of any figure from a

ring bounded by two concentric circles is equal to its geometrical

mean distance from the centre if it is entirely outside the ring,

but if it is entirely within the ring

I H_ a * log ftl~ a * log a2
1

,

o
a-f— (1%

where a
x
and a

2
are the outer and inner radii of the ring. R is

in this case independent of the form of the figure within the

ring.

(9) The geometrical mean distance of all pairs of points in the

ring is found from the equation

a2
4

, ch ,
3a2

2— a/
logR = logo,-K_ a22)2

log- + t ^2—2- •

For a circular area of radius a, this becomes

logR = log a— i,

or R = ae~*

,

R = 0.7788a.

For a circular line it becomes

R = a.

{For an elliptic area whose semi-axes are a, b,

logR = log— £.}

693.] In calculating the coefficient of self-induction of a coil

of uniform section, the radius of curvature being great compared

with the dimensions of the transverse section, we first determine

the geometrical mean of the distances of every pair of points of
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the section by the method already described, and then we
calculate the coefficient of mutual induction between two linear
conductors of the given form, placed at this distance apart.

This will be the coefficient of self-induction when the total
current in the coil is unity, and the current is uniform at all
points of the section.

But if there are n windings in the coil we must multiply the
coefficient already obtained by n2

, and thus we shall obtain the
coefficient of self-induction on the supposition that the windings
of the conducting wire fill the whole section of the coil.

But the wire is cylindric, and is covered with insulating
material, so that the current, instead of being uniformly dis-
tributed over the section, is concentrated in certain parts of it,

and this increases the coefficient of self-induction. Besides this,

the currents in the neighbouring wires have not the same action
on the current in a given wire as a uniformly distributed
current.

The corrections arising from these considerations may be de-
termined by the method of the geometrical mean distance. They
are proportional to the length of the whole wire of the coil, and
may be expressed as numerical quantities, by which we must
multiply the length of the wire in order to obtain the correction
of the coefficient of self-induction.

Let the diameter of the wire be d. It is covered with in-
sulating material, and wound into a coil. We shall suppose
that the sections of the wires are in square order, as in Fig. 45,

ooo
oo o
oo o

Fig. 45.

and that the distance between the axis of each wire and that of
the next is D, whether in the direction of the breadth or the
depth of the coil. D is evidently greater than d.
We have first to determine the excess of self-induction of unit
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of length of a cylindric wire of diameter d over that of unit of

length of a square wire of side D, or

jR for the square

° R for the circle

= 2(log^- + #log2 + |-^)

= 2(log-r + 0-1380606).

The inductive action of the eight nearest round wires on the

wire under consideration is less than that of the corresponding

eight square wires on the square wire in the middle by 2 x

(.01971)*

The corrections for the wires at a greater distance may be

neglected, and the total correction may be written

2(log
e§ + 0-11835).

The final value of the self-induction is therefore

L = n2M + 2l(log
e -j+ 0-11835),

where n is the number of windings, and I the length of the wire,

M the mutual induction of two circuits of the form of the mean

wire of the coil placed at a distance R from each other, where R
is the mean geometrical distance between pairs of points of the

section. D is the distance between consecutive wires, and d the

diameter of the wire.

* {To get this result notice that the mean distance for the round wires is the

distance between their centres, tlie mean distance for two square wires placed side by

side is .99401 D, the mean distance for two squares corner to corner 1-0011 x V 2 D.

See Maxwell, Trans. E. S. Edinburgh, p. 733, 1871-72. Mr. Chree who has kindly

re-calculated this correction finds that taking Maxwell's numbers as they stand it is

2 x -019635 instead of 2 x -019671. The work is as follows :

For 8 square wires _
8 logM R = 4 log10 (-99401 D) + i log10 (1-0011-/2 D).

For 8 round wires

8 log10 Bx= 4 log10 D + 4 log10 V2 D

;

hence

and

8^giof^ -0085272

8 loge§ = -019635.

This makes the total correction

2 {loge^ +0-118425 }•

It is possible however that in calculating this correction Maxwell may have used

values for the mean distances, correct to more places of decimals than those given in

his paper.

}



CHAPTEK XIV.

CIRCULAR CURRENTS.

Magnetic Potential due to a Circular Current.

694.] The magnetic potential at a given point, due to a
circuit carrying a unit current, is numerically equal to the solid
angle subtended by the circuit at that point ; see Arts. 409, 485.
When the circuit is circular, the solid angle is that of a cone

of the second degree, which, when the given point is on the axis
of the circle, becomes a right cone. When the point is not on
the axis, the cone is an elliptic cone, and its solid angle is

numerically equal to the area of the spherical ellipse which it

traces on a sphere whose radius is unity.

This area can be expressed in finite terms by means of elliptic

integrals of the third kind. We shall find it more convenient to
expand it in the form of an infinite series of spherical harmonics,
for the facility with which mathe-
matical operations may be performed
on the general term of such a series

more than counterbalances the trouble

of calculating a number of terms
sufficient to ensure practical accuracy.

For the sake of generality we shall

assume the origin at any point on the

axis of the circle, that is to say, on
the line through the centre perpen-
dicular to the plane of the circle.

Let (Fig. 46) be the centre of the

circle, C the point on the axis which
we assume as origin, H a point on

Fi 46
the circle.

Describe a sphere with C as centre, and CH as radius. The
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circle will lie on this sphere, and will form a small circle of the

sphere of angular radius a.

Let GH = c,

00 — b = ccosa,

OH = a = c sin a.

Let A be the pole of the sphere, and Z any point on the axis,

and let CZ = z.

Let R be any point in space, and let OR = r, and ACR = 6.

Let P be the point where OR cuts the sphere.

The magnetic potential due to the circular current is equal to

that due to a magnetic shell of strength unity bounded by the

current. As the form of the surface of the shell is indifferent,

provided it is bounded by the circle, we may suppose it to coin-

cide with the surface of the sphere.

We have shewn in Art. 670 that if V is the potential due to

a stratum of matter of surface-density unity, spread over the

surface of the sphere within the small circle, the potential a> due

to a magnetic shell of strength unity and bounded by the same

circle is _ l d . ™
~~

c dr

We have in the first place, therefore, to find V.

Let the given point be on the axis of the circle at Z, then the

part of the potential at Z due to an element dS of the spherical

surface at P is dS
ZP'

This may be expanded in one of the two series of spherical

harmonics, dS< n D z
, „ , E^ , s )

or ^{P + ij| + &o. +^+4e.}.

the first series being convergent when z is less than c, and the

second when z is greater than c.

Writing dS = - c2d[xdcj),

and integrating with respect to <£ between the limits and 2 tt,

and with respect to /x between the limits cos a and 1, we find

V = 2itc
\ f

1

P dfx + &c. + -
if

1

P
i
d

l
x + &c.L (1)

'
*J cos ol ^ "'cos

a

J

or F= 2tt-J T P dju + &c. + -.r i^ + &ci- (1')

2 (./cos a 2 J cosa J
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By the characteristic equation of i?,

This expression fails when i = 0, but since PQ = 1,

[Pdn=l-!i. (3)

dp.
As the function ~ occurs in every part of this investigation

we shall denote it by the abbreviated symbol P{. The values of
P{ corresponding to several values of i are given in Art. 698.

We are now able to write down the value of V for any point
B, whether on the axis or not, by substituting r for z, and
multiplying each term by the zonal harmonic of of the same
order. For V must be capable of expansion in a series of zonal
harmonics of with proper coefficients. When = each of
the zonal harmonics becomes equal to unity, and the point R
lies on the axis. Hence the coefficients are the terms of the
expansion of V for a point on the axis. We thus obtain the
two series

F=2„o \l-coS a + &c. +
r̂)
^P

l'(a)P,(e)+&o.j, (4)

or r=2^{l-cosa + &c. + ^_^ir(a)i?(») + &cj. (4')

695.] We may now find <o, the magnetic potential of the
circuit, by the method of Art. 670, from the equation

We thus obtain the two series

a>=-2n\l-cosa + &c. +
8
^-.I>'(a)P

i (8) + &c.l, (6)

or »/=2Tr8in»a{l^(a)^(fl) +^ + ^^P/(«)^) + &c.|. (6')

The series (6) is convergent for all values of r less than c, and
the series (6') is convergent for all values of r greater than c.

At the surface of the sphere, where r = c, the two series give
the same value for <o when is greater than a, that is, for points
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not occupied by the magnetic shell, but when is less than a,

that is, at points on the magnetic shell,

*/= co + 4tt. (7)

If we assume 0, the centre of the circle, as the origin of co-

ordinates, we must put a — - , and the series become

„ = -2^1 + ^(«) + &c. +(-)'14^^^i?. +1 («) + &c}, (8)

. =+ ,»|i^plW+ te + (-).i|liig±ij^;^ 1 (.) + te}, (a-)

where the orders of all the harmonics are odd *.

On the Potential Energy of two Circular Currents.

696.] Let us begin by supposing the two magnetic shells

which are equivalent to the currents to be portions of two

concentric spheres, their radii being

Cj and c2 , of which c
x
is the greater

(Fig. 47). Let us also suppose

that the axes of the two shells

coincide, and that ax is the angle

subtended by the radius of the

first shell, and a2
the angle sub-

tended by the radius of the second

shell at the centre C.

Let &>! be the potential due to

the first shell at any point within

Fig. 47. it, then the work required to carry

the second shell to an infinite dis-

tance is the value of the surface-integral

* The value of the solid angle subtended by a circle may be obtained in a more

direct way as follows :

—

„ .... .1 1.

The solid angle subtended by the circle at the point Z in the axis is easily shewn

to be z z— c cos a x

Expanding this expression in spherical harmonics, we find

« = 2 ir{(cosa + 1) + (Px(a) cosa-P (a))- + &c. + (Pj(a) cosa-Pi^a))-. + &C.J

,

c»+i ,

«'= 2»r{(P (a)cosa-P1
(a))- +&c. + (Pi

(a)cosa-Pi+1 (o))^TI +&c.|,

for the expansions of w for points on the axis for which 2 is less than e and greater

than e respectively. These results can easily be shewn to coincide with those in the

text.
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extended over the second shell. Hence

= 4 ,r
2sm2alC24-i PJ(ax) PPx {B)dH + &c. + ^-^/(oj Pp^dy^ + Ac.} .

or, substituting the value of the integrals from equation (2),

Art. 694,

Jlf=^^H^a^-yia^^ + &c. +—
L^

^P/(ai)P/(a2) + &C. j-'

697.] Let us next suppose that the axis of one of the shells is

turned about C as a centre, so that it now makes an angle 6 with
the axis of the other shell (Fig. 48). We have only to introduce
the zonal harmonics of into this expression for M, and we find
for the more general value of M,

M =^ Sm2 a1 sm^a2cAi
C-2P

1
'(a

1
)P

]
;(a2)P1 (e) + 8cc.

+

This is the value of the potential energy due to the mutual
action of two circular currents of unit strength, placed so that
the normals through the centres of the

circles meet in a point C at an angle

6, the distances of the circumferences

of the circles from the point C being
Cj and c2 , of which c

x is the greater.

If any displacement dx alters the

value of M, then the force acting in

the direction of the displacement is

x _dM
dx

For instance, if the axis of one of the shells is free to turn
about the point C, so as to cause 6 to vary, then the moment of
the force tending to increase 6 is 0, where

dM=
dd

{This is easily proved by expressing the zonal harmonic Pt (0), which occurs in
the expression for u

x in equation (6) as the sum of a series of zonal and tesseral
harmonics, with Ca for axis, and then using the formula

*-p %*'«•**•}
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Performing the differentiation, and remembering that

^P = -sin Oir(fl),

where if has the same signification as in the former equations,

= - 4 7T
2 sin2 Gl sin

2 a2
sin 6cA\ °j P/ (a

x)
2* (a

2) ij'(0) + &c.

698.] As the values of P{ occur frequently in these calculations

the following table of values of the first six degrees may be

useful. In this table fx stands for cos 6, and v for sin 6.

P'= 1J.
x
— X.,

#= |(5pt2 -l) = 6(M
2 -iz,2

),

P4'=*/*(V-3) = 10M (^-fr2

),

^
,= ^(21 f

i*-14 M2 +l) = 15((Li
4-|MV + |v4

),

^
/=^m (33 /

x
4 -30/x2 + 5) = 21/x(/x4-|m2

^
2 + I^)-

699.] It is sometimes convenient to express the series forM in

terms of linear quantities as follows :

—

Let a be the radius of the smaller circuit, b the distance of its

plane from the origin, and c = Va? + b2 .

Let A, B, and C be the corresponding quantities for the larger

circuit.

The series for M may then be written,

M = 1. 2. w24r a2 cos

+ 2.3.7r2^a2 &(cos2 0-£sin2
0)

+ 3.4.7r2
A2^2

c
";^ 2)

ft
2
(6

2-ia2)(cos3 0-|sin2 0cosg)

+ &c.

If we make = 0, the two circles become parallel and on the

same axis. To determine the attraction between them we may

differentiate M with respect to b. We thus find
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700.] In calculating the effect of a coil of rectangular section

we have to integrate the expressions already found with respect

to A, the radius of the coil, and B, the distance of its plane from

the origin, and to extend the integration over the breadth and
depth of the coil.

In some cases direct integration is the most convenient, but

there are others in which the following method of approximation

leads to more useful results.

Let P be any function of x and y, and let it be required to

find the value of P where

I Pdxdy.
-J* J -hy

In this expression P is the mean value of P within the limits

of integration.

Let i^ be the value of P when x = and y = 0, then, ex-

panding P by Taylor's Theorem,

Integrating this expression between the limits, and dividing

the result by xy, we obtain as the value of P,

p -*+*(«4!+»,

7$)

In the case of the coil, let the outer and inner radii be A + \ £,

and A — \ £ respectively, and let the distances of the planes of the

windings from the origin lie between B + ^rj and B—\r\, then

the breadth of the coil is rj, and its depth £, these quantities

being small compared with A or C.

In order to calculate the magnetic effect of such a coil we may
write the successive terms of the series (6) and (6') of Art. 695 as

follows :

—

<?»= «£(l+A^£p-»gjV+...).

n , A 2B(^
X
,2 25 ZSA\ „, s iB2-3A2

. )
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g, = ^ A2{
-

B%~ U%) + ^{^(8^2 -12^2
) + 35Jl 2^(5J. 2-4^)}

+ f^A2 {A*-12A 2B*+8B*},

&c, &c.

;

#1= ira2 +I1
2 7T^2

,

^2 =27ra
2 6 +^&f,

gz
= 37ia2 (6

2-ia2
) + ^2

(2&
2-3a2

) + ^ 2a2
,

&c, &c.

The quantities G , Gx , G2 , &c. belong to the large coil. The

value of to at points for which r is less than C is

a, = _ 2 7T + 2 G - G1
rP

1 (6)- G2
r2P2 (0)-&c.

The quantities gx , g2 , &c. belong to the small coil. The value

of a/ at points for which r is greater than c is

The potential of the one coil with respect to the other when

the total current through the section of each coil is unity is

M= G
1 g1
P
1 (9) + G2g2

P2 (9) + kG .

To find M by Elliptic Integrals.

701.] When the distance of the circumferences of the two

circles is moderate as compared with the radius of the smaller,

the series already given do not converge rapidly. In every case,

however, we may find the value ofM for two parallel circles by

elliptic integrals.

For let b be the length of the line joining the centres of the

circles, and let this line be perpendicular to the planes of the

two circles, and let A and a be the radii of the circles, then

M=ff
C
-^dzds',

the integration being extended round both curves.

In this case,

r2 = A 2 + a2 + 62- 2Aa cos
(<f>
- <£'),

e =
<f>
— $', ds = ad<f>, ds' = Ad<f>',
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M - f
2n

f
2n Aa C08 ($~^) d 4> d<j>'

Jo Jo VA 2 + a2 + 62 - 2Aa cos (<*>- </>')

where c= 2^^ -,
v^ + a)2 + b2

and J7 and i7 are complete elliptic integrals to modulus c.

From this, remembering that

and that c is a function of b, we find

dM 7r be ,. „. _ . „. „,

* =
71Si^2{(2 - c) ^- 2(, -c) -P} -

If r
2
and r

2 denote the greatest and least values of r,

r 2 = (A + «)
2 + b2; r 2 = (A- a)2 + b\

and if an angle y be taken such that cos y = — >

ri

c?Jf b sin y r „ . „ . „ ,

where
v̂ and i?

y
denote the complete elliptic integrals of the

first and second kind whose modulus is sin y.

If A = a, cot y = —

-

1 and

-^- = -2tt cosy {2iT

y
-(l+sec2 y)^'y }.

The quantity — -rr represents the attraction between two

parallel circular circuits, the current in each being unity.

On account of the importance of the quantity M in electro-

magnetic calculations the values of log (M

/

±tt </Aa), which is a

function of c and therefore of y only, have been tabulated for

intervals of 6' in the value of the angle y between 60 and 90

degrees. The table will be found in an appendix to this

chapter.
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Second Expression for M.

An expression for M, which is sometimes more convenient, is

f iy

got by making c, = — , in which caseJ & i r
1 + r2

Vc
x

To draw the Lines of Magnetic Force for a Circular Current.

702.] The lines of magnetic force are evidently in planes,

passing through the axis of the circle, and in each of these lines

the value ofM is constant.

Calculate the value of K9 — y=, , from Legendre's
{" sin $ — & sine)

tables for a sufficient number of values of 6.

Draw rectangular axes of x and z on the paper {the origin

being at the centre of the circle and the axis of z the axis of the

circle}, and, with centre at the point x = \a (sin + cosec 6),

draw a circle with radius ^a (cosecfl— sin0). For all points

of this circle the value of c
x
will be sin 6. Hence, for all points of

this circle,

4f=8W2^-£=, and ^ = -i_^?f.
*/

K

9
64 tH a

Now A is the value of x for which the value of M was found.

Hence, if we draw a line for whieh x = A, it will cut the circle

in two points having the given value of M.
Giving M a series of values in arithmetical progression, the

values of A will be as a series of squares. Drawing therefore a

series of lines parallel to z, for which x has the values found for

A , the points where these lines cut the circle will be the points

where the corresponding lines of force cut the circle.

* [The second expression for M may be deduced from the first by means of the
following transformations in Elliptic Integrals :

—

If VT=^ = ^i, or c = ^5,
1 + Cx l + Ci

then F(e) = (l + e1)F{c1),
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If we put m = 8ita, and M — nm, then

A = x = n2Ke a.

We may call n the index of the line of force.

The forms of these lines are given in Fig. XVIII at the end of

this volume. They are copied from a drawing given by Sir W.
Thomson in his paper on ' Vortex Motion'.*

703.] If the position of a circle having a given axis is re-

garded as defined by b, the distance of its centre from a fixed

point on the axis, and a, the radius of the circle, then M, the
coefficient of induction of the circle with respect to any system
whatever of magnets or currents, is subject to the following
equation, ^M d2M 1 dM _

~daY +
~db2 ~ada~

= °' W
To prove this, let us consider the number of lines of magnetic

force cut by the circle when a or b is made to vary.

(1) Let a become a + ba,b remaining constant. During this

variation the circle, in expanding, sweeps over an annular
surface in its own plane whose breadth is 8 a.

If V is the magnetic potential at any point, and if the axis of

y be parallel to that of the circle, then the magnetic force per-

dV
pendicular to the plane of the ring is — •-=- •

To find the magnetic induction through the annular surface

we have to integrate f2" dV— / aba-y-dO,
Jo dy

where 6 is the angular position of a point on the ring.

But this quantity represents the variation of M due to the

variation of a. or-^—ha. Hence
da

da-~ Jo
a
d$

d6' (2)

(2) Let b become b + bb, while a remains constant. During
this variation the circle sweeps over a cylindric surface of radius

a and length 86, {and the lines of force which pass through this

surface are those which cease to pass through the circle}.

The magnetic force perpendicular to this surface at any point

dV
is — -r~ » where r is the distance from the axis. Hence

dM r2 « dV Jn ,.

* Trans. B. 8. Edin., vol. xxv. p. 217 (1869).
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Differentiating equation (2) with respect to a, and (3) with

respect to b, we get

&M__r i*dVr*" d2V
da2 ~ Jo dy j

a
drdy '

* '

cZ6
2
—
Jq drdy '

^

Hence ^ +^ = -y ^5 (6)

_\dM
b

,

~ a da'

Transposing the last term we obtain equation (1).

Coefficient of Induction of Two Parallel Circles when the

Distance between the Arcs is small compared with the

Radius of either Circle.

704.] We might deduce the value of M in this case from the

expansion of the elliptic integrals already given when their

modulus is nearly unity. The following method, however, is a

more direct application of electrical principles.

First Approximation.

Let a and a + c be the radii of the circles and b the distance

between their planes, then the shortest distance between their

circumferences is given by

r = Vc^TW*.

We have to find the magnetic induction through the one circle

due to a unit current in the other.

We shall begin by supposing the two circles to be in one

plane. Consider a small element bs of the circle whose radius is

a+ c. At a point in the plane of the circle, distant p from the

centre of 8 s, measured in a direction making an angle 6 with the

direction of bs, the magnetic force due to bs is perpendicular to

th plane and equal to j

-r sin 6 bs.

P
2

To calculate the surface integral of this force over the space

which lies within the circle of radius a we must find the value

of the integral m* r rx s[n q
2bs / dddp,

Jeijr2 p
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where r
x , r2 are the roots of the equation

r2— 2 (a+ c) smdr + c
2 + 2ac = 0,

viz. r
x
= (a + c) sin 6 + V(a + c)2 sin2 6— c2— 2 ac,

r
2
= (a + c) sin 0— V (a + c)2 sin2 6— c2— 2 ac,

j -an c
2 + 2ac

and sm2
0, = -7 ^ •

1
(c + a)2

When c is small compared to a we may put

r
:
= 2a sin 0,

r
2
= c/sin 0.

Integrating with regard to p we have

2 5s f "log (^sin2
0) . sinOdd =

28sfcos0|2-log(^sin2
0)| + 2logtan^l

f

= 2 5s (log
e 2) > nearly.

We thus find for the whole induction

ifac =4 Ta(log
e

8
-^-2).

Since the magnetic force at any point, the distance of which
from a curved wire is small compared with the radius of curva-
ture, is nearly the same as if the wire had been straight, we can
(Art. 684) calculate the difference between the induction through
the circle whose radius is a— c and the circle A by the formula

M^-Mn = 477a {log
e
c-loge r}.

Hence we find the value of the induction between A and a
to be Mja -^a (log; 8 a- log^r- 2)

approximately, provided r the shortest distance between the

circles is small compared with a.

705.] Since the mutual induction between two windings of

the same coil is a very important quantity in the calculation of

experimental results, I shall now describe a method by which the

approximation to the value ofM for this case can be carried to

any required degree of accuracy.

We shall assume that the value ofM is of the form

jr=4*{4iog.i?+2?}.
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/y>2 y2 q& SC1I"

where A = a + A,x + A 2
— + A 2

^ +A
3
— + A 3

~~ + kc.
1 l a a d or 6 az

+ a-(n
" 1

) {xnA n + xn-HfA'n + oer-*y*A"n +...} +&c,

and 5 = -2a + B,x + B.fi + B' V~ + B3
-
2 + B/°^ + &c,

where a and a + x are the radii of the circles, and y the distance

between their planes.

We have to determine the values of the coefficients A and B.

It is manifest that only even powers of y can occur in these

quantities, because, if the sign of y is reversed, the value ofM
must remain the same.

We get another set of conditions from the reciprocal property

of the coefficient of induction, which remains the same whichever

circle we take as the primary circuit. The value of M must

therefore remain the same when we substitute a + x for a, and

— x for x in the above expressions.

We thus find the following conditions of reciprocity by equat-

ing the coefficients of similar combinations of x and y,

A
1
= l-A

1 ,
B

1
=l-2-B

l ,

A3 =—A 2—A3i B3 = \— \A1 +A 2
—B

2
—B3i

A 3 = —A 2 —A3 , B/= A 2 —B2
—B3 ;

(~rAn ^A 2 + (n-2)A 3 +
(-
n~^^~ 3) Ai + &G . + An ,

(-)"£„ =-i+ -^—A
1

—
t
A2+ &c. + (-)M n_1x ' n n—1 1 n—2 2 \ / « 1

t> / ~\ ti (n— 2) In— 3) n p „+B2 + (n-2)B3 +
K ^ 'Bt + &c. + Bn .

From the general equation of M, Art. 703,

d*M <PM L_^-
dxl dy2 a + x dx ~ '

we obtain another set of conditions,

2A2 +2A'2
=A

X ,

2A
2 + 2A

,

2 + 6A 3 + 2A
/

3
= 2A 2 ;

n(n-l)An + (n+l)nAn+1 +l.2A'n +1.2A'n+1=nA ni

*{n-l){n-2)A'n + n(n-l)A'n+x+2.ZA"n + 2.3A"n+x
= {n-2)A'n , &c.

;

*A 2 + A
x
= 2B2 +2B'2

- B
x
= 4A'2>

6^3 + 3^2= 2B,

2 + 6B3 +2B
f

z
— §A'3

+SA\,

* {Mr. Chree finds that this equation should be
(n-2)(n-3)A'n + (n-1) (n-2)A'n+1 + B .iA"n +3 .iA"n+1 =(n-2)A'n ).
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(2n-l)An + (2n + 2)An+1 = (2n-l)A'n + (2n + 2)A'n+1

= n(n-2)Bn + (n+l)nBn+1 +1.2B'n +1.2B'n+l .

Solving these equations and substituting the values of the

coefficients, the series for M becomes

-,» A , 8fflf , .a x2 + Zy- xz +Zxyz
D 1

S o i x >
3«2 -2/2

a;
3— 6xy2

1

( a lott 48 a6
}

To find the form of a coil for which the coefficient of self-

induction is a maximum, the total length and thickness of
the wire being given.

706.] Omitting the corrections of Art. 705, we find by Art, 693

L = 4im2a(log-o- — 2)»

where n is the number of windings of the wire, a is the mean
radius of the coil, and R is the geometrical mean distance of the

transverse section of the coil from itself. See Art. 691. If this

section is always similar to itself, R is proportional to its linear

dimensions, and n varies as R2
.

Since the total length of the wire is 2 -nan, a, varies inversely

as n. Hence

dn n dR -, da n dR— = 2 -^ > and — = — 2 -^ ,n R a R
and we find the condition that L may be a maximum

If the transverse section of the channel of the coil is circular,

of radius c, then, by Art. 692,

and log— = —
° c 4 »

whence a = 3-22 c
;

* [This result may be obtained directly by the method suggested in Art. 704,
viz. by the expansions of the elliptic integrals in the expression for M found in
Art. 701. See Cayley's Elliptic Functions, Art. 75.]
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or, the mean radius of the coil should be 3-22 times the radius of

the transverse section of the channel of the coil in order that

such a coil may have the greatest coefficient of self-induction.

This result was found by Gauss *.

If the channel in which the coil is wound has a square trans-

verse section, the mean diameter of the coil should be 3-7 times

the side of the square section of the channel.

* Werhe, Gottingen edition, 1867, bd. v. p. 622.



APPENDIX I.

M
Table of the values of log 7= (Art. 701).

47T VAa

The Logarithms are to base 10.

M
log -=•

liryAa
lc

M
s — •

4ir\/Aa
lo

M
4 ir*/Aa

60° 0' T-4994783 63° 30' T•5963782 67° 0' 1-6927081
6' T-5022651 36' 1 5991329 6' 1 •6954642

12' 1-5050505 42' 1 •6018871 12' T•6982209
18' 1-5078345 48' T•6046408 18' T•7009782
24' T-5106173 54' 1 •6073942 24' T•7037362
30' 1-5133989 64° 0' 1 6101472 30' 1 •7064949
36' 1-5161791 6' T 6128998 36' 1 7092544
42' 1-5189582 12' 1 6156522 42' I 7120146
4 8' 1-5217361 18' T 6184042 48' T 7147756
54' 1-5245128 24' 1 6211560 54' T 7175375

61° 0' T-5272883 30' 1 6239076 68° 0' l 7203003
6' 1-5300628 36' 1 6266589 6' T•7230640

12' 1-5328361 42' 1 6294101 12' l 7258286
18' 1-5356084 48' T 6321612 18' T 7285942
24' 1-5383796 54' 1 6349121 24' T 7313609
30' 1-5411498 65° 0' 1 6376629 30' T 7341287
36' 1-5439190 6' T 6404137 36' l 7368975
42' T-5466872 12' T 6431645 42' 1 7396675
48' 1-5494545 18' T 6459153 48' 1 7424387
54' 1-5522209 24' T 6486660 54' T 7452111

62° 0' 1-5549864 30' 1 6514169 69° 0' l 7479848
6' T-5577510 36' 1 6541678 6' T 7507597

12' T-5605147 42' T 6569189 12' T 7535361
18' 1-5632776 48' 1 6596701 18' l 7563138
24' T-5660398 54' T 6624215 24' T 7590929
30' T-5688011 66° 0' 1 6651732 30' T 7618735
36' T-5715618 6' T 6679250 36' l 7646556
42' T-5743217 12' T 6706772 42' T 7674392
48' 1-5770809 18' T 6734296 48' 1 7702245
54' T-5798394 24' 1 6761824 54' T-7730114

63° 0' T-5825973 30' 1-6789356 70° 0' T-7758000
6' T-5853546 36' 1-6816891 6' T- 7785903

12' T-5881113 42' T-6844431 12' T-7813823
18' T-5908675 48' T-6871976 18' T-7841762
24' T-5936231 54' T.6899526 24' T-7869720
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M
i

M
log z=r-

±-a*JAa
w M \

4 it^Aa 4 ir*JAa

70° 30' T-7897696 75° 0' T-9185141 79° 30' •0576136
36' 1-7925692 6' 1-9214613 36' •0609037
42' 1-7953709 12' T-9244135 42' •0642054
48' 1-7981745 18' 1-9273707 48' •0675187
54' 1-8009803 24' T-9303330 54' •0708441

71° 0' 1-8037882 30' 1.9333005 80° 0' •0741816
6' T-8065983 36' T-9362733 6' •0775316

12' 1-8094107 42' T-9392515 12' •0808944

18' T-8122253 48' T-9422352 18' •0842702
24' 1-8150423 54' T-9452246 24' •0876592
30' 1-8178617 76° 0' T-9482196 30' -0910619
36' 1-8206836 6' T-9512205 36' •0944784

42' T-8235080 12' T-9542272 42' •0979091

48' 1-8263349 18' T-9572400 48' •1013542

54' 1-8291645 24' 1-9602590 54' •1048142

72° 0' 1-8319967 30' 1-9632841 81° 0' •1082893
6' 1-8348316 S6' T-9663157 6' •1117799

12' T-8376693 42' 1-9693537 12' -1152863
18' 1-8405099 4 8' T-9723983 18' •1188089

24' T-8433534 54' T-9754497 24' •1223481
30' 1-8461998 77° 0' 1-9785079 30' •1259043

36' 1-8490493 6' 1-9815731 36' •1294778

42' 1-8519018 12' 1-9846454 42' •1330691

48' 1-8547575 18' 1-9877249 48' •1366786

54' 1-8576164 24' T-9908118 54' •1403067

73° 0' 1-8604785 30' 1-9939062 82° 0' •1439539
6' T-8633440 36' T-9970082 6' •1476207

12' T-8662129 42' •0001181 12' -1513075
18' T-8690852 48' •0032359 18' -1550149

24' T-8719611 54' •0063618 24' •1587434

30' T-8748406 78° 0' •0094959 30' •1624935

36' T-8777237 6' -0126385 36' •1662658
42' 1-8806106 12' •0157896 42' -1700609
48' T-8835013 18' •0189494 48' -1738794
54' T-8863958 24' •0221181 54' -1777219

74° 0' T-8892943 30' •0252959 83° 0' • 1815890
6' T-8921969 36' •0284830 6' • 1854815

12'. T-8951036 42' •0316794 12' • 1894001
18' T-8980144 48'| -0348855 18' • 1933455
24' T-9009295 54' •0381014 24' -1973184
30' T-9038489 79° 0' -0413273 30' 2013197
36' T-9067728 6' -0445633 36' •2053502

42' T-9097012 12' •0478098 42' •2094108

48' T-9126341 18' -0510668 48' •2135026

54' T-9155717 24' •0543347 54' •2176259
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log —

•

iiry^Aa
lc

M
4 ir*/Aa

M
±rt*/Aa

84° 0' •2217823 86° 0' •3139097 88° 0' •4385420
6' •2259728 6' 3191092 6' •4465341

12' •2301983 12' 3243843 12' •4548064
18' •2344600 18' •3297387 18' •4633880
24' •2387591 24' 3351762 24' •4723127
30' •2430970 30' 3407012 30' •4816206
36' •2474748 36' 3463184 36' •4913595
42' •2518940 42' 3520327 42' •5015870
48' •2563561 48' 3578495 48' •5123738
54' •2608626 54' 3637749 54' •5238079

85° 0' •2654152 87° 0' 3698153 89° 0' •5360007
6' •2700156 6' 3759777 6' •5490969

12' •2746655 12' 3822700 12' •5632886
18' •2793670 18' 3887006 18' •5788406
24' •2841221 24' 3952792 24' •5961320
30' •2889329 30' 4020162 30' •6157370
36' •2938018 36' 4089234 36' •6385907
42' •2987312 42' •4160138 42' •6663883
48' •3037238 48' • 4233022 48' •7027765
54' •3087823 54' 4308053 54' •7586941



[APPENDIX II.

In the very important case of two circular coaxal coils Lord Rayleigh

has suggested in the use of the foregoing tables a very convenient

formula of approximation. The formula, applicable to any number of

variables, occurs in Mr. Merrifield's Keport on Quadratures and Inter-

polation to the British Association, 1880, and is attributed to the late

Mr. H. J. Purkiss. In the present instance the number of variables is

four.

Let n, n' be the number of windings in the coils.

a, a' the radii of their central windings.

b the distance between their centres.

2/i, 2K the radial breadths of the coils.

2k, 2 k' the axial breadths.

Also let / (a, a', b) be the coefficient of mutual induction for the central

windings. Then the coefficient of mutual induction of the two coils is

(f{a+h, a', b)+f(a~h, a', b)

+f{a,a'+h',b)+f{a,a'-h,', b)

+/{a, a', b+ k) +f(a, a', b- k)

+/(a, a', b+ V)+f(a, a', b-k')

-2f{a,a',b).
]

JAPPENDIX III.

Self-induction of a circular coil of rectangular section.

If a denote the mean radius of a coil of n windings whose axial

breadth is b and radial breadth is c, then the self-induction, as calculated

by means of the series of Art. 705, has been shown by Weinstein Wied.

Ann. xxi. 329 to be

L = 4 7rw2 (a A. + fx),

where, writing x for b/c,

+^ log (1 + I) + I
(*--) tan"1

*,

^=9^[(log^-ilog(l + ^))(l + 3a;2)+3.45 a;
2

221
+ -T7T -l-6irar5 + 3-2ar, tan-1

a;



CHAPTEB XV.

ELECTEOMAGNETIO IXSTEUMENTS.

Galvanometers.

707.] A Galvanometer is an instrument by means of which an

electric current is indicated or measured by its magnetic action.

When the instrument is intended to indicate the existence of

a feeble current, it is called a Sensitive Galvanometer.

When it is intended to measure a current with the greatest

accuracy in terms of standard units, it is called a Standard Galva-

nometer.

All galvanometers are founded on the principle of Schweigger's

Multiplier, in which the current is made to pass through a wire,

which is coiled so as to pass many times round an open space,

within which a magnet is suspended, so as to produce within this

space an electromagnetic force, the intensity of which is indicated

by the magnet.

In sensitive galvanometers the coil is so arranged that its

windings occupy the positions in which their influence on the

magnet is greatest. They are therefore packed closely together

in order to be near the magnet.

Standard galvanometers are constructed so that the dimensions

and relative positions of all their fixed parts may be accurately

known, and that any small uncertainty about the position of the

moveable parts may introduce the smallest possible error into the

calculations.

In constructing a sensitive galvanometer we aim at making the

field of electromagnetic force in which the magnet is suspended as

intense as possible. In designing a standard galvanometer we
wish to make the field of electromagnetic force near the magnet
as uniform as possible, and to know its exact intensity in terms

of the strength of the current.
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On Standard Galvanometers.

708.] In a standard galvanometer the strength of the current

has to be determined from the force which it exerts on the sus-

pended magnet. Now the distribution of the magnetism within

the magnet, and the position of its centre when suspended, are not

capable of being determined with any great degree of accuracy.

Hence it is necessary that the coil should be arranged so as to

produce a field of force which is very nearly uniform throughout

the whole space occupied by the magnet during its possible motion.

The dimensions of the coil must therefore in general be much

larger than those of the magnet.

By a proper arrangement ofseveral coils the field of force within

them may be made much more uniform than when one coil only

Fig. 49.

is used, and the dimensions of the instrument may be thus reduced

and its sensibility increased. The errors of the linear measure-

ments, however, introduce greater uncertainties into the values

of the electrical constants for small instruments than for large

ones. It is therefore best to determine the electrical constants

of small instruments, not by direct measurement of their

dimensions, but by an electrical comparison with a large

standard instrument, of which the dimensions are more ac-

curately known; see Art. 752.

In all standard galvanometers the coils are circular. The

channel in which the coil is to be wound is carefully turned.
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Its breadth is made equal to some multiple, n, of the diameter

of the covered wire. A hole is bored in the side of the channel

where the wire is to enter, and one end of the covered wire is

pushed out through this hole to form the inner connexion of the

coil. The channel is placed on a lathe, and a wooden axis is

fastened to it ; see Fig. 49. The end of a long string is nailed

to the wooden axis at the same part of the circumference as the

entrance of the wire. The whole is then turned round, and the

wire is smoothly and regularly laid on the bottom of the channel

till it is completely covered by n windings. During this process

the string has been wound n times round the wooden axis, and

a nail is driven into the string at the nth turn. The windings

of the string should be kept exposed so that they can easily

be counted. The external circumference of the first layer of

windings is then measured and a new layer is begun, and so on

till the proper number of layers has been wound on. The use

of the string is to count the number of windings. If for any

reason we have to unwind part of the coil, the string is also

unwound, so that we do not lose our reckoning of the actual

number of windings of the coil. The nails serve to distinguish

the number of windings in each layer.

The measure of the circumference of each layer furnishes a

test of the regularity of the winding, and enables us to calculate

the electrical constants of the coil. For if we take the arithmetic

mean of the circumferences of the channel and of the outer layer,

and then add to this the circumferences of all the intermediate

layers, and divide the sum by the number of layers, we shall

obtain the mean circumference, and from this we can deduce

the mean radius of the coil. The circumference of each layer

may be measured by. means of a steel tape, or better by means

of a graduated wheel which rolls on the coil as the coil revolves

in the process of winding. The value of the divisions of the tape

or wheel must be ascertained by comparison with a straight scale.

709.] The moment of the force with which a unit current in

the coil acts upon the suspended apparatus may be expressed by

the series ^^ Q + Q^^ Q^^ + &(^

where the coefficients G refer to the coil, and the coefficients g to

the suspended apparatus, 6 being the angle between the axis of

the coil and that of the suspended apparatus ; see Art. 700.
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When the suspended apparatus is a thin uniformly and longi-

tudinally magnetized bar magnet of length 21 and strength unity,

suspended by its middle,

9! = 21, g2
= 0, #3

= 2Z3 , &c.

The values of the coefficients for a bar magnet of length 2

1

magnetized in any other way are smaller than when it is

magnetized uniformly.

710.] When the apparatus is used as a tangent galvanometer,

the coil is fixed with its plane vertical and parallel to the direction

of the earth's magnetic force. The equation of equilibrium of

the magnet is in this case

mg^H cos 6 — my sin 6 {

G

xgx
+ G2g2 T2 (6) + &c.},

where mg
1
is the magnetic moment of the magnet, H the hori-

zontal component of the terrestrial magnetic force, and y the

strength of the current in the coil. When the length of the

magnet is small compared with the radius of the coil the terms

after the first in G and g may be neglected, and we find

y = 77- cot 6.

The angle usually measured is the deflexion, 8, of the magnet

which is the complement of 6, so that cot = tan 8.

The current is thus proportional to the tangent of the deflexion,

and the instrument is therefore called a Tangent Galvanometer.

Another method is to make the whole apparatus moveable

about a vertical axis, and to turn it till the magnet is in

equilibrium with its axis parallel to the plane of the coil. If

the angle between the plane of the coil and the magnetic meridian

is 8, the equation of equilibrium is

m^if sin 8 = my {G
lg1

— -f 6r3 (/3 + &c.},

H
whence y = 77: 5—r sin 8.

(G
x
— &c.)

Since the current is measured by the sine of the deflexion, the

instrument when used in this way is called a Sine Galvanometer.

The method of sines can be applied only when the current is so

steady that we can regard it as constant during the time of ad-

justing the instrument and bringing the magnet to equilibrium.

711.] We have next to consider the arrangement of the coils

of a standard galvanometer.

The simplest form is that in which there is a single coil, and

the magnet is suspended at its centre.
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Let A be the mean radius of the coil, f its depth, r\ its breadth,

and n the number of windings, the values of the coefficients are

r _ 2wMi_l i ? i *?l

3" AZ\ L + * A * ?A 2\
G* =

G4 = 0, &c.

The principal correction is that arising from G3
. The series

Gigi + Gzg^{6)
becomes approximately

Gi0i(l-3^(cos2 0--i Sin2 0))-

The factor of correction will differ most from unity when the

magnet is uniformly magnetized and when = 0. In this case it

I
2

becomes 1 — 3-p . It vanishes when tan 6 = 2, or when the de-

flexion is tan_1 i, or 26° 34'. Some observers, therefore, arrange

their experiments so as to make the observed deflexion as near

this angle as possible. The best method, however, is to use a

magnet so short compared with the radius of the coil that the

correction may be altogether neglected.

The suspended magnet is carefully adjusted so that its centre

shall coincide as nearly as possible with the centre of the coil.

If, however, this adjustment is not perfect, and if the coordinates

of the centre of the magnet relative to the centre of the coil

are x, y, z, z being measured parallel to the axis of the coil,

the factor of correction is

(l . s x
2 +y2-2z\ *

When the radius of the coil is large, and the adjustment of the

magnet carefully made, we may assume that this correction is

insensible.

* {The couple on the bar magnet when its axis makes an angle with that of the

coil is ml [sin { Gx + G3 f (2 22- (x2 + y*)) } + 3 cos 6 G3z*/&*y\.
Since Gx + G3 f (2z3— (a;

2 +y2
)) is the force at x, y, z parallel to the axis of the coil and

3G3 zy/x
2 + y

a

is the force at right angles to the axis. Thus when the arrangement is used as a sine

galvanometer the factor of correction is

1+ ^f(2^-(x2 + ^
2
)) which is equal to 1-

|^ {2z2-(x2 + y
2
)}}.
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Gaugain's Arrangement.

712.] In order to get rid of the correction depending on G3

Gaugain constructed a galvanometer in which this term was

rendered zero by suspending the magnet, not at the centre of the

coil, but at a point on the axis at a distance from the centre

equal to half the radius of the coil. The form of Gs
is

(r3 = 4 it
£7

'

and, since in this arrangement B — \A, G3
= 0.

This arrangement would be an improvement on the first form

if we could be sure that the centre of the suspended magnet is

exactly at the point thus defined. The position of the centre of

the magnet, however, is always uncertain, and this uncertainty

introduces a factor of correction of unknown amount depending

on G2
and of the form (l — £ -j), where z is the unknown excess

of distance of the centre of the magnet from the plane of the

z TT
coil. This correction depends on the first power of -j , Hence

Gaugain's coil with eccentrically suspended magnet is subject to

far greater uncertainty than the old form.

Helmholtz's Arrangement.

713.] Helmholtz converted Gaugain's galvanometer into a

trustworthy instrument by placing a second coil, equal to the

first, at an equal distance on the other side of the magnet.

By placing the coils symmetrically on both sides of the magnet

we get rid at once of all terms of even order.

Let A be the mean radius of either coil, the distance between

their mean planes is made equal to A, and the magnet is suspended

at the middle point of their common axis. The coefficients are

G2
= 0,

G, = 0-0512 —^— (31 e - 367J
2
),

iin
Gr =—0-78728

\/5A 5

where in, denotes the number of windings in both coils together.
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It appears from these results that if the section of the channel

of the i)> coils be rectangular, the depth being £ and the breadth

7], the value of 6r
3 , as corrected for the finite size of the section,

will be small, and will vanish, if £
2

is to rf
1 as 36 to 31.

It is therefore quite unnecessary to attempt to wind the coils

upon a conical surface, as has been done by some instrument

makers, for the conditions may be satisfied by coils of rectangular

section, which can be constructed with far greater accuracy than

coils wound upon an obtuse cone.

The arrangement of the coils in Helmholtz's double galvano-

meter is represented in Fig. 53, Art. 725.

The field of force due to the double coil is represented in

section in Fig. XIX at the end of this volume.

Galvanometer of Four Coils.

714.] By combining four coils we may get rid of the coefficients

G2 , G3 , 6r4 , G5 , and G6
. For by any symmetrical combination

we get rid of the coefficients of even orders. Let the four coils

be parallel circles belonging to the same sphere, corresponding

to angles 9, </>, -n— </>, and -n — 6.

Let the number of windings on the first and fourth coils be n,

and the number on the second and third pn. Then the condition

that G3
= for the combination gives

n8m2 dF3'(6)+pnsm
2 <j>P

3'(<i>)
= 0, (1)

and the condition that G5
= gives

n am2dP
5
'(8)+pn sin2^'^) = 0. (2)

Putting sin2 = x and sin2 <£ = y, (3)

and expressing Pz' and P5' (Art. 698) in terms of these quantities,

the equations (1) and (2) become

4flj— 5x2 + £py— 5py2 = 0, (4)

8x— 2Sx2 + 21x3 + Spy— 28py* + 21py3 = 0. (5)

Taking twice (4) from (5), and dividing by 3, we get

6x2— 7x3 + 6py2— 7py3 = 0.

Hence, from (4) and (6),

_x5x— 4 x2 7x— 6
p ~~y 4-52/ ~ y

z Q ~ ? y

'

and we obtain

, 7x-6 1 32 7x-6
y = $ 5x — 4 p 49#(5a;— 4)

3
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Both x and y are the squares of the sines of angles and must

therefore lie between and 1. Hence, either x is between and

\, in which case y is between f and 1, and \/p between oo and ||,

or else x is between % and 1, in which case y is between and

f , and l/p between and f §.

Galvanometer of Three Coils.

715.] The most convenient arrangement is that in which x = 1.

Two of the coils then coincide and form a great circle of the

sphere whose radius is G. The number of windings in this

compound coil is 64. The other two coils form small circles of

the sphere. The radius of each of them is a/| C. The distance

of either of them from the plane of the first is -/f G. The number

of windings on each of these coils is 49.

™ t o n • 240tt
The value ot G

L
is —-~- •

This arrangement of coils is represented in Fig. 50.

Since in this three-coiled galvanometer the first term after

G 1 which has a finite

value is G
7 , a large por-

tion of the sphere on

whose surface the coils

lie forms a field of force

sensibly uniform.

If we could wind the

wire over the whole

of a spherical surface,

as described in Art. 672,

we should obtain a field

of perfectly uniform

force. It is practically

impossible, however, to

distribute the windings

on a spherical surface

with sufficient accuracy, even if such a coil were not liable to
the objection that it forms a closed surface, so that its interior is

inaccessible.

By putting the middle coil out of the circuit, and making the
current flow in opposite directions through the two side coils, we
obtain a field of force which exerts a nearly uniform action in

Fig. 50.
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the direction of the axis on a magnet or coil suspended within it,

with its axis coinciding with that of the coils ; see Art. 673. For
in this case all the coefficients of odd orders disappear, and since

Hence the expression (6), Art. 695, for the magnetic potential

near the centre of the coil becomes, there being n windings in

each of the coils,

On the Proper Thickness of the Wire of a Galvanometer, the

External Resistance being given.

716.] Let the form of the channel in which the galvanometer
coil is to be wound be given, and let it be required to determine
whether it ought to be filled with a long thin wire or with a
shorter thick wire.

Let I be the length of the wire, y its radius, y + b the radius
of the wire when covered, p its specific resistance, g the value of

G for unit of length of the wire, and r the part of the resistance

which is independent of the galvanometer.

The resistance of the galvanometer wire is

ny-
The volume of the coil is

V=7rl(y + bf.

The electromagnetic force is yG, where y is the strength of the
current and G = al

If E is the electromotive force acting in the circuit whose
resistance is R + r, E = y(R + r).

The electromagnetic force due to this electromotive force is

eJ->R + r

which we have to make a maximum by the variation of y and I.

Inverting the fraction, we find that

pi r

*9 r gi

is to be made a minimum. Hence

n p cly rdl
2 - — -f-

= 0.
77 y

3
I
2
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If the volume of the coil remains constant

I y + b

Eliminating dl and dy, we obtain

p y+b _

r

r y + b
or „ —R y

Hence the thickness of the wire of the galvanometer should

be such that the external resistance is to the resistance of the

galvanometer coil as the diameter of the covered wire to the

diameter of the wire itself.

On Sensitive Galvanometers.

717.] In the construction of a sensitive galvanometer the aim

of every part of the arrangement is to produce the greatest

possible deflexion of the magnet by means of a given small

electromotive force acting between the electrodes of the coil.

The current through the wire produces the greatest effect when

it is placed as near as possible to the suspended magnet. The

magnet, however, must be left free to oscillate, and therefore

there is a certain space which must be left empty within the

coil. This defines the internal boundary of the coil.

Outside of this space each winding must be placed so as to

have the greatest possible effect on the magnet. As the number

of windings increases, the most advantageous positions become

filled up, so that at last the increased resistance of a new
winding diminishes the effect of the current in the former

windings more than the new winding itself adds to it. By
making the outer windings of thicker wire than the inner ones

we obtain the greatest magnetic effect from a given electromotive

force.

718.] We shall suppose that the windings of the galvanometer

are circles, the axis of the galvanometer passing through the

centres of these circles at right angles to their planes.

Let r sin 6 be the radius of one of these circles, and r cos the

distance of its centre from the centre of the galvanometer, then,

if I is the length of a portion of wire coinciding with this circle,
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and y the current which flows in it, the magnetic force at the

centre of the galvanometer resolved

in the direction of the axis is

yl
sin0

If we write r2 = x2 sin 6,

this expression becomes y -r, •

(1)

Hence, if a surface be constructed,

similar to those represented in section

in Fig. 51, whose polar equation is

r2 = x 2 sin 8, (2)

where x
l
is any constant, a given length

of wire bent into the form of a circular

arc will produce a greater magnetic

effect when it lies within this surface

than when it lies outside it. It follows from this that the outer

surface of any layer of wire ought to have a constant value of x,

for if x is greater at one place than another a portion of wire

might be transferred from the first place to the second, so as to

increase the force at the centre of the galvanometer.

The whole force due to the coil is y G, where

Fie. 51.

G = dl

x
(3)

the integration being extended over the whole length of the

wire, x being considered as a function of I.

719.] Let y be the radius of the wire, its transverse section

will be 77 2/
2
. Let p be the specific resistance of the material

of which the wire is made referred to unit of volume, then the

resistance of a length I is —~ , and the whole resistance of the

coil is

-ny

R _ P rdi

~t}J y*
(4)

where y is considered a function of I.

Let Y2 be the area of the quadrilateral whose angles are the

sections of the axes of four neighbouring wires of the coil by a

plane through the axis, then YH is the volume occupied in the

coil by a length I of wire together with its insulating covering,
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and including any vacant space necessarily left between the

windings of the coil. Hence the whole volume of the coil is

V=fr2
dl, (5)

where Y is considered a function of I.

But since the coil is a figure of revolution

V = 2 77 /TV2 sin 6 dr d 6, (6)

or, expressing r in terms of x, by equation (1),

V= 2tt[ fx2 (sin d)*dxd 9. (7)

Now 2 7T / (sin d)% d0 is a numerical quantity, call it N, then

V=lNx*-%, (8)

where F is the volume of the interior space left for the

magnet.

Let us now consider a layer of the coil contained between the

surfaces x and x + dx.

The volume of this layer is

dV=Nx2 dx = Y2
dl, (9)

where dl is the length of wire in this layer.

This gives us dl in terms of dx. Substituting this in equations

(3) and (4), we find dx
,lMdG = Nyi> (
10

)

dR =N^, (11)

where dG and dR represent the portions of the values of G and

of R due to this layer of the coil.

Now if E be the given electromotive force,

E=y(R + r),

where r is the resistance of the external part of the circuit,

independent of the galvanometer, and the force at the centre is

' R + r

C
We have therefore to make ^ a maximum, by properly

adjusting the section of the wire in each layer. This also neces-

sarily involves a variation of Y because F depends on y.
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Let G and R be the values of G and of R + r when the given

layer is excluded from the calculation. We have then

G _ G + dG ,

2
*

R +r~ R + dR' v J

and to make this a maximum by the variation of the value of y
for the given layer we must have

dy'
dG

_ G +dG _ G
(13)

d 1T) Rn + dR R + r
-=-' dR u

dy
n

Since dx is very small and ultimately vanishes, ~ will be
xt

sensibly, and ultimately exactly, the same whichever layer is

excluded, and we may therefore regard it as constant. We have

therefore, by (10) and (11),

£*( l + I$L)„*+l = constant. (14,
vy v y dY' 6r

If the method of covering the wire and of winding it is such

that the space occupied by the metal of the wire bears the same

proportion to the space between the wires whether the wire is

thick or thin, then

ydY~ '

and we must make both y and Y proportional to x, that is to

say, the diameter of the wire in any layer must be proportional

to the linear dimension of that layer.

If the thickness of the insulating covering is constant and

equal to 6, and if the wires are arranged in square order,

Y=2(y + b), (15)

and the condition is

t^3 = constant. (16)
y
3

In this case the diameter of the wire increases with the dia-

meter of the layer of which it forms part, but not at so great a

rate.

If we adopt the first of these two hypotheses, which will be

nearly true if the wire itself nearly fills up the whole space, then

we may put
y =^ F=^
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where a and j3 are constant numerical quantities, and {by (10)

and (11)}
1

it a4 /3
2 Ka XJ

where a is a constant depending upon the size and form of the

free space left inside the coil.

Hence, if we make the thickness of the wire vary in the same

ratio as x, we obtain very little advantage by increasing the ex-

ternal size of the coil after the external dimensions have become

a large multiple of the internal dimensions.

720.] If increase of resistance is not regarded as a defect, as

when the external resistance is far greater than that of the

galvanometer, or when our only object is to produce a field of

intense force, we may make y and Y constant. We have then

JV
# = yl (X~ Cl)>

where a is a constant depending on the vacant space inside the

coil. In this case the value of G increases uniformly as the

dimensions of the coil are increased, so that there is no limit to

the value of G except the labour and expense of making the

coil.

On Suspended Coils.

721.] In the ordinary galvanometer a suspended magnet is

acted on by a fixed coil. But if the coil can be suspended with

sufficient delicacy, we may determine the action of the magnet,

or of another coil on the suspended coil, by its deflexion from

the position of equilibrium.

We cannot, however, introduce the electric current into the

coil unless there is metallic connexion between the electrodes of

the battery and those of the wire of the coil. This connexion

may be made in two different ways, by the Bifilar Suspension,

and by wires in opposite directions.

The bifilar suspension has already been described in Art. 459

as applied to magnets. The arrangement of the upper part of

the suspension is shewn in Fig. 54. WT
hen applied to coils, the

two fibres are no longer of silk but of metal, and since the
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torsion of a metal wire capable of supporting the coil and
transmitting the current is much greater than that of a silk

fibre, it must be taken specially into account. This suspension

has been brought to great perfection in the instruments con-

structed by M. Weber.

The other method of suspension is by means of a single wire

which is connected to one extremity of the coil. The other ex-

tremity of the coil is connected to

another wire which is made to hang
down, in the same vertical straight

line with the first wire, into a cup
of mercury, as is shewn in Fig. 56,

Art. 726. In certain cases it is

convenient to fasten the extremities

of the two wires to pieces by which
they may be tightly stretched, care

being taken that the line of these

wires passes through the centre of

gravity of the coil. The apparatus

in this form may be used when the

axis is not vertical ; see Fig. 52.

722.] The suspended coil may be used as an exceedingly

sensitive galvanometer, for, by increasing the intensity of the

magnetic force in the field in which it hangs, the force due to

a feeble current in the coil may be greatly increased without

adding to the mass of the coil. The magnetic force for this

purpose may be produced by means of permanent magnets, or

by electromagnets excited by an auxiliary current, and it may
be powerfully concentrated on the suspended coil by means of

soft iron armatures. Thus, in Sir W. Thomson's recording

apparatus, Fig. 52, the coil is suspended between the opposite

poles of the electromagnets iY and S, and in order to concentrate

the lines of magnetic force on the vertical sides of the coil,

a piece of soft iron, D, is fixed between the poles of the magnets.

This iron becoming magnetized by induction, produces a very
powerful field of force, in the intervals between it and the two
magnets, through which the vertical sides of the coil are free to

move, so that the coil, even when the current through it is very
feeble, is acted on by a considerable force tending to turn it

about its vertical axis.

Fi?. 52.
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723.] Another application of the suspended coil is to determine,

by comparison with a tangent galvanometer, the horizontal com-

ponent of terrestrial magnetism.

The coil is suspended so that it is in stable equilibrium when
its plane is parallel to the magnetic meridian. A current y is

passed through the coil and causes it to be deflected into a new
position of equilibrium, making an angle 6 with the magnetic

meridian. If the suspension is bifilar, the moment of the couple

which produces this deflexion is i^sin 6, and this must be equal

to Hyg cos 6, where H is the horizontal component of terrestrial

magnetism, y is the current in the coil, and g is the sum of the

areas of all the windings of the coil. Hence
FHy = —tan 6.

9
If A is the moment of inertia of the coil about its axis of sus-

pension, and T the time of a half vibration, when no current is

passing,

FT2 = tt*A,

2 A

and we obtain Hy = =^— tan 0.
T-g

If the same current passes through the coil of a tangent

galvanometer, and deflects the magnet through an angle $,

y 1

H~ G
tan ^'

where G is the principal constant of the tangent galvanometer,

Art. 710.

From these two equations we obtain

TT — ~ /AG ta.n0 _^ /A tan 6 tan $W Tta^' 7 ~T\f
gjj

This method was given by F. Kohlrausch *.

724.] Sir William Thomson has constructed a single instrument

by means of which the observations required to determine H and

y may be made simultaneously by the same observer.

The coil is suspended so as to be in equilibrium with its plane

in the magnetic meridian, and is deflected from this position

when the current flows through it. A very small magnet is sus-

pended at the centre of the coil, and is deflected by the current

in the direction opposite to that of the deflexion of the coil. Let

* Pogg., Ann. cxxxviii, pp. 1-10, Aug. 1869.
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the deflexion of the coil be 0, and that of the magnet
<f>,

then the

variable part of the energy of the system is

—Hyg sin —myG sin (0— 0) —Hm cos </> — Fcos 0.

Differentiating with respect to and $, we obtain the equa-

tions of equilibrium of the coil and of the magnet respectively,

— Hyg cos B—myG cos (6— <f)) + Fs\n0 = 0,

myG cos (d— (j)) +Hm sin $ = 0.

From these equations we find, by eliminating H or y, a quad-

ratic equation from which y or H may be found. If m, the

magnetic moment of the suspended magnet, is very small, we
obtain the following approximate values,

j{ — H_ / —AG sind cos (0— <j)) x
mG cos (0— <p)

T 'v g cos sin $
2

g cos '

_^ / -^sinflsincfr j main 4^
T /V Gg cos cos (0-0) * cos '

In these expressions 6r and # are the principal electric con-

stants of the coil, A its moment of inertia, T its half-time of vibra-

tion, m the magnetic moment of the magnet, H the intensity of

the horizontal magnetic force, y the strength of the current,

the deflexion of the coil, and $ that of the magnet.

Since the deflexion of the coil is in the opposite direction to

the deflexion of the magnet, these values of H and g will always

be real.

Weber s Electrodynamometer.

725.] In this instrument a small coil is suspended by two
wires within a larger coil which is fixed. When a current is

made to flow through both coils, the suspended coil tends to place

itself parallel to the fixed coil. This tendency is counteracted

by the moment of the forces arising from the bifilar suspension,

and it is also affected by the action of terrestrial magnetism on

the suspended coil.

In the ordinary use of the instrument the planes of the two

coils are nearly at right angles to each other, so that the mutual

action of the currents in the coils may be as great as possible,

and the plane of the suspended coil is nearly at right angles to

the magnetic meridian, so that the action of terrestrial magnetism

may be as small as possible.
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Let the magnetic azimuth of the plane of the fixed coil be a,

and let the angle which the axis of the suspended coil makes

with the plane of the fixed coil be 6 + /3, where /3 is the value

of this angle when the coil is in equilibrium and no current is

flowing, and 6 is the deflexion due to the current. The equation

of equilibrium is, yl
being the current in the fixed, y2 that in the

moveable coil,

Ggy
xy2 cos(d + p)—Hgy2 sm(0 + p + a)-Fain8 = 0.

Let us suppose that the instrument is adjusted so that a and /3

are both very small, and that Hgy2
is small compared with F.

We have in this case, approximately,

Ggy,y.2 coa^ Eg y2
sin (a + 0) HGg2

yx y
2 G2

g2
yx

2
y2

2 sinp
tan 6 = F F F2 F2

If the deflexions when the signs of yx and y2
are changed are

as follows,
di when n is + and y2 + }

"i 55 55 ?

"3 » + >5 J

"4 55 )) T)
then we find

Vi y-> = \ -^ ; (tan 6, + tan 2
— tan 0„—tan 6\n /2 Gg cos 3 x

If it is the same current which flows through both coils we may
put yx y2 — y

2
, and thus obtain the value of y.

When the currents are not very constant it is best to adopt

this method, which is called the Method of Tangents.

If the currents are so constant that we can adjust /3, the angle

of the torsion-head of the instrument, we may get rid of the

correction for terrestrial magnetism at once by the method of

sines.

In this method /3 is adjusted till the deflexion is zero, so that

If the signs of yx
and y2 are indicated by the suffixes of j3 as

before,

jFsin£1
= -jF

Tsin0
3
= -Ggy^ + Hg y.2 sin a,

Fain(32
=—Fam^

4:
= -Ggy1 Y.2-Hgy2

sinai

F
and yx y2 = — ^7- (sin& + sin /32

- sin /33
- sin /34)

.

This is the method adopted by Mr. Latimer Clark in his use

of the instrument constructed by the Electrical Committee of
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the British Association. We are indebted to Mr. Clark for the

drawing of the electrodynaniometer in Fig. 53, in which Helm-

holtz's arrangement of two coils is adopted both for the fixed

and for the suspended coil *. The torsion-head of the instrument,

by which the bifilar suspension is adjusted, is represented in

Fig. 54. The equality of the tensions of the suspension wires is

ensured by their being attached to the extremities of a silk

Fig. 54.

thread which passes over a wheel, and their distance is regulated

by two guide-wheels, which can be set at the proper distance.

The suspended coil can be moved vertically by means of a screw

acting on the suspension-wheel, and horizontally in two directions

by the sliding pieces shewn at the bottom of Fig. 54. It is

adjusted in azimuth b}' means of the torsion- screw, which

turns the torsion-head round a vertical axis (see Art. 459). The

azimuth of the suspended coil is ascertained by observing the

* In the actual instrument, the wires conveying the current to and from the coils

are not Bpread out as displayed in the figure, but are kept as close together as pos-

sible, so as to neutralize each others electromagnetic action.
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reflexion of a scale in the mirror, shewn just beneath the axis of

the suspended coil.

The instrument originally constructed by Weber is described

in his Mektrodynamische Maasbestimmungen. It was intended

for the measurement of small currents, and therefore both the

fixed and the suspended coils consisted of many windings, and
the suspended coil occupied a larger part of the space within

the fixed coil than in the instrument of the British Association,

which was primarily intended as a standard instrument, with

which more sensitive instruments might be compared. The
experiments which he made with it furnish the most complete

experimental proof of the accuracy of Ampere's formula as

applied to closed currents, and form an important part of the

researches by which Weber has raised the numerical deter-

mination of electrical quantities to a very high rank as regards

precision.

Weber's form of the electrodynamometer, in which one coil is

suspended within another, and is acted on by a couple tending

to turn it about a vertical axis, is probably the best fitted for

absolute measurements. A method of calculating the constants

of such an arrangement is given in Art. 700.

726.] If, however, we wish, by means of a feeble current, to

produce a considerable electromagnetic force, it is better to place

the suspended coil parallel to the

fixed coil, and to make it capable of

motion to or from it.

The suspended coil in Dr. Joule's

current-weigher, Fig. 55, is horizontal,

and capable of vertical motion, andthe

force between it and the fixed coil is

estimated by the weight which must

be added to or removed from the coil

in order to bring it tothe same relative

position with respect to the fixed coil

that it has when no current passes. 8'

The suspended coil may also be fastened to the extremity of

the horizontal arm of a torsion-balance, and may be placed

between two fixed coils, one of which attracts it, while the other

repels it, as in Fig. 56.

By arranging the coils as described in Art. 729, the force
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acting on the suspended coil may be made nearly uniform within

a small distance of the position of equilibrium.

Another coil may be fixed to the other extremity of the arm
of the torsion-balance and placed between two fixed coils. If

the two suspended coils are similar, but "with the current flowing

Fig. 56.

in opposite directions, the effect of terrestrial magnetism on the

position of the arm of the torsion -balance will be completely

eliminated.

727.] If the suspended coil is in the shape of a long solenoid,

and is capable of moving parallel to its axis, so as to pass into

the interior of a larger fixed solenoid having the same axis, then,

if the current is in the same direction in both solenoids, the sus-

pended solenoid will be sucked into the fixed one by a force which
will be nearly uniform as long as none of the extremities of the

solenoids are near one another.

728.] To produce a uniform longitudinal force on a small coil

placed between two equal coils of much larger dimensions, we
should make the ratio of the diameter of the large coils to the

distance between their planes that of 2 to \/3. If we send the

same current through these coils in opposite directions, then, in

the expression for co, the terms involving odd powers of r dis-

appear, and since sin2a = * and cos2 a = £, the term involving r4

disappears also, and we have, by Art. 71 5, as the variable part of co,
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which indicates a nearly uniform force on a small suspended coil.

The arrangement of the coils in this case is that of the two outer

coils in the galvanometer with three coils, described at Art. 715.

See Fig. 50.

729.] If we wish to suspend a coil between two coils placed

so near it that the distance between the mutually acting wires is

small compared with the radii of the coils, the most uniform

force is obtained by making the radius of either of the outer coils

exceed that of the middle one by —^ of the distance between theJ
a/3

planes of the middle and outer coils. This follows from the

expression proved in Art. 705 for the mutual induction between

two circular currents *.

* { In this case, ifM is the mutual potential energy of the inside and one of the

outside coils, then, using the notation of Art. 705, the variation in the force for a
displacement y will, since the coils are symmetrically placed, be proportional to

d*M/dy*. The most important term in this expression is d3 log r/dy3, which vanishes

when 3 *a=y3
.
}



CHAPTER XVI.

ELECTROMAGNETIC OBSERVATIONS.

730.] So many of the measurements of electrical quantities

depend on observations of the motion of a vibrating body that

we shall devote some attention to the nature of this motion, and
the best methods of observing it.

The small oscillations of a body about a position of stable

equilibrium are, in general, similar to those of a point acted on

by a force varying directly as the distance from a fixed point.

In the case of the vibrating bodies in our experiments there

is also a resistance to the motion, depending on a variety of

causes, such as the viscosity of the air, and that of the suspension

fibre. In many electrical instruments there is another cause of

resistance, namely, the reflex action of currents induced in con-

ducting circuits placed near vibrating magnets. These currents

are induced by the motion of the magnet, and their action on the

magnet is, by the law of Lenz, invariably opposed to its motion.

This is in many cases the principal part of the resistance.

A metallic circuit, called a Damper, is sometimes placed near

a magnet for the express purpose of damping or deadening its

vibrations. We shall therefore speak of this kind of resistance

as Damping.

In the case of slow vibrations, such as can be easily observed,

the whole resistance, from whatever causes it may arise, appears

to be proportional to the velocity. It is only when the velocity

is much greater , than in the ordinary vibrations of electro-

magnetic instruments that we have evidence of a resistance

proportional to the square of the velocity.

We have therefore to investigate the motion of a body subject

to an attraction varying as the distance, and to a resistance

varying as the velocity.



731'] MOTION IN A LOGARITHMIC SPIRAL. 375

731.] The following application, by Professor Tait* of the

principle of the Hodograph, enables us to investigate this kind

of motion in a very simple manner by means of the equiangular

spiral.

Let it be required to find the acceleration of a particle which

describes a logarithmic or equiangular spiral with uniform angular

velocity o> about the pole.

The property of this spiral is, that the tangent PT makes

with the radius vector PS a constant angle a.

If v is the velocity at the point P, then

v . sin a = u> . SP.

Hence, if we draw SP' parallel to PT and equal to SP, the

velocity at P will be given both in magnitude and direction by

v = SP'.
sin a

Fig. 57.

Hence P' will be a point in the hodograph. But SP' is SP
turned through a constant angle ir~ a, so that the hodograph

described by P/
is the same as the original spiral turned about

its pole through an angle it— a.

The acceleration ofP is represented in magnitude and direction

O)

by the velocity of P' multiplied by the same factor, -t— •

* Proc. M. 8. Edin., Dec. 16, 1867.
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Hence, if we perform on SP' the same operation of turning it

through an angle -n — a into the position SP", the acceleration of

P will be equal in magnitude and direction to

^-T- SP",
Sinz a

where SP" is equal to SP turned through an angle 2 it— 2 a.

If we draw PF equal and parallel to SP", the acceleration
2

will be . PF, which we may resolve into
sm'a

p#and -r~PK.
sin-a sin^a

The first of these components is a central acceleration towards

$ proportional to the distauce.

The second is in a direction opposite to the velocity, and since

PK = 2 cos aP S = - 2 v,
CO

this acceleration may be written

„ co cos a— 2 ; V.
sin a

The acceleration of the particle is therefore compounded of two
parts, the first of which is due to an attractive force /xr, directed

towards S, and proportional to the distance, and the second is

— 2 kv, a resistance to the motion proportional to the velocity,

where
co*

2
.. 7 COS a

M = . .. , and k = co -— •

sura sin a

If in these expressions we make a = -, the orbit becomes a

circle, and we have jx = ce
2
, and k = 0.

Hence, ifthe force at unit distance remains the same, m=m > anc*

co = co sin a,

or the angular velocity in different spirals with the same law of

attraction is proportional to the sine of the angle of the spiral.

732.] If we now consider the motion of a point which is the

projection of the moving point P on the horizontal line XT, we
shall find that its distance from S and its velocity are the hori-

zontal components of those of P. Hence the acceleration of

this point is also an attraction towards S, equal to jot times its

distance from #, together with a retardation equal to 2& times
its velocity.
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We have therefore a complete construction for the rectilinear

motion of a point, subject to an attraction proportional to the

distance from a fixed point, and to a resistance proportional to

the velocity. The motion of such a point is simply the hori-

zontal part of the motion of another point which moves with
uniform angular velocity in a logarithmic spiral.

733.] The equation of the spiral is

^> —— (Jq—<t>COta

To determine the horizontal motion, we put

(f>
= cat, x = a + rsm<j>,

where a is the value of x for the point of equilibrium.

If we draw BSD making an angle a with the vertical, then
the tangents BX, DY, GZ, &c. wiU be vertical, and X, Y, Z, &c.
will be the extremities of successive oscillations.

734.] The observations which are made on vibrating bodies
are

—

(1) The scale-reading at the stationary points. These are
called Elongations.

(2) The time of passing a definite division of the scale in the

positive or negative direction.

(3) The scale-reading at certain definite times. Observations
of this kind are not often made except in the case of

vibrations of long period *

The quantities which we have to determine are

—

(1) The scale-reading at the position of equilibrium.

(2) The logarithmic decrement of the vibrations.

(3) The time of vibration.

To determine the Reading at the Position of Equilibrium
from Three Consecutive Elongations.

735.] Let xx, x2 , xz be the observed scale-readings, correspond-
ing to the elongations X, F, Z, and let a be the reading at the

position of equilibrium, S, and let r
x be the value of SB,

x
x
— a — r, sin a,

x.
2
—a = —r

1
sin a e~vcota

t

xz
—a= r

x
sin ae~2w00ta.

* See GausB and W. Weber, MetultaU des magnetischen Vereins, 1886. Chap. II.

pp. 84-50.
r
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From these values we find

{x-^— a) (x
3—a) = (x

2
— a)2

,

whence a = ——-

—

~- •

When x3 does not differ much from x
x
we may use as an

approximate formula

To determine the Logarithmic Decrement.

736.] The logarithm of the ratio of the amplitude of a vibration

to that of the next following is called the Logarithmic Decrement.

If we write p for this ratio,

P = ^—^ >
L = logio P> A = log«P-

Wo ~~ «*/rt

i is called the common logarithmic decrement, and A the

Napierian logarithmic decrement. It is manifest that

A = L log
e

1 = 7r cot a.

Hence a = cot
-1 - j

7T

which determines the angle of the logarithmic spiral.

In making a special determination of A we allow the body to

perform a considerable number of vibrations. If c
x

is the ampli-

tude of the first, and cn that of the nth vibration,

A== J_loge (

cx)

n— 1
6*V/

If we suppose the accuracy of observation to be the same for

small vibrations as for large ones, then, to obtain the best value

of A, we should allow the vibrations to subside till the ratio of c
x

to cn becomes most nearly equal to e, the base of the Napierian

logarithms. This gives for n the nearest whole number to - + 1.
A

Since, however, in most cases time is valuable, it is best to take
the second set of observations before the diminution ofamplitude
has proceeded so far.

737.] In certain cases we may have to determine the position

of equilibrium from two consecutive elongations, the logarithmic

decrement being known from a special experiment. We have then

a =
l+eA
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Time of Vibration.

738.] Having determined the scale-reading of the point of

equilibrium, a conspicuous mark is placed at that point of the

scale, or as near it as possible, and the times of the passage of

this mark are noted for several successive vibrations.

Let us suppose that the mark is at an unknown but very
small distance x on the positive side of the point of equilibrium,

and that t
x
is the observed time of the first transit of the mark

in the positive direction, and t
2 , tz , &c. the times of the following

transits.

If T be the time of vibration {i.e. the time between two
consecutive passages through the position of equilibrium}, and
Pv P2 , Pz , &c. the times of transit of the true point of equilibrium,

where v1} v2 , &c. are the successive velocities of transit, which we
may suppose uniform for the very small distance x.

If p is the ratio of the amplitude of a vibration to that of the

next in succession, i „,' l
T x x

v2 = v15 and — = — p

—

P v
2 %x

If three transits are observed at times tx , t2 , t3 , we find

x _ t
1
— 2t2 + U

The time of vibration is therefore

T = k(k-t1)-\
p
-^\{t

x
-2t2 + t

z).

The time of the second passage of the true point of equili

brium is
(n— \ )

2

P
2
= $ (t

1 + 2t2 + t3)-^^- 2̂
(t

1
-2t2 + ti).

Three transits are sufficient to determine these three quantities,

but any greater number may be combined by the method of

least squares. Thus, for five transits,

2'=TV(2^ + ^-^-2^1)- TV(^1-2^+2«3-2^ +y^(2- i-^)
The time of the third transit is,

739.] The same method may be extended to a series of any
number of vibrations. If the vibrations are so rapid that the
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time of every transit cannot be recorded, we may record the

time of every third or every fifth transit, taking care that the

directions of successive transits are opposite. If the vibrations

continue regular for a long time, we need not observe during the

whole time. We may begin by observing a sufficient number of

transits to determine approximately the time of vibration, T,

and the time of the middle transit, P, noting whether this transit

is in the positive or the negative direction. We may then either

go on counting the vibrations without recording the times of

transit, or we may leave the apparatus unwatched. We then

observe a second series of transits, and deduce the time of

vibration T' and the time of middle transit P', noting the

direction of this transit.

If T and T, the times of vibration as deduced from the two

sets of observations, are nearly equal, we may proceed to a

more accurate determination of the period by combining the

two series of observations.

Dividing P'—P by T, the quotient ought to be very nearly

an integer, even or odd according as the transits P and P' are

in the same or in opposite directions. If this is not the case,

the series of observations is worthless, but if the result is very

nearly a whole number n, we divide P'—P by n, and thus find

the mean value of T for the whole time of swinging.

740.] The time of vibration T thus found is the actual mean

time of vibration, and is subject to corrections if we wish to

deduce from it the time of vibration in infinitely small arcs and

without damping.

To reduce the observed time to the time in infinitely small

arcs, we observe that the time of a vibration from rest to rest of

amplitude c is in general of the form

T= T^I + kc2),

where k is a coefficient, which, in the case of the ordinary pen-

dulum, is ^4. Now the amplitudes of the successive vibrations

are c, cp~\ cp~2 ,...cp1
~ n

, so that the whole time of n vibrations is

whe e T is the time deduced from the observations.

Hence, to find the time Tt
in infinitely small arcs, we have

approximately, < KC z
p
2_

Cf
2
X
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To find the time T when there is no damping, we have Art. 731

T = T
x
sin a

vV + A2

741.] The equation of the rectilinear motion of a body, attracted

to a fixed point {by a force proportional to the distance} and

resisted by a force varying as the velocity, is

§ + 2*| + ..(„-„) = 0,
^

(1)

where x is the coordinate of the body at the time t, and a is the

coordinate of the point of equilibrium.

To solve this equation, let

x— a — e~My; (2)

then ^ +^2 - k2)y = °'>
(
3
)

the solution of which is

y = Ccos(\/co2— k2 t+a), when k is less than w
; (4)

y = A+Bt, when k is equal to co
; (5)

and y = C cos h
(
Vk? — mH + a), when k is greater than &>. (6)

The value of x may be obtained from that of y by equation (2).

When k is less than a>, the motion consists of an infinite series of

oscillations, of constant periodic time, but of continually de-

creasing amplitude. As k increases, the periodic time becomes

longer, and the diminution of amplitude becomes more rapid.

When k (half the coefficient of resistance) becomes equal to or

greater than o>, (the square root of the acceleration at unit

distance from the point of equilibrium,) the motion ceases to be

oscillatory, and during the whole motion the body can only

once pass through the point of equilibrium, after which it

reaches a position of greatest elongation, and then returns

towards the point of equilibrium, continually approaching, but

never reaching it.

Galvanometers in which the resistance is so great that the

motion is of this kind are called dead beat galvanometers.

They are useful in many experiments, but especially in tele-

graphic signalling, in which the existence of free vibrations

would quite disguise the movements which are meant to be

observed.

Whatever be the values of k and &>, the value of a, the scale-

reading at the point of equilibrium, may be deduced from five
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scale-readings, p> q, r, s, t, taken at equal intervals of time, by

the formula

a =_ q (rs— qt) + r (pt— r2
) + s (qr—ps)

(p— 2q + r)(r—2s + t)— (q—2r + sy

On the Observation of the Galvanometer.

742.] To measure a constant current with the tangent galvano-

meter, the instrument is adjusted with the plane of its coils

parallel to the magnetic meridian, and the zero reading is taken.

The current is then made to pass through the coils, and the

deflexion of the magnet corresponding to its new position of

equilibrium is observed. Let this be denoted by
<f>.

Then, if H is the horizontal magnetic force, G the coefficient

of the galvanometer, and y the strength of the current,

TUT

y = ^tan4>. (1)

If the coefficient of torsion of the suspension fibre is tMH (see

Art. 452), we must use the corrected formula
TUT

y = ~-(tan
<f> + t(I> sec <£). (2)

Best value of the Deflexion.

743.] In some galvanometers the number of windings of the

coil through which the current flows can be altered at pleasure.

In others a known fraction of the current can be diverted from

the galvanometer by a conductor called a Shunt. In either case

the value of G, the effect of a unit-current on the magnet, is

made to vary.

Let us determine the value of G, for which a given error in the

observation of the deflexion corresponds to the smallest error of

the deduced value of the strength of the current.

Differentiating equation (1), we find

g-f^* 0)

Eliminating G, -j- =— sin 2</>. (4)

This is a maximum for a given value of y when the deflexion

is 45°. The value of G should therefore be adjusted till Gy is
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as nearly equal to H as is possible ; so that for strong currents it

is better not to use too sensitive a galvanometer.

On the Best Method of applying the Current.

744.] When the observer is able, by means of a key, to make
or break the connexions of the circuit at any instant, it is

advisable to operate with the key in such a way as to make
the magnet arrive at its position of equilibrium with the least

possible velocity. The following method was devised by Gauss

for this purpose.

Suppose that the magnet is in its position of equilibrium, and
that there is no current. The observer now makes contact for a

short time, so that the magnet is set in motion towards its new
position of equilibrium. He then breaks contact. The force is

now towards the original position of equilibrium, and the motion

is retarded. If this is so managed that the magnet comes to rest

exactly at the new position of equilibrium, and if the observer

again makes contact at that instant and maintains the contact,

the magnet will remain at rest in its new position.

If we neglect the effect of the resistances and also the

inequality of the total force acting in the new and the old

positions, then, since we wish the new force to generate as much
kinetic energy during the time of its first action as the original

force destroys while the circuit is broken, we must prolong the

first action of the current till the magnet has moved over half

the distance from the first position to the second. Then if the

original force acts while the magnet moves over the other half

of its course, it will exactly stop it. Now the time required to

pass from a point of greatest elongation to a point half way to

the position of equilibrium is one-third of the period, from rest

to rest.

The operator, therefore, having previously ascertained the time

of a vibration from rest to rest, makes contact for one-third of

that time, breaks contact for another third of the same time,

and then makes contact again during the continuance of the ex-

periment. The magnet is then either at rest, or its vibrations are

so small that observations may be taken at once, without waiting

for the motion to die away. For this purpose a metronome
may be adjusted so as to beat three times for each vibration of

the magnet.
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The rule is somewhat more complicated when the resistance is

of sufficient magnitude to be taken into account, but in this case

the vibrations die away so fast that it is unnecessary to apply

any corrections to the rule.

When the magnet is to be restored to "its original position, the

circuit is broken for one-third of a vibration, made again for an

equal time, and finally broken. This leaves the magnet at rest

in its former position.

If the reversed reading is to be taken immediately after the

direct one, the circuit is broken for the time of a single vibra-

tion and then reversed. This brings the magnet to rest in the

reversed position.

Measurement by the First Swing.

745.] When there is no time to make more than one observa-

tion, the current may be measured by the extreme elongation

observed in the first swing of the magnet. If there is no re-

sistance, the permanent deflexion $ is half the extreme elongation.

If the resistance is such that the ratio of one vibration to the

next is p, and if 6 is the zero reading, and 6
X
the extreme

elongation in the first swing, the deflexion, <£, corresponding

to the point of equilibrium is

9
1+P '

In this way the deflexion may be calculated without waiting

for the magnet to come to rest in its position of equilibrium.

To make a Series of Observations.

746.] The best way of making a considerable number of

measures of a constant current is by observing three elongations

while the current is in the positive direction, then breaking

contact for about the time of a single vibration, so as to let the

magnet swing into the position of negative deflexion, then

reversing the current and observing three successive elongations

on the negative side, then breaking contact for the time of a

single vibration and repeating the observations on the positive

side, and so on till a sufficient number of observations have been

obtained. In this way the errors which may arise from a change

in the direction of the earth's magnetic force during the time of
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observation are eliminated. The operator, by carefully timing

the making and breaking of contact, can easily regulate the

extent of the vibrations, so as to make them sufficiently small

without being indistinct. The motion of the magnet is graphi-

cally represented in Fig. 58, where the abscissa represents the

time, and the ordinate the deflexion of the magnet. If 6V ..66

be the observed algebraical values of the elongations, the de-

flexion is given by the equation

8<p = ei + 2e2 + 6
3
-e4

-26
5-e6

.

Fig. 58.

Method of Multiplication.

747.] In certain cases, in which the deflexion of the galva-

nometer magnet is very small, it may be advisable to increase

the visible effect by reversing the current at proper intervals, so,

as to set up a swinging motion of the magnet. For thispurpose

after ascertaining the time, T, of a single vibration { i. e. one

from rest to rest} of the magnet, the current is sent in the

positive direction for a time T, then in the reverse direction for

an equal time, and so on. When the motion of the magnet has

become visible, we may make the reversal of the current at the

observed times of greatest elongation.

Let the magnet be at the positive elongation
O , and let the

current be sent through the coil in the negative direction. The
point of equilibrium is then — <j>, and the magnet will swing to

a negative elongation 6
X , such that

-
p (<l> + 8

1)
= (d + <t>),

or -
P 61

= 6 + (p + l)<t>.

Similarly, if the current is now made positive while the

magnet swings to 2 ,

P 2
=-0

1 + (p+l)</),

or P
2

2 = e
o + (p+iy<p',

and if the current is reversed n times in succession, we find

(-i)»0,, = p-»0
o +^(i-p-»)4>,
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whence we may find <p in the form

If n is a number so great that p~* may be neglected, the ex-

pression becomes D_ \

P+l
The application of this method to exact measurement requires

an accurate knowledge of p, the ratio of one vibration of the

magnet to the next under the influence of the resistances which

it experiences. The uncertainties arising from the difficulty of

avoiding irregularities in the value of p generally outweigh the

advantages of the large angular elongation. It is only where

we wish to establish the existence of a very small current by

causing it to produce a visible movement of the needle that this

method is really valuable.

On the Measurement of Transient Currents.

748.] When a current lasts only during a very small fraction

of the time of vibration of the galvanometer-magnet, the whole

quantity of electricity transmitted by the current may be

measured by the angular velocity communicated to the magnet

during the passage of the current, and this may be determined

from the elongation of the first vibration of the magnet.

If we neglect the resistance which damps the vibrations of the

magnet, the investigation becomes very simple.

Let y be the intensity of the current at any instant, and Q the

quantity of electricity which it transmits, then

0)Q=fydt.

Let M be the magnetic moment, A the moment of inertia of the

magnet and suspended apparatus, and 9 the angle the magnet

makes with the plane of the coil,

d2 dA -Tp +MH sin 8 = MGy cos 0. (2)

If the time of the passage of the current is very small, we may
integrate with respect to t during this short time without re-

garding the change of 6, and we find

A^ = MG cos 6 fydt + C = MGQ cos 6 + C. (3)
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This shews that the passage of the quantity Q produces an angular

momentum MGQ cos 6 in the magnet, where O is the value of 6

at the instant of passage of the current. If the magnet is

initially in equilibrium, we may put
O
= 0, C = 0.

The magnet then swings freely and reaches an elongation 6
1

.

If there is no resistance, the work done against the magnetic
force during this swing is MR (1 —cos 0j).

The energy communicated to the magnet by the current is

Equating these quantities, we find

dd

di
= 2Si _ cos e

i)} (4)

whence M^^MH^^

But if T be the time of a single vibration of the magnet from

rest to rest,

JR T
and we find Q = -^ - 2 sin \ 0,, (7)

Cr it

where H is the horizontal magnetic force, G the coefficient of

the galvanometer, T the time of a single vibration, and 6X
the

first elongation of the magnet.

749.] In many actual experiments the elongation is a small

angle, and it is then easy to take into account the effect of re-

sistance, for we may treat the equation of motion as a linear

equation.

Let the magnet be at rest at its position of equilibrium, let an

angular velocity v be communicated to it instantaneously, and

let its first elongation be 6
X

.

The equation of motion is

= (7e-»i'W sin ^t, (8)

d6
-=- = (7ft)

1
sec/3e-»i ttalI^cos(a)

1
< + )8). (9)

dd
When t = 0, 6 = 0, and -=r = C,

a>
1
= v.
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When tojtf + (3 — ^ >

8 = Ce~^'^nP
coBfi = ev (10)

Hence 1==-e ^ ' cos/3. (11)

Now by Art (741) ^ = «? = ^2 sec2 ^, (12)

tan,8 = -> <0] = ^r» (
13

)

(14)and by equation (5) v = —p V-

Hence ti =
wtt*.-S>-l (.«)

^ItSM*""
.

(16)

which gives the first elongation in terms of the quantity of

electricity in the transient current, and conversely, where T
x

is the observed time of a single vibration as affected by the

actual resistance of damping. When k is small we may use

the approximate formula

« = ^(l+JX)«1 . <»)

Method of Recoil.

750.] The method given above supposes the magnet to be at

rest in its position of equilibrium when the transient current is

passed through the coil. If we wish to repeat the experiment

we must wait till the magnet is again at rest. In certain cases,

however, in which we are able to produce transient currents of

equal intensity, and to do so at any desired instant, the follow-

ing method, described by Weber*, is the most convenient for

making a continued series of observations.

Suppose that we set the magnet swinging by means of a tran-

sient current whose value is Q . If, for brevity, we write

g^W^-L^T (18)
H T

x

then the first elongation

1
= KQ = a, (say). (19)

* Gauss & Weber, Besultate des Magnetischen Vereins, 1838, p. 98.
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The velocity instantaneously communicated to the magnet at

starting is MG
Vo = -£-Qt>- (20)

When it returns through the point of equilibrium in a negative

direction its velocity will be

v
1
= —ve~\ (21)

The next negative elongation will be

a = _V"A = &i- (22)

When the magnet returns to the point of equilibrium, its velocity

will be
Vjs = Voe-2K m (23)

Now let an instantaneous current, whose total quantity is

— Q, be transmitted through the coil at the instant when the

magnet is at the zero point. It will change the velocity v.2 into

v.2
-v, where MG

v = ~Q. (24)

If Q is greater than Q e~2K, the new velocity will be negative

and equal to MG

The motion of the magnet will thus be reversed, and the next

elongation will be negative,

63 = -K{Q-Q e-^)=c1
=-KQ + 1

e-*\ (25)

The magnet is then allowed to come to its positive elongation

84 = -0
3<r* = d1

= e-^KQ-a^), (26)

and when it again reaches the point of equilibrium a positive

current whose quantity is Q is transmitted. This throws the

magnet back in the positive direction to the positive elongation

B
=KQ + O9 e-"', (27)

or, calling this the first elongation of a second series of four,

a
2
= KQ(l-e-2X

) + a
l
e~^. (28)

Proceeding in this way, by observing two elongations + and —

,

then sending a negative current and observing two elongations

— and + , then sending a positive current, and so on, we obtain

a series consisting of sets of four elongations, in each of which— =e~\ (29)
a— c

and gg = («-6) <r^+rf- c
. (30)
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If n series of elongations have been observed, then we find the

logarithmic decrement from the equation

S(<*)-2(6)

2 (a)- 2(c)

and Q from the equation

KQ(l+e-K)(2n-l)
= 2n(a-b-c + d){l+e-^)-{a1

-b\)-(dn-cn)e-*\

(31)

(32)

Fig. 59.

The motion of the magnet in the method of recoil is graphi-

cally represented in Fig. 59, where the abscissa represents the

time, and the ordinate the deflexion of the magnet at that time.

See Art. 760.

Method of Multiplication.

751.] If we make the transient current pass every time that

the magnet passes through the zero point, and always so as

to increase the velocity of the magnet, then, if V 2 , &c. are

the successive elongations,

e2
= -KQ-e-*dx ,

6» = +KQ-e-*62 .

(33)

(34)

The ultimate value to which the elongation tends after a great

many vibrations is found by putting dn = —6n-1} whence we find

e = ± T
±=-

K
KQ. (35)

If A is small, the value of the ultimate elongation may be

large, but since this involves a long continued experiment, and a

careful determination of A, and since a small error in A. intro-

duces a large error in the determination of Q, this method is

rarely useful for numerical determination, and should be re-

served for obtaining evidence of the existence or non-existence

of currents too small to be observed directly.

In all experiments in which transient currents are made
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to act on the moving magnet of the galvanometer, it is essential

that the whole current should pass while the distance of the

magnet from the zero point remains a small fraction of the

total elongation. The time of vibration should therefore be

large compared with the time required to produce the current,

and the operator should have his eye on the motion of the

magnet, so as to regulate the instant of passage of the current

by the instant of passage of the magnet through its point of

equilibrium.

To estimate the error introduced by a failure of the operator

to produce the current at the proper instant, we observe that

the effect of an impulse in increasing the elongation varies as

e*
tan

^cos(4> + /3),*

and that this is a maximum when
<f>
= 0. Hence the error

arising from a mistiming of the current will always lead to

an under-estimation of its value, and the amount of the error

may be estimated by comparing the cosine of the phase of the

vibration at the time of the passage of the current with unity.

* { I have not succeeded in verifying this expression ; using the notation of Art. 748.

I find that the elongation when the impulse is applied at <p bears to the elongation
produced by the same impulse when <p = the ratio

Aiai

.Mag**™? J t j.
^*>i</>tan£

where
<f>

has been assumed to be so small that its squares and higher powers may be
neglected.

J



CHAPTER XVII.

COMPARISON OF COILS.

Experimental Determination of the Electrical Constants

of a Coil.

752.] We have seen in Art. 717 that in a sensitive galvano-

meter the coils should be of small radius, and should contain

many windings of the wire. It would be extremely difficult

to determine the electrical constants of such a coil by direct

measurement of its form and dimensions, even if we could

obtain access to every winding of the wire in order to measure

it. But in fact the greater number of the windings are not only

completely hidden by the outer windings, but we are uncertain

whether the pressure of the outer windings may not have

altered the form of the inner ones after the coiling of the wire.

It is better therefore to determine the electrical constants of

the coil by direct electrical comparison with a standard coil

whose constants are known.

Since the dimensions of the standard coil must be determined

by actual measurement, it must be made of considerable size,

so that the unavoidable error of measurement of its diameter

or circumference may be as small as possible compared with the

quantity measured. The channel in which the coil is wound

should be of rectangular section, and the dimensions of the

section should be small compared with the radius of the coil.

This is necessary, not so much in order to diminish the cor-

rection for the size of the section, as to prevent any uncertainty

about the position of those windings of the coil which are

hidden by the external windings *.

* Large tangent galvanometers are sometimes made with a single circular con-

ducting ring of considerable thickness, which is sufficiently stiff to maintain its form

without any support. This is not a good plan for a standard instrument. The dis-

tribution of the current within the conductor depends on the relative conductivity
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The principal constants which we wish to determine are

—

(1) The magnetic force at the centre of the coil due to a

unit-current. This is the quantity denoted by G
x
in Art. 700.

(2) The magnetic moment of the coil due to a unit-current.

This is the quantity gx
.

753.] To determine G
1

. Since the coils of the working galva-

nometer are much smaller than the standard coil, we place the

galvanometer within the standard coil, so that their centres

coincide, the planes of both coils being vertical and parallel

to the earth's magnetic force. We have thus obtained a differ-

ential galvanometer one of whose coils is the standard coil, for

which the value of G
x
is known, while the constant of the other

coil is 6r/, the value of which we have to determine.

The magnet suspended in the centre of the galvanometer coil

is acted on by the currents in both coils. If the strength of the

current in the standard coil is y, and that in the galvanometer

coil /, then, if these currents flowing in opposite directions pro-

duce a deflexion 8 of the magnet,

#tanS= G^y'-Grf, (1)

where H is the horizontal magnetic force of the earth.

If the currents are so arranged as to produce no deflexion, we
may find Gx by the equation

<V = 70i- (
2
)

We may determine the ratio of y to / in several ways. Since

the value of G
x
is in general greater for the galvanometer than

for the standard coil, we may arrange the circuit so that the

whole current y flows through the standard coil, and is then

divided so that y' flows through the galvanometer and resistance

coils, the combined resistance of which is Rlt while the re-

mainder y— y flows through another set of resistance coils whose
combined resistance is M2 .

of its various parts. Hence any concealed flaw in the continuity of the metal may
cause the main stream of electricity to flow either close to the outside or close to the
inside of the circular ring. Thus the true path of the current becomes uncertain.
Besides this, when the current flows only once round the circle, especial care is

necessary to avoid any action on the suspended magnet due to the current on its

way to or from the circle, because the current in the electrodes is equal to that in
the circle. In the construction of many instruments the action of this part of the
current seems to have been altogether lost sight of.

The most perfect method is to make one of the electrodes in the form of a metal
tube, and the other a wire covered with insulating material, and placed inside the
tube and concentric with it. The external action of the electrodes when thus arranged
is zero, by Art. 683.
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We have then, by Art. 276,

/JB
1
= (y-/)i2

> , (3)

or ^ = *S+£,
(4)

y M2

and G1

f=^i^Ql
. (5)R

If there is any uncertainty about the actual resistance of the

galvanometer coil (on account, say, of an uncertainty as to its

temperature) we may add resistance coils to it, so that the resist-

ance of the galvanometer itself forms but a small part of Rlf and

thus introduces but little uncertainty into the final result.

754.] To determine gx , the magnetic moment of a small coil

due to a unit current flowing through it, the magnet is still sus-

pended at the centre of the standard coil, but the small coil

is moved parallel to itself along the common axis of both coils,

till the same current, flowing in opposite directions round the

coils, no longer deflects the magnet. If the distance between

the centres of the coils is r, we have now (Art. 700)

Ol = *$+»$+*&+*«. (6)

By repeating the experiment with the small coil on the oppo-

site side of the standard coil, and measuring the distance between

the positions of the small coil, we eliminate the uncertain error

in the determination of the position of the centres of the magnet

and of the small coil, and we get rid of the terms in g% , g±, &c.

If the standard coil is so arranged that we can send the

current through half the number of windings, so as to give

a different value to G1} we may determine a new value of r, and

thus, as in Art. 454, we may eliminate the term involving g3 .

It is often possible, however, to determine gs by direct measure-

ment of the small coil with sufficient accuracy to make it avail-

able in calculating the value of the correction to be applied to

9l in the equation , g
9i=2 Gi

r ~ 2 p' (
7
J

where g3
= - - na? (6 a2 + 3 £

2- 2 rj
2
), by Art. 700.

8



755-] COEFFICIENTS OF INDUCTION. 395

Comparison of Coefficients of Induction.

755.] It is only in a small number of cases that the direct

calculation of the coefficients of induction from the form and
position of the circuits can be easily performed. In order to

attain a sufficient degree of accuracy, it is necessary that the

distance between the circuits should be capable of exact measure-

ment. But when the distance between the circuits is suffi-

cient to prevent errors of measurement from introducing large

errors into the result, the coefficient of induction itself is neces-

sarily very much reduced in magnitude. Now for many experi-

ments it is necessary to make the coefficient of induction large,

and we can only do so by bringing the circuits close together,

so that the method of direct measurement becomes impossible,

and, in order to determine the coefficient of induction, we must
compare it with that of a pair of coils arranged so that their

coefficient may be obtained by

direct measurement and calcu-

lation.

This may be done as follows :

Let A and a be the standard

pair of coils, B and b the coils to

be compared with them. Con-

nect A and B in one circuit,

and place the electrodes of the

galvanometer, G, at P and Q,

so that the resistance of PAQ
is R, and that of QBP is S, K
being the resistance of the galvanometer,

one circuit with the battery.

Let the current in A be x, that in B, y, and that in the gal-

vanometer, x—y, that in the battery circuit being y.

Then, if M
x
is the coefficient of induction between A and a, and

M% that between B and b, the integral induction current through

the galvanometer at breaking the battery circuit is

Fig. 60.

Connect a and b in

x-y—y. s r

i +
K
R

K (8)

By adjusting the resistances R and S till there is no current
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through the galvanometer at making or breaking the battery

circuit, the ratio of M
2
to M

x
may be determined by measuring

that of S to R.

* [The expression (8) may be proved as follows: Let Llt Lz ,

JV and r be the coefficients of self-induction of the coils A, B, ah

and the galvanometer respectively. The kinetic energy T of the

system is then approximately,

IL^+i^f + irii-yf +l^ +M^y +M^y.

The dissipation function F, i.e. half the rate at which the

energy of the currents is wasted in heating the coils, is (see Lord

Rayleigh's Theory of Sound, vol. i. p. 78)

where Q is the resistance of the battery and battery coils.

The equation of currents corresponding to any variable x is

then of the form d dT dT dF _
dt deb dx dx

where £ is the corresponding electromotive force.

Hence we have

Lx
x + r {x-y) +M1 y + Rz + K (x—y) = 0,

L2
i/-T(x-i/) +M2y + Sy-K(x-y) = 0.

These equations can be at once integrated in regard to t. Ob-

serving that x, x, y, y, y are zero initially, if we write x— y = z

we find, on eliminating y, an equation of the form

Az + Bz + Cz = Dy + Ey. (8')

A short time after battery contact the current y will have

become steady and the current z will have died away. Hence

Cz = Ey.

This gives the expression (8) above, and it shews that when

the total quantity of electricity passing through the galvano-

meter is zero we must have E = 0, or M2
R —M1S— 0. The

equation (8') further shews that if there is no current whatever in

the galvanometer we must also haveD = 0, orM2
L

x
—M

x
L2 = 0.]f

* [The investigation in square brackets, taken from Mr. Fleming's notes of Professor

Clerk Maxwell's Lectures, possesses a melancholy interest as being part of the last

lecture delivered by the Professor. In Mr. Fleming's notes the plan of the experi-

ment differs from that given in the text in having the battery and galvanometer

interchanged.]

t { Unless the condition Mi Lx
—MxLi = is approximately fulfilled the unsteadiness

caused in the zero of the galvanometer by the transient currents prevents our

determining with accuracy whether there is or is not a ' kick ' of the galvanometer on

closing the battery circuit.

}
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Comparison of a Coefficient of Self-induction with a Coefficient

of Mutual Induction.

756.] In the branch AF of Wheatstone's Bridge let a coil be
inserted, the coefficient of self-induction of which we wish to

find. Let us call it L.

In the connecting wire between A and the battery another
coil is inserted. The coefficient of mutual induction between
this coil and the coil in AF is M. It

may be measured by the method
described in Art. 755.

If the current from A to F is x,

and that from A to H is y, that from
Z to A, through B, will be x + y.

The external electromotive force from
A to .Pis

A-F=P*+L d

£ +M(^ + ft ). (9)

The external electromotive force

along AH is

A-H = Qy. (10)

If the galvanometer placed between F and H indicates no
current, either transient or permanent, then by (9) and (10),
8ince H-F= 0, Px = Qy; (11)

dV

Fig. 61.

and T dx , , (dx

dt "dt
o,

whence J = -(l + J)Jf.

(12)

(13)

Since L is always positive, M must be negative, and therefore

the current must flow in opposite directions through the coils

placed in P and in B. In making the experiment we may
either begin by adjusting the resistances so that

FS=QR, (14)

which is the condition that there may be no permanent current,

and then adjust the distance between the coils till the galvano-

meter ceases to indicate a transient current on making and
breaking the battery connexion ; or, if this distance is not

capable of adjustment, we may get rid of the transient current

by altering the resistances Q and S in such a way that the ratio

of Q to 8 remains constant.
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If this double adjustment is found too troublesome, we may-

adopt a third method. Beginning with an arrangement in

which the transient current due to self-induction is slightly

in excess of that due to mutual induction, we may get rid of

the inequality by inserting a conductor whose resistance is W
between A and Z. The condition of no permanent current

through the galvanometer is not affected by the introduction of

W. We may therefore get rid of the transient current by ad-

justing the resistance of W alone. When this is done the value

of L is

Comparison of the Coefficients of Self-induction of Two Coils.

757.] Insert the coils in two adjacent branches of Wheatstone's

Bridge. Let L and N be the coefficients of self-induction of the

coils inserted in P and in R respectively, then the condition of

no galvanometer current is Fig. 61,

(Px +Lf
t
)Sy = Qy(Rx +N^), (16)

whence PS = QR, for no permanent current, (17)

and -77 = n » for no transient current. (18)P R
Hence, by a proper adjustment of the resistances, both the

permanent and the transient currents can be got rid of, and then

the ratio of L to JV can be determined by a comparison of the

resistances.
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{The method of measuring the coefficient of self-induction of a coil is

described in the following extract from Maxwell's paper on a Dynamical

Theory of the Electromagnetic Field, Phil. Trams. 155, pp. 475-477.

'On the Determination of Coefficients of Induction by the Electric

Balance.

The electric balance consists of six conductors joining four points

A, G, D, E, two and two.

Fig. 62.

One pair, AC, of these points is connected through the battery B. The

opposite pair, DE, is connected through the galvanometer G. Then if the

resistances of the four remaining conductors are represented by P, Q, R, S,

and the currents in them by x
t
x— z, y, and y + z, the current through

G will be z. Let the potentials at the four points be A, C, D, E. Then
the conditions of steady currents may be found from the equations

Px = A-D, Q(x-z) = D-C, \

Ry = A-E, S{y+ z) = E-C, > (21)

Gz-B-E. B(x+y)=-A + C+F.J
Solving these equations for z, we find

In this expression F is the electromotive force of the battery ; z the

current through the galvanometer when it has become steady; P, Q, R, S,
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the resistances in the four arms ; B that of the battery and electrodes,

and G that of the galvanometer.

(44) If PS = QR, then z = 0, and there will be no steady current, but

a transient current through the galvanometer may be produced on

making or breaking circuit on account of induction, and the indications of

the galvanometer may be used to determine the coefficients of induction,

provided we understand the actions which take place.

We shall suppose PS — QR, so that the current z vanishes when

sufficient time is allowed, and
W(PA-0\ (R 4- s^

*{r+Q)=y(K+s) = {F+Q){R+S)+£{F+Q+E+ s
)

(23)

Let the induction coefficients between P, Q, R, S be given by the

following Table, the coefficient of induction ofP on itself beings, between

P and Q, h, and so on.

P Q R S
p P h k I

Q h ? m n

R k m r

S I n 8

Let g be the coefficient of induction of the galvanometer on itself, and let

it be out of reach of the induction influence of P, Q, R, S (as it must be

in order to avoid direct action of P, Q, R, S on the needle). Let X, T, Z
be the integrals of x, y, z with respect to t. At making contact x, y, z

are zero. After a time z disappears, and x and y reach constant values.

The equations for each conductor will therefore be

PX + (p + ?i) x+(k + l)y =/A dt -fDdt,

,

Q{X-Z)+(h+ q) x+ (m+ n)y =/Ddt-/Cdt, /

RY+(k+m)x+ (r + o)y —fAdt—fEdt, (

S(Y+Z)+ \l + n)x+ (o + s)y -/Edt-fCdt,

'

GZ=fDdt-fEdt.
Solving these equations for Z we find,

*{?+K+s +*(?4)(i4)+ ff(;Kx^)

(24)

+
BG

PQRS
(P + Q +R+S)]=-F-L^

r s

R + S

T /l K t/ 1 K
7
/l In /l 1\

+ h(p-Q) + k(R-p)+ l

(R + Q)-m (p +
s)

^(l-D+'d-R-)}-™
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Now let the deflexion of the galvanometer hy the instantaneous current

whose intensity {total quantity} is Z be a.

Let the permanent deflexion produced by making the ratio of PS to

QR, p instead of unity, be 8.

Also let the time of vibration of the galvanometer needle from rest to

rest be T. Then calling the quantity

/I 1\ /' >\ /I 1-v
-„,(?+g) +„(„_ s) +() (___) =T

, (26)

we find *. !"*££= _L_. (27)
z tan# 7r p— 1

In determining t by experiment it is best to make the alteration in

the resistance in one of the arms by means of the arrangement described

by Mr. Jenkin in the Report of the British Association for 1863, by

which any value of p from 1 to 1-01 can be accurately measured.

We observe {a}, the greatest deflexion {throw} due to the impulse of

induction when the galvanometer is in circuit, when the connexions are

made, and when the resistances are so adjusted as to give no permanent

current.

We then observe {/3}, the greatest deflexion {throw} produced by the

permanent current when the resistance of one of the arms is increased in

the ratio of p to 1, the galvanometer not being in circuit till a little while

after the connexion is made with the battery.

In order to eliminate the effects of resistance of the air, it is best

to vary p till /3 = 2 a nearly : then

T=r I(p_,)^Lli
I

.

tt ' tan^/3

If all the arms of the balance except P consist of resistance coils

of very fine wire of no great length and doubled before being coiled, the

induction coefficients belonging to these coils will be insensible, and

t will be reduced to p/P. The electric balance therefore affords the

means of measuring the self-induction of any circuit whose resistance

is known.'
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ELECTROMAGNETIC UNIT OF RESISTANCE.

On the Determination of the Resistance of a Coil in

Electromagnetic Measure.

758.] The resistance of a conductor is defined as the ratio of

the numerical value of the electromotive force to that of the

current which it produces in the conductor. The determination

of the value of the current in electromagnetic measure can be

made by means of a standard galvanometer, when we know the

value of the earth's magnetic force. The determination of the

value of the electromotive force is more difficult, as the only case

in which we can directly calculate its value is when it arises

from the relative motion of the circuit with respect to a known
magnetic system.

759.] The first determination of the resistance of a wire in

electromagnetic measure was made by Kirchhoff *. He employed

two coils of known form, A x
and

A
2 , and calculated their coeffi-

cient of mutual induction from

C_
_^^ , „ the geometrical data of their

a, ^ r$g^7—^ form and position. These coils

were placed in circuit with a

galvanometer, G, and a battery,

B, and two points of the circuit,

P, between the coils, and Q, between the battery and galvano-

meter, were joined by the wire whose resistance, R, was to

be measured.

When the current is steady it is divided between the wire and

the galvanometer circuit, and produces a certain permanent

Fig. 63.

* 'Beatimmung der Constanten, von welcher die Intensitat inducirter elektrischer

Sttome abhangt.' Pogg., Ann., lxxvi (April 1849).
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deflexion of the galvanometer. If the coil A
x is now removed

quickly from A2
and placed in a position in which the coeffi-

cient of mutual induction between A x
and A2 is zero (Art. 538),

a current of induction is produced in both circuits, and the

galvanometer needle receives an impulse which produces a certain

transient deflexion *.

The resistance of the wire, Ry
is deduced from a comparison

between the permanent deflexion, due to the steady current, and

the transient deflexion, due to the current of induction.

Let the resistance of QGA
X
P be K, of PA^BQ, B, and of

PQ, &
Let X, M andN be the coefficients of induction of A

x
and A

2 .

Let x be the current in G, and y that in B
3 then the current

from P to Q is x—y.

Let E be the electromotive force of the battery, then

(K+ R)x-Ry + jt {Lx+My) = 0, (1)

-Rx + (B + R)y + jt {Mx + Ny) = E. (2)

When the currents are constant, and everything at rest,

(K +R)x-Ry = 0. (3)

IfM now suddenly becomes zero on account of the separation

of Ax from A 2 , then, integrating with respect to t,

(K +R)x~Ry-My=0, (4)

-Rx + (B +R)y-Mx = jEdt = ; (5)

, (B + R)y + Rx
whence x = M /n

x ^ ,„ _ „,—™ . (6)(B + R)(K+ R)-R*'

Substituting the value of y in terms of x from (3), we find

x M (B + R)(K+ R) + R2

R (B + R)(K + R)-R (?)

1 +
{
B + R)(K + R)

+ &CV «~R\

* { Instead of removing the coil A x , it is more convenient -to reverse the current

through A 2 ; in this case the quantity of electricity passing through the ballistic

galvanometer is twice that in the text. Kirchhoff's method has been used by Messrs.
Glazebrook, Sargant and Dodds to determine a resistance in absolute measure. Phil.
Xrans. 1883, pp. 223-268.}
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When, as in Kirchhoffs experiment, both B and K are large

compared with R, this equation is reduced to

x ~ R V>

Of these quantities, x is found from the throw of the galvano-

meter due to the induction current. See Art. 748. The per-

manent current, #, is found from the permanent deflexion due
to the steady current ; see Art. 746. M is found either by-

direct calculation from the geometrical data, or by a comparison

with a pair of coils, for which this calculation has been made

;

see Art. 755. From these three quantities R can be determined

in electromagnetic measure.

These methods involve the determination of the period of

vibration of the galvanometer magnet, and of the logarithmic

decrement of its oscillations.

Weber's Method by Transient Currents *.

760.] A coil of considerable size is mounted on an axle, so as

to be capable of revolving about a vertical diameter. The wire

of this coil is connected with that of a tangent galvanometer so

as to form a single circuit. Let the resistance of this circuit

be R. Let the large coil be placed with its positive face per-

pendicular to the magnetic meridian, and let it be quickly

turned round half a revolution. There will be an induced

current due to the earth's magnetic force, and the total quantity

of electricity in this current in electromagnetic measure will be

Q =
2
-^/> (i)

where gr
is the magnetic moment of the coil for unit current,

which in the case of a large coil may be determined directly, by

measuring the dimensions of the coil, and calculating the sum of

the areas of its windings. H is the horizontal component of

terrestrial magnetism, and R is the resistance of the circuit

formed by the coil and galvanometer together. This current

sets the magnet of the galvanometer in motion.

If the magnet is originally at rest, and if the motion of the

coil occupies but a small fraction of the time of a vibration of

* Elekt. Maasb. ; or Pogg., Ann., Ixxxii. pp. 337-369 (1851).
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the magnet, then, if we neglect the resistance to the motion of

the magnet, we have, by Art. 748,

Q = %-2sm\0, (2)
Or 7T

where is the constant of the galvanometer, T is the time of

vibration of the magnet, and 6 is the observed elongation.

From these equations we obtain

R = TiGg
l m } . « (3)

The value of H does not appear in this result, provided it is

the same at the position of the coil and at that of the galvano-

meter. This should not be assumed to be the case, but should

be tested by comparing the time of vibration of the same

magnet, first at one of these places and then at the other.

761.] To make a series of observations Weber began with the

coil parallel to the magnetic meridian. He then turned it with

its positive face north, and observed the first elongation due to

the negative current. He then observed the second elongation

of the freely swinging magnet, and on the return of the magnet

through the point of equilibrium he turned the coil with its

positive face south. This caused the magnet to recoil to the

positive side. The series was continued as in Art. 750, and the

result corrected for resistance. In this way the value of the

resistance of the combined circuit of the coil and galvanometer

was ascertained.

In all such experiments it is necessary, in order to obtain

sufficiently large deflexions, to make the wire of copper, a metal

which, though it is the best conductor, has the disadvantage of

altering considerably in resistance with alterations of tempera-

ture. It is also very difficult to ascertain the temperature of

every part of the apparatus. Hence, in order to obtain a result

of permanent value from such an experiment, the resistance of

the experimental circuit should be compared with that of a

carefully constructed resistance-coil, both before and after each

experiment.

Weber's Method by observing the Decrement of the Oscillations

of a Magnet.

762.1 A- m&gnet of considerable magnetic moment is suspended

at the centre of a galvanometer coil. The period of vibration
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and the logarithmic decrement of the oscillations is observed,

first with the circuit of the galvanometer open, and then with

the circuit closed, and the conductivity of the galvanometer coil

is deduced from the effect which the currents induced in it by
the motion of the magnet have in resisting that motion.

If T is the observed time of a single vibration, and A. the Na-

pierian logarithmic decrement for each single vibration, then, if

we write w
t»=f> I

1
)

and a = y

,

(2)

the equation of motion of the magnet is of the form

<f>
- Ge~ at cos (o>< + j3). (3)

This expresses the nature of the motion as determined by

observation. We must compare this with the dynamical

equation of motion.

Let M be the coefficient of induction between the galvano-

meter coil and the suspended magnet. It is of the form

M = G
1gi
Pl (e) + G2 g2P2 (e) + &c, (4)

where G1} G2 , Sec. are coefficients belonging to the coil, glt g2 , &c.

to the magnet, and 1\(0), P2 (6), &c. are zonal harmonics of

the angle between the axes of the coil and the magnet. See

Art. 700. By a proper arrangement of the coils of the galvano-

meter, and by building up the suspended magnet of several

magnets placed side by side at proper distances, we may cause

all the terms ofM after the first to become insensible compared
IT

with the first. If we also put <j>
— - — d, we may write

M = Gm sin <£, (5)

where G { — Gx } is the principal coefficient of the galvanometer,

to is the magnetic moment of the magnet, and
<f>

is the angle

between the axis of the magnet and the plane of the coil, which,

in this experiment, is always a small angle.

If L is the coefficient of self-induction of the coil, and R its

resistance, and y the current in the coil,

^(Ly + M) +Ry = 0, (6)

or L~+Ry+Gmcos<t>-£ = 0. (7)
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The moment of the force with which the current y acts on the

mag-net is y^— > or Gmy cos </>. The angle </> is in this experi-

ment so small, that we may suppose cos</> = 1.

Let us suppose that the equation of motion of the magnet

when the circuit is broken is

^ +*W +C*=°' (8)

where A is the moment of inertia of the suspended apparatus,

B-~ expresses the resistance arising from the viscosity of the air
at

and of the suspension fibre, &c, and C<f> expresses the moment

of the force arising from the earth's magnetism, the torsion of

the suspension apparatus, &c. tending to bring the magnet to

its position of equilibrium.

The equation of motion, as affected by the current, will be

*%+*%+°* = °<»»

To determine the motion of the magnet, we have to combine

this equation with (7) and eliminate y. The result is

a linear differential equation of the third order.

We have no occasion, however, to solve this equation, because

the data of the problem are the observed elements of the motion

of the magnet, and from these we have to determine the value

of R.

Let a and co be the values of a and a> in equation (3) when

the circuit is broken. In this case R is infinite, and the equation

(10) is reduced to the form (8). We thus find

B=2Aa ,
C=^(a 2 + a>

2
). (11)

Solving equation (10) for R, and writing

-r =— (a + ia>), where £ = </— 1, (12)

we find

R=^L-9
-.

a+T . ,
=

f
+Z(a + i«). (13)

A a2— ft>*+2fcaoo— 2a
o {a + ^<0) + a

Q
'i + <tio

i
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Since the value of u> is in general much greater than that of a,

the best value of R is found by equating the terms in i<a,

R ~WT1 T+hL(3a-aQ
°-). (14)

2A (a-aQ)
V ° a— a ' v '

We may also obtain a value ofR by equating the terms not

involving i, but as these terms are small, the equation is useful

only as a means of testing the accuracy of the observations.

From these equations we find the following testing equation,

G2m2 {a2 +co2 -a 2 -co 2
}

= LA {(a-a
)

4 + 2(a-a )
2
(<o

2 + a,
2
) + (a)

2-a> 2
)
2
}. (15)

Since LAa>2 is very small compared with (?
2m2

, this equation

gives co
2 -a) 2 = a 2-a2

; (16)

and equation (14) may be written

B = fm2
+2La. (17)

In this expression G may be determined either from the linear

measurement of the galvanometer coil, or better, by comparison

with a standard coil, according to the method of Art. 753. A is

the moment of inertia of the magnet and its suspended ap-

paratus, which is to be found by the proper dynamical method.

00, a) , a and a , are given by observation.

The determination of the value of wi, the magnetic moment of

the suspended magnet, is the most difficult part of the investiga-

tion, because it is affected by temperature, by the earth's

magnetic force, and by mechanical violence, so that great care

must be taken to measure this quantity when the magnet is in

the very same circumstances as when it is vibrating.

The second term of R, that which involves L, is of less im-

portance, as it is generally small compared with the first term.

The value of L may be determined either by calculation from

the known form of the coil, or by an experiment on the extra-

current of induction. See Art. 756.

Thomson's Method by a Revolving Coil.

763.] This method was suggested by Thomson to the Com-
mittee of the British Association on Electrical Standards, and

the experiment was made by MM. Balfour Stewart, Fleeming

Jenkin, and the author in 1863 *.

* See Report of the British Association for 1863, pp. 111-176.
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A circular coil is made to revolve with uniform velocity about

a vertical axis. A small magnet is suspended by a silk fibre at

the centre of the coil. An electric current is induced in the coil

by the earth's magnetism, and also by the suspended magnet.

This current is periodic, flowing in opposite directions through

the wire of the coil during different parts of each revolution, but

the effect of the current on the suspended magnet is to produce

a deflexion from the magnetic meridian in the direction of the

rotation of the coil.

764.] Let H be the horizontal component of the earth's mag-
netism.

Let y be the strength of the current in the coil.

g the total area inclosed by all the windings of the wire.

G the magnetic force at the centre of the coil due to unit-

current.

L the coefficient of self-induction of the coil.

M the magnetic moment of the suspended magnet.

6 the angle between the plane of the coil and the mag-
netic meridian.

<t>
the angle between the axis of the suspended magnet and
the magnetic meridian.

A the moment of inertia of the suspended magnet,
MHt the coefficient of torsion of the suspension fibre.

a the azimuth of the magnet when there is no torsion.

R the resistance of the coil.

The kinetic energy of the system is

T = \Ly2-Hgysw.d—MGy sin (0 -<£) +MH cos
<f> + 1 A<j>2. (1)

The first term, ILy2
, expresses the energy of the current as

depending on the coil itself. The second term depends on the

mutual action of the current and terrestrial magnetism, the

third on that of the current and the magnetism of the suspended
magnet, the fourth on that of the magnetism of the suspended
magnet and terrestrial magnetism, and the last expresses the

kinetic energy of the matter composing the magnet and the

suspended apparatus which moves with it.

The {variable part of the} potential energy of the suspended
apparatus arising from the torsion of the fibre is

F=^r (</>*- 2 <*>«)• (2)
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'P--T-— Ly- Hg sin e-MG sin (d -(f)), (3)

The electromagnetic momentum of the current is

dT

h
and if R is the resistance of the coil, the equation of the

current is ^27*

or, since 6 = out, (5)

(R + L %-) y = Hg <* ooa + MG{<»-4>) cm {6 -<f>). (6)

765.] It is the result alike of theory and observation that
<f>,

the azimuth of the magnet, is subject to two kinds of periodic

variations. One of these is a free oscillation, whose periodic

time depends on the intensity of terrestrial magnetism, and is,

in the experiment, several seconds. The other is a forced

vibration whose period is half that of the revolving coil, and

whose amplitude is, as we shall see, insensible. Hence, in

determining y, we may treat </> as sensibly constant.

We thus find

y a=

jy^ a>a
(iZcosg + Za,Bing) (7)

+ 5^^{BcoB(fl-«) + i«8in(fl-^)}, (8)

+ orz t
. (9)

The last term of this expression soon dies away when the

rotation is continued uniform.

The equation of motion of the suspended magnet is

_^_^ + ^=0, (10)
dtd<j> d<j> ^ d<f>

v
'

whence A$-MGy cos (6 -<$>) +MH (sin $ + t ($- a)) — 0. (11)

Substituting the value of y, and arranging the terms ac-

cording to the functions of multiples of 0, then we know from

observation that

$ = (f)Q + be- lt cosiit + ccos2(6—p), (12)

where $ is the mean value of 4>, and the second term ex-

presses the free vibrations gradually decaying, and the third the

forced vibrations arising from the variation of the deflecting

current.
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Beginning with the terms in (11) which do not involve 6, and

which must collectively vanish, we find approximately

jg2 +xw \

Hg& COS *° + L

w

sin^ + QMR
\

= 2M#(sin</) + r(</) -a)). (13)

SinceL tan <£ is generally small compared with Gg, {and GMsec<l>

with. gH,} the solution of the quadratic (13) gives approximately

p Gg* (
,
GM 2L

r
2L ,

2tan0
o
(l+r

<^V gH GgGg

If we now employ the leading term in this expression in

equations (7), (8), and (11)*, we shall find that the value of n in

equation (12) is a /—— sec<£ . That of c, the amplitude of

nc

the forced vibrations, is \ —5 sin <bn . Hence, when the coil

makes many revolutions during one free vibration of the

magnet, the amplitude of the forced vibrations of the magnet

is very small, and we may neglect the terms in (11) which

involve c.

766.] The resistance is thus determined in electromagnetic

measure in terms of the velocity <*> and the deviation <p. It

is not necessary to determine H, the horizontal terrestrial mag-

netic force, provided it remains constant during the experiment.

M
To determine -^ we must make use of the suspended magnet

to deflect the magnet of the magnetometer, as described in

Art. 454. In this experiment M should be small, so that this

correction becomes of secondary importance.

For the other corrections required in this experiment see the

Report of the British Association for 1863, p. 168.

Joule's Calorimetric Method.

767.] The heat generated by a current y in passing through a

conductor whose resistance is R is, by Joule's law, Art. 242,

h = jfltfdt, (1)

* { It is shorter and as accurate to put L = in equation (6) and substitute the

corresponding value of 7 in (11).}
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where J is the equivalent in dynamical measure of the unit of

heat employed.

Hence, if R is constant during the experiment, its value is

R=J^.
(2)

y
2dt

This method of determining- R involves the determination of

h, the heat generated by the current in a given time, and of y
1

,

the square of the strength of the current.

In Joule's experiments*, h was determined by the rise of

temperature of the water in a vessel in which the conducting

wire was immersed. It was corrected for the effects of radiation,

&c. by alternate experiments in which no current was passed

through the wire.

The strength of the current was measured by means of a

tangent galvanometer. This method involves the determination

of the intensity of terrestrial magnetism, which was done by the

method described in Art. 457. These measurements were also

tested by the current weigher, described in Art. 726, which

measures y
2

directly. The most direct method of measuring

ly2 dt, however, is to pass the current through a self-acting

electrodynamometer (Art. 725) with a scale which gives readings

proportional to y
2
, and to make the observations at equal in-

tervals of time, which may be done approximately by taking

the reading at the extremities of every vibration of the in-

strument during the whole course of the experiment f.

* Report on Standards of Electrical Resistance of the British Associationfor 1867,

pp. 474-522.

f {For the relative merits of the various methods of finding the absolute measure of

a resistance the reader is referred to a paper by Lord Rayleigh, Phil. Mag. Nov. 1882.
An excellent method not given in the text, due to Lorentz, is fully described by Lord
Rayleigh and Mrs. Sidgwick in the Phil. Trans. 1883, Part I, pp. 295-322. The
reader should also consult the paper by the same authors entitled ' Experiments to
determine the value of the British Association Unit of Resistance in Absolute Measure,'
Phil. Tram. 1882, Part II, pp. 661-697.

}
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COMPARISON OP THE ELECTROSTATIC WITH THE ELECTRO-

MAGNETIC UNITS.

Determination of the Number of Electrostatic Units of

Electricity in one Electromagnetic Unit.

768.] The absolute magnitudes of the electrical units in both

systems depend on the units of length, time, and mass which we
adopt, and the mode in which they depend on these units is

different in the two systems, so that the ratio of the electrical

units will be expressed by a different number, according to the

different units of length and time.

It appears from the table of dimensions, Art. 628, that the

number of electrostatic units of electricity in one electro-

magnetic unit varies inversely as the magnitude of the unit of

length, and directly as the magnitude of the unit of time which

we adopt.

If, therefore, we determine a velocity which is represented

numerically by this number, then, even if we adopt new units

of length and of time, the number representing this velocity will

still be the number of electrostatic units of electricity in one

electromagnetic unit, according to the new system of measure-

ment.

This velocity, therefore, which indicates the relation between

electrostatic and electromagnetic phenomena, is a natural quan-

tity of definite magnitude, and the measurement of this quantity

is one of the most important researches in electricity.

To shew that the quantity we are in search of is really a

velocity, we may observe that in the case of two parallel currents

the attraction experienced by a length a of one of them is, by

Art. 686,
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where C, (7 are the numerical values of the currents in electro-

magnetic measure, and b the distance between them. If we
make b = 2 a, then jp __ qqt

Now the quantity of electricity transmitted by the current C
in the time t is Gt in electromagnetic measure, or nCt in electro-

static measure, if n is the number of electrostatic units in one

electromagnetic unit.

Let two small conductors be charged with the quantities of

electricity transmitted by the two currents in the time t, and
placed at a distance r from each other. The repulsion between

them will be CC'tft*F=
r2

'

Let the distance r be so chosen that this repulsion is equal to

the attraction of the currents, then

r-

Hence r = <nt;

or the distance r must increase with the time t at the rate n.

Hence n is a velocity, the absolute magnitude of which is the

same, whatever units we assume.

769.] To obtain a physical conception of this velocity, let us

imagine a plane surface charged with electricity to the electro-

static surface-density <r, and moving in its own plane with a

velocity v. This moving electrified surface will be equivalent

to an electric current-sheet, the strength of the current flowing

through unit of breadth of the surface being av in electrostatic

measure, or -av in electromagnetic measure, if n is the number

of electrostatic units in one electromagnetic unit. If another

plane surface parallel to the first is electrified to the surface-

density </, and moves in the same direction with the velocity v',

it will be equivalent to a second current-sheet.

The electrostatic repulsion between the two electrified surfaces

is, by Art. 124, 2 7rera for every unit of area of the opposed

surfaces.

The electromagnetic attraction between the two current-

sheets is, by Art. 653, Itswu! for every unit of area, u and uf

being the surface-densities of the currents in electromagnetic

measure.
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But u = - (tv, and u' — - o-V, so that the attraction isn n

2%<t<t' —-x
•

The ratio of the attraction to the repulsion is equal to that of

vif to n2
. Hence, since the attraction and the repulsion are

quantities of the same kind, n must be a quantity of the same
kind as v, that is, a velocity. If we now suppose the velocity

of each of the moving planes to be equal to n, the attraction

will be equal to the repulsion, and there will be no mechanical

action between them. Hence we may define the ratio of the

electric units to be a velocity, such that two electrified surfaces,

moving in the same direction with this velocity, have no

mutual action. Since this velocity is about 300000 kilometres

per second, it is impossible to make the experiment above

described.

770.] If the electric surface-density and the velocity can be

made so great that the magnetic force is a measurable quantity,

we may at least verify our supposition that a moving electrified

body is equivalent to an electric current.

We may assume* that an electrified surface in air would
begin to discharge itself by sparks when the electric force 2-n-o-

reaches the value 130. The magnetic force due to the current-

v
sheet is 2 it a — • The horizontal magnetic force in Britain is

about 0-175. Hence a surface electrified to the highest degree,

and moving with a velocity of 100 metres per second, would act

on a magnet with a force equal to about one-four-thousandth

part of the earth's horizontal force, a quantity which can be

measured. The electrified surface may be that of a non-con-

ducting disk revolving in the plane of the magnetic meridian,

and the magnet may be placed close to the ascending or descending

portion of the disk, and protected from its electrostatic action by

a screen of metal. I am not aware that this experiment has

been hitherto attempted f.

* Sir W. Thomson, R. S. Proc. or Reprint, Art. xix. pp. 247-259.

f {This effect was discovered by Prof. Rowland in 1876. For subsequent ex-

periments on this subject see Rowland and Hutchinson, Phil. Mag. 27. 445 (1887) ;

Rontgen, Wied. Ann. 40. 93 ; Himstedt, Wied. Ann. 40. 720.

}
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I. Comparison of Units of Electricity.

771.] Since the ratio of the electromagnetic to the electro-

static unit of electricity is represented by a velocity, we shall

in future denote it by the symbol v. The first numerical

determination of this velocity was made by Weber and Kohl-
rausch *.

Their method was founded on the measurement of the same
quantity of electricity, first in electrostatic and then in electro-

magnetic measure.

The quantity of electricity measured was the charge of a
Leyden jar. It was measured in electrostatic measure as the

product of the capacity of the jar into the difference of potential

of its coatings. The capacity of the jar was determined by
comparison with that of a sphere suspended in an open space at

a distance from other bodies. The capacity of such a sphere is

expressed in electrostatic measure by its radius. Thus the

capacity of the jar may be found and expressed as a certain

length. See Art. 227.

The difference of the potentials of the coatings of the jar was
measured by connecting the coatings with the electrodes of an
electrometer, the constants of which were carefully determined,

so that the difference of the potentials, E, became known in

electrostatic measure.

By multiplying this by c, the capacity of the jar, the charge of

the jar was expressed in electrostatic measure.

To determine the value of the charge in electromagnetic

measure, the jar was discharged through the coil of a galvano-

meter. The effect of the transient current on the magnet of the

galvanometer communicated to the magnet a certain angular
velocity. The magnet then swung round to a certain deviation,

at which its velocity was entirely destroyed by the opposing
action of the earth's magnetism.

By observing the extreme deviation of the magnet the quantity

of electricity in the discharge may be determined in electro-

magnetic measure, as in Art. 748, by the formula

77 T
Q = 77-2sini0,

* Elektrodynamische Maasbestimmungen ; and Pogg., Ann., xcix (Aug. pp. 10-25,
1856).
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where Q is the quantity of electricity in electromagnetic measure.

We have therefore to determine the following quantities :

—

H, the intensity of the horizontal component of terrestrial

magnetism ; see Art. 456.

G, the principal constant of the galvanometer ; see Art. 700.

T, the time of a single vibration of the magnet ; and

6, the deviation due to the transient current.

The value of v obtained by MM. Weber and Kohlrausch was

v = 310740000 metres per second.

The property of solid dielectrics, to which the name of Electric

Absorption has been given, renders it difficult to estimate

correctly the capacity of a Leyden jar. The apparent capacity

varies according to the time which elapses between the charging

or discharging of the jar and the measurement of the potential,

and the longer the time the greater is the value obtained for the

capacity of the jar.

Hence, since the time occupied in obtaining a reading of

the electrometer is large in comparison with the time during

which the discharge through the galvanometer takes place, it

is probable that the estimate of the discharge in electrostatic

measure is too high, and the value of v
y
derived from it, is

probably also too high.

II.
c v ' expressed as a Resistance.

772.] Two other methods for the determination of v lead to

an expression of its value in terms of the resistance of a given

conductor, which, in the electromagnetic system, is also ex-

pressed as a velocity.

In Sir William Thomson's form of the experiment, a constant

current is made to flow through a wire of great resistance. The
electromotive force which urges the current through the wire is

measured electrostatically by connecting the extremities of the

wire with the electrodes of an absolute electrometer, Arts. 217,

218. The strength of the current in the wire is measured in

electromagnetic measure by the deflexion of the suspended coil

of an electrodynamometer through which it passes, Art. 725.

The resistance of the circuit is known in electromagnetic measure

by comparison with a standard coil or Ohm. By multiplying

the strength of the current by this resistance we obtain the
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electromotive force in electromagnetic measure, and from a

comparison of this with the electrostatic measure the value of

v is obtained.

This method requires the simultaneous determination of two
forces, by means of the electrometer and electrodynamometer re-

spectively, and it is only the ratio of these forces which appears

in the result.

773.] Another method, in which these forces, instead of being

separately measured, are directly opposed to each other, was
employed by the present writer. The ends of the great resistance

coil are connected with two parallel disks, one of which is

moveable. The same difference of potentials which sends the

current through the great resistance, also causes an attraction

between these disks. At the same time, an electric current

which, in the actual experiment, was distinct from the primary

current, is sent through two coils, fastened, one to the back of the

fixed disk, and the other to the back of the moveable disk. The

current flows in opposite directions through these coils, so that

they repel one another. By adjusting the distance of the two

disks the attraction is exactly balanced by the repulsion, while

at the same time another observer, by means of a differential

galvanometer with shunts, determines the ratio of the primary

to the secondary current.

In this experiment the only measurement which must be re-

ferred to a material standard is that of the great resistance,

which must be determined in absolute measure by comparison

with the Ohm. The other measurements are required only for

the determination of ratios, and may therefore be determined in

terms of any arbitrary unit.

Thus the ratio of the two forces is a ratio of equality.

The ratio of the two currents is found by a comparison of

resistances when there is no deflexion of the differential gal-

vanometer.

The attractive force depends on the square of the ratio of the

diameter of the disks to their distance.

The repulsive force depends on the ratio of the diameter of the

coils to their distance.

The value of v is therefore expressed directly in terms of the

resistance of the great coil, which is itself compared with the

Ohm.
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The value of v, as found by Thomson's method, was 28*2

Ohms* ; by Maxwell's, 28-8 Ohms f.

III. Electrostatic Capacity in Electromagnetic Measure.

774.] The capacity of a condenser may be ascertained in

electromagnetic measure by a comparison of the electromotive

force which produces the charge, and the quantity of electricity

in the current of discharge. By means of a voltaic battery a

current is maintained through a circuit containing a coil of

great resistance. The condenser is charged by putting its elec-

trodes in contact with those of the resistance coil. The current

through the coil is measured by the deflexion which it produces

in a galvanometer. Let <£ be this deflexion, then the current is,

by Art. 742, #
y = -^ tan <£,

where H is the horizontal component of terrestrial magnetism,

and G is the principal constant of the galvanometer.

If R is the resistance of the coil through which this current is

made to flow, the difference of the potentials at the ends of the

coil is E = Ry,

and the charge of electricity produced in the condenser, whose

capacity in electromagnetic measure is C, will be

Q = EC.

Now let the electrodes of the condenser, and then those of the

galvanometer, be disconnected from the circuit, and let the

magnet of the galvanometer be brought to rest at its position

of equilibrium. Then let the electrodes of the condenser be

connected with those of the galvanometer. A transient current

will flow through the galvanometer, and will cause the magnet to

swing to an extreme deflexion 6. Then, by Art. 748, if the dis-

charge is equal to the charge,

r\ HT „ . , .

Q = -„ - 2 sin \ 0.
\X IT

We thus obtain as the value of the capacity of the condenser in

electromagnetic measure

T 1 2 sin \d
C =

•37 R tan <j>

* Report of British Association, 1869, p. 434.

t Phil. Trans., 1868. p. 643 ; and Report of British Association, 1869, p. 436.
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The capacity of the condenser is thus determined in terms of

the following quantities :

—

T, the time of vibration of the magnet of the galvanometer

from rest to rest.

R, the resistance of the coil.

6, the extreme limit of the swing produced by the discharge.

</>, the constant deflexion due to the current through the coil R.

This method was employed by Professor Fleeming Jenkin in deter-

mining the capacity of condensers in electromagnetic measure *.

If c be the capacity of the same condenser in electrostatic

measure, as determined by comparison with a condenser whose

capacity can be calculated from its geometrical data,

c = v2 C.

Hence v2 = nR m—:
—%- •

T 2 sin \d
The quantity v may therefore be found in this way. It

depends on the determination of R in electromagnetic measure,

but as it involves on]y the square root of R, an error in this

determination will not affect the value of v so much as in the

methods of Arts. 772, 773.

Intermittent Current.

775.] If the wire of a battery-circuit be broken at any point,

and the broken ends connected with the electrodes of a condenser,

the current will flow into the condenser with a strength which
diminishes as the difference of the potentials of the plates of the

condenser increases, so that when the condenser has received

the full charge corresponding to the electromotive force acting

on the wire the current ceases entirely.

If the electrodes of the condenser are now disconnected from
the ends of the wire, and then again connected with them in the

reverse order, the condenser will discharge itself through the

wire, and will then become recharged in the opposite way, so

that a transient current will flow through the wire, the total

quantity of which is equal to two charges of the condenser.

By means of a piece of mechanism (commonly called a Com-
mutator, or wippe) the operation of reversing the connexions of

the condenser can be repeated at regular intervals of time, each

interval being equal to T. If this interval is sufficiently long to

* Rtport of British Association, 1867, pp. 483-488.
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allow of the complete discharge of the condenser, the quantity of

electricity transmitted by the wire in each interval will be 2 EG,
where E is the electromotive force, and G is the capacity of the

condenser.

If the magnet of a galvanometer included in the circuit is

loaded, so as to swing so slowly that a great many discharges

of the condenser occur in the time of one free vibration of the

magnet, the succession of discharges will act on the magnet like

2EG
a steady current whose strength is ,„ •

If the condenser is now removed, and a resistance coil substi-

tuted for it, and adjusted till the steady current through the

galvanometer produces the same deflexion as the succession of

discharges, and if R is the resistance of the whole circuit when
this is the case, E _ 2EG

r-~T~'> 0)

R = 2

T
G' <

2
)

We may thus compare the condenser with its commutator in

motion to a wire of a certain electrical resistance, and we may
make use of the different methods of measuring resistance de-

scribed in Arts. 345 to 357 in order to determine this resistance.

776.] For this purpose we m&y substitute for any one of the

wires in the method of the Differential Galvanometer, Art. 346,

or in that of Wheatstone's Bridge, Art. 347, a condenser with its

commutator. Let us suppose that in either case a zero deflexion

of the galvanometer has been obtained, first with the condenser

and commutator, and then with a coil of resistance Rx in its

T
place, then the quantity —^ will be measured by the resistance

2 O

of the circuit of which the coil Rx
forms part, and which is

completed by the remainder of the conducting system including

the battery. Hence the resistance, R, which we have to calcu-

late, is equal to Rx > that of the resistance coil, together with R
2 ;

the resistance of the remainder of the system (including the

battery), the extremities of the resistance coil being taken as the

electrodes of the system.

In the cases of the differential galvanometer and Wheatstone's

Bridge it is not necessary to make a second experiment by
substituting a resistance coil for the condenser. The value of
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the resistance required for this purpose may be found by calcu-

lation from the other known resistances in the system.

Using the notation of Art. 347, and supposing the condenser

and commutator substituted for the conductor AC in Wheat-

stone's Bridge, and the galvanometer inserted in OA, and that

the deflexion of the galvanometer is zero, then we know that the

resistance of a coil, which placed in AC would give a zero de-

flexion, is

6 = cy
R, (3)

(4)

The other part of the resistance, R2 , is that of the system of

conductors AO, OC, AB, BC and OB, the points A and C being-

considered as the electrodes. Hence

£ _ p(c + a)(y + a) + ca(y + a) + ya(c + a)
m2—

(c + a)(y + a) + p(c+ a + y + a)

In this expression a denotes the internal resistance of the battery

and its connexions, the value of which cannot be determined

with certainty ; but by making it small compared with the

other resistances, this uncertainty will only slightly affect the

value of B2 .

The value of the capacity of the condenser in electromagnetic

measure is T
C =

2{R1 +R2)

.* (5)

* {As this method is of great importance in measuring the capacity of a condenser

in electromagnetic measure, we subjoin a somewhat fuller investigation of it, adapted

to the case when the cylinder has a guard-ring.

The arrangement employed in this measurement is represented in the annexed

figure.
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777.] If the condenser has a large capacity, and the commu-
tator is very rapid in its action, the condenser may not be fully

ABCD is a Wheatstone's Bridge with the galvanometer at G, and the battery
between B and G. The arm AB is broken at R and S, which are two poles of a
commutator, which alternately come into contact with a spring P, connected with the
middle-plate, H, of the condenser. The plate without the guard-ring is connected to S.
The points C and B are connected respectively with L and M, the two poles of a
commutator, which alternately come into contact with a spring Q, attached to the
guard-ring of the condenser. The system is arranged so that when the commutators
are working the order of events is as follows :

I. P on S. Condenser discharged.

Q on M. Guard-ring discharged.
II. P on R. Condenser begins to charge.

QonJIf.
III. P on R. Condenser completely charged to potential (A)-(B).

Q on L. Guard-ring charged to potential {C)-(B).
IV. P on S. Condenser begins discharging.

Q on L.

V. P on S. Condenser discharged.

Q on M. Guard-ring discharged.

Thus, when the commutators are working, there will, owing to the flow of electricity
to the condenser, be a succession of momentary currents through the galvanometer.
The resistances are so adjusted that the effect of these momentary currents on the
galvanometer just balances the effect due to the steady current, and there is no
deflexion of the galvanometer.
To investigate the relation between the resistances when this is the case, let us

suppose that when the guard-ring and condenser are charging

x = current through BO,

y = current through AR,
z = current through AD,
to = current through CL.

Thus, if a, b, a, P, y are the resistances in the arms BC, AC, AD, BD, CD
respectively, L the coefficient of self induction of the galvanometer, and IE the
electromotive force of the battery, we have from circuits ADC and BCD respectively,

Lz + (b + y + a)z + (b + y)y + yw—yx = 0, (1)

(a + y + P)x-(y + &)y-yz-(y +&)w-E = 0. (2)

Now it is evident that the currents are expressed by equations of the following
kind, . _ .

£C —— ***X 2 9

i= z1 + z2 ,

where x^ and i
t express the steady currents when no electricity is flowing into the

condenser, and i2i z3 are of the form Ae~Kt, .Be
-*', and express the variable parts of

the currents due to the charging of the condenser ; if and to will be of the form C'e~Kt
,

De ; t in all these expressions is the time which has elapsed since the condenser
commenced to charge.

Equations (1) and (2) will thus contain constant terms, and terms multiplied by
e-"* , and the latter must separately vanish, hence we have

L'z2 + (b + y + a)z2 + (b + y)y +yw—yx2
= 0, (3)

(a + y + 0) x2-(y + &) y-yz2-(y + 0)w = 0. (4)

Let Z, -3Tbe the quantities of electricity which have passed through the galvano-
meter and battery respectively, in consequence of the charging of the condenser, and
Y and W the charges in the condenser and guard-ring. Then integrating equations

(3) and (4) over a time extending from just before the condenser began to charge
until it is fully charged, remembering that at each of these times z2 = 0, we get

(b+y + a)Z+(b + y)Y+yW-yX=* 0,

(a + y +0)X-(y +0)Y-yZ-(y +P)W=Q;
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discharged at each reversal. The equation of the electric current

during the discharge is

Q+R
2
C
dQ+EC=0, (6)

where Q is the charge, G the capacity of the condenser, R2
the

resistance of the rest of the system between the electrodes of the

condenser, and E the electromotive force due to the connexion

with the battery.
t_

Hence Q = (Q + EC)e W-EC, (7)

where Q is the initial value of Q.

hence eliminating X,

Z lh + y + a y') + Y(b +
y-'>^±V)

+ Wy—«-— - 0.
V ' a+y + pl \ a + y + &> a + y +

In practice the battery resistance is very small indeed compared with P, b or 7, so

that the third term may be neglected in comparison with the second, and we get,

neglecting the battery resistance,

z 3-y.
b + y + a

7 + /3

If {A}, {.B}, {D\ denote the potentials of A, B, D when the condenser is fully

charged, C the capacity of the condenser, then

y-c[{^} -{*}].
But

a +
{b + a + y)

7
The right-hand side of this equation is evidently zlf the steady current through the

galvanometer, so that

F=Cii
(
a +0(A±^>), (5)

j
a + j8 (l±ii±7)|

Z^-zJcl 7—,-!. (6)

b + y + a ^-5
y +

If the condenser is charged » times per second, the quantity of electricity which

passes in consequence through the galvanometer per second is nZ. If the galvano-

meter needle remains undeflected, the quantity of electricity which passes through the

galvanometer in unit time must be zero. But this quantity is nZ + ilt so that

nZ + ii = 0.

Substituting this relation in equation (6), we get

Jl t I

r 1 7 I (y + P)(b + a + y)S mnU
lx

7"
' K)

(b + a + y)&
From this equation, if we know the resistances and the speed, we can calculate the

capacity. See J. J. Thomson and Searle, "A Determination of ' v,' " Fhil. Trans. 1890,

A, p. 583.}
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If t is the time during which contact is maintained during

each discharge, the quantity in each discharge is

Q = 2EC
1-e R9C

(8)

1 + e
B*C

By making c and y in equation (4) large compared with j3, a,

or a, the time represented by R.AC may be made so small com-
pared with t, that in calculating the value of the exponential

expression we may use the value of C in equation (5). We
thus find

_R, + Rn

R,C A* T> (9)

where i^ is the resistance which must be substituted for the

condenser to produce an equivalent effect. R% is the resistance

of the rest of the system, T is the interval between the begin-

ning of a discharge and the beginning of the next discharge, and
r is the duration of contact for each discharge. We thus obtain

for the corrected value of C in electromagnetic measure

C=\ T 1+e
-2:

itn, T

R, +Rr.
1-e

(10)

IV. Comparison of the Electrostatic Capacity of a Condenser with

the Electromagnetic Capacity of Self-induction of a Coil.

778.] If two points of a conducting circuit, between which the

resistance is R, are connected with the electrodes of a condenser

whose capacity is C, then, when an

electromotive force acts on the circuit,

part of the current, instead of passing

through the resistance R, will be em-

ployed in charging the condenser.

The current through R will therefore

rise to its final value from zero in a

gradual manner. It appears from the

mathematical theory that the manner

in which the current through R rises

from zero to its final value is expressed

by a formula of exactly the same kind as that which expresses

the value of a current urged by a constant electromotive force

through the coil of an electromagnet. Hence we may place

Fig. 65.
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a condenser and an electromagnet in two opposite members of

Wheatstone's Bridge in such a way that the current through the

galvanometer is always zero, even at the instant of making or

breaking the battery circuit.

In the figure, let P, Q, R, S be the resistances of the four

members of Wheatstone's Bridge respectively. Let a coil,

whose coefficient of self-induction is L, be made part of the

member AH, whose resistance is Q, and let the electrodes of a

condenser, whose capacity is G, be connected by pieces of small

resistance with the points F and Z. For the sake of simplicity,

we shall assume that there is no current in the galvanometer G,

the electrodes of which are connected to F and H. We have

therefore to determine the condition that the potential at F may

be equal to that at H. It is only when we wish to estimate the

degree of accuracy of the method that we require to calculate

the current through the galvanometer when this condition is not

fulfilled.

Let x be the total quantity of electricity which has passed

through the member AF, and z that which has passed through

FZ at the time t, then x— z will be the charge of the condenser.

The electromotive force acting between the electrodes of the

dz
condenser is, by Ohm's law, Ji -r- > so that if the capacity of the

condenser is C,
X- Z = RCd~- (1)

QjTi

Let y be the total quantity of electricity which has passed

through the member AH, the electromotive force from A to H
must be equal to that from A to F, or

dy d2
y _ dx .

Q
-dt
+L dy- r dt'

[2)

Since there is no current through the galvanometer, the

quantity which has passed through HZ must be also y, and

we find dv dz

Substituting in (2) the value of x, derived from (1), and com-

paring with (3), we find as the condition of no current through

the galvanometer

*«( 1 + is)* =
fli,

(
1+iK,

a)«-
(4)
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The condition of no final current is, as in the ordinary form of

Wheatstone's Bridge, qji _ $p#
/$\

The additional condition of no current at making and breaking

the battery connexion is r
i = EG. (6)

Here -= and RC are the time-constants of the members Q and

R respectively, and if, by varying Q or R, we can adjust the

members of Wheatstone's Bridge till the galvanometer indicates

no current, either at making and breaking the circuit, or when
the current is steady, then we know that the time-constant of

the coil is equal to that of the condenser.

The coefficient of self-induction, L, can be determined in

electromagnetic measure from a comparison with the coefficient

of mutual induction of two circuits, whose geometrical data are

known (Art. 756). It is a quantity of the dimensions of a line.

The capacity of the condenser can be determined in electro-

static measure by comparison with a condenser whose geomet-

rical data are known (Art. 229). This quantity is also a length, c.

The electromagnetic measure of the capacity is

G = -
2

- (7)
ir

Substituting this value in equation (6), we obtain for the

value of v2

v>=
C

z QR, (8)

where c is the capacity of the condenser in electrostatic measure,

L the coefficient of self-induction of the coil in electromagnetic

measure, and Q and R the resistances in electromagnetic measure.

The value of v, as determined by this method, depends on the

determination of the unit of resistance, as in the second method,

Arts. 772, 773.

V. Combination of the Electrostatic Capacity of a Condenser

with the Electromagnetic Capacity of Self-induction of a

Coil.

779.] Let C be the capacity of the condenser, the surfaces of

which are connected by a wire of resistance R. In this wire let

the coils L and U be inserted, and let L denote the sum of their

capacities of self-induction. The coil U is hung by a bifilar
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suspension, and consists of two parallel coils in vertical planes,

between which passes a vertical axis which carries the magnet M,

the axis of which revolves in a hori-

zontal plane between the coils L'L'.

The coil L has a large coefficient

of self-induction, and is fixed.

The suspended coil If is protected

from the currents of air caused by

the rotation of the magnet by

enclosing the rotating parts in a

hollow case.

The motion of the magnet causes

currents of induction in the coil,

and these are acted on by the

magnet, so that the plane of the

suspended coil is deflected in the

direction of the rotation of the

magnet. Let us determine the strength of the induced currents,

and the magnitude of the deflexion of the suspended coil.

Let x be the charge of electricity on the upper surface of the

condenser C, then, if E is the electromotive force which produces

this charge, we have, by the theory of the condenser,

x = CE.

Fig. 66.

We have also, by the theory of electric currents,

d
Rx+ -r{Lx +M cos 6) +E = 0,

(!)

(2)

where M is the electromagnetic momentum of the circuit L\

when the axis of the magnet is normal to the plane of the coil,

and 6 is the angle between the axis of the magnet and this

normal.

The equation to determine x is therefore

dtz at at
(3)

If the coil is in a position of equilibrium, and if the rotation

of the magnet is uniform, the angular velocity being n,

6 = nt. (4)

The expression for the current consists of two parts, one of

which is independent of the term on the right-hand of the

equation, and diminishes according to an exponential function
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of the time. The other, which may be called the forced current,

depends entirely on the term in 0, and may be written

x — A sin + B cos 9. (5)

Finding the values of A and B by substitution in the equation

(3), we obtain

. ._ RCn cos - (1 - OLn2
) sin /e ,x = -MCn wo^ + {1 _ CLv;r (

6
)

The moment of the force with which the magnet acts on the

coil Lf
, in which the current x is flowing, being the reverse of

that acting on the magnet the coil being by supposition fixed, is

given by
. d .,,

rtV „. . n dx ,_.
0=—Xj-(Mcos0) = Mam0-TT' (7)

Integrating this expression with respect to t for one revolution,

and dividing by the time, we find, for the mean value of 0,

-
,

M*BC*7I* ,

w - 2 R2C2n2 + (1 - CLn 2
)
2 K '

If the coil has a considerable moment of inertia, its forced

"vibrations will be very small, and its mean deflexion will be

proportional to 0.

Let Dj, JD
2 , D3 be the observed deflexions corresponding to

angular velocities nXi n2i n3 of the magnet, then in general

P^ = (--CLn)2 ^-R2C2
, (9)

JJ yn '

where P is a constant.

Eliminating P and R from three equations of this form,

we find

w ",vW^w-t.v^-.,-Iv^w-«.i'
(10)

If n 2 is such that CLn2
2 = 1, the value of j: will be a minimum

for this value of n. The other values of n should be taken, one

greater, and the other less, than n2 .

The value of CL, determined from equation (10), is of the

dimensions of the square of a time. Let us call it t2 .

If (7
g be the electrostatic measure of the capacity of the con-

denser, and Lm the electromagnetic measure of the self-induction
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of the coil, both Ca
and Lm are lines, and the product

C,Lm = v*C,L, = v*CmLm = «V

;

(11)

and v2 =^, (12)

where t2 is the value of C2Z2
, determined by this experiment.

The experiment here suggested as a method of determining v is

of the same nature as one described by Sir W. R. Grove,

Phil. Mag., March 1868, p. 184. See also remarks on that

experiment, by the present writer, in the number for May 1868,

pp. 360-363.

VI. Electrostatic Measurement of Resistance. (See Art. 355.)

780.] Let a condenser of capacity G be discharged through a

conductor of resistance R, then, if x is the charge at any instant,

t

Hence x = x e~
Itc

. (2)

If, by any method, we can make contact for a short time,

which is accurately known, so as to allow the current to flow

through the conductor for the time t, then, if E and Ex are the

readings of an electrometer put in connexion with the condenser

before and after the operation,

RC(log.tf -log
i
#

1)
= *. (3)

If C is known in electrostatic measure as a linear quantity, R
may be found from this equation in electrostatic measure as the

reciprocal of a velocity.

If Rt
is the numerical value of the resistance as thus deter-

mined, and Rm the numerical value of the resistance in electro-

magnetic measure, ji
v2 =jjr- (4)

Since it is necessary for this experiment that R should be

very great, and since R must be small in the electromagnetic

experiments of Arts. 763, &c, the experiments must be made on

separate conductors, and the resistance of these conductors com-

pared by the ordinary methods.
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ELECTROMAGNETIC THEORY OP LIGHT.

781.] In several parts of this treatise an attempt has been
made to explain electromagnetic phenomena by means of me-
chanical action transmitted from one body to another by means
of a medium occupying the space between them. The undu-
latory theory of light also assumes the existence of a medium.
We have now to shew that the properties of the electromagnetic

medium are identical with those of the luminiferous medium.
To fill all space with a new medium whenever any new phe-

nomenon is to be explained is by no means philosophical, but if

the study of two different branches of science has independently

suggested the idea of a medium, and if the properties which
must be attributed to the medium in order to account for

electromagnetic phenomena are of the same kind as those which
we attribute to the luminiferous medium in order to account for

the phenomena of light, the evidence for the physical existence

of the medium will be considerably strengthened.

But the properties of bodies are capable of quantitative

measurement. We therefore obtain the numerical value of some
property of the medium, such as the velocity with which a

disturbance is propagated through it, which can be calculated

from electromagnetic experiments, and also observed directly in

the case of light. If it should be found that the velocity of

propagation of electromagnetic disturbances is the same as the

velocity of light, and this not only in air, but in other trans-

parent media, we shall have strong reasons for believing that

light is an electromagnetic phenomenon, and the combination of

the optical with the electrical evidence will produce a conviction

of the reality of the medium similar to that which we obtain, in

the case of other kinds of matter, from the combined evidence

of the senses.
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782.] When light is emitted, a certain amount of energy is

expended by the luminous body, and if the light is absorbed by

another body, this body becomes heated, shewing that it has re-

ceived energy from without. During the interval of time after

the light left the first body and before it reached the second, it

must have existed as energy in the intervening space.

According to the theory of emission, the transmission of

energy is effected by the actual transference of light-corpuscules

from the luminous to the illuminated body, carrying with them
their kinetic energy, together with any other kind of energy of

which they may be the receptacles.

According to the theory of undulation, there is a material

medium which fills the space between the two bodies, and it is

by the action of contiguous parts of this medium that the

energy is passed on, from one portion to the next, till it reaches

the illuminated body.

The luminiferous medium is therefore, during the passage of

light through it, a receptacle of energy. In the undulatory

theory, as developed by Huygens, Fresnel, Young, Green, &c,

this energy is supposed to be partly potential and partly kinetic.

The potential energy is supposed to be due to the distortion of

the elementary portions of the medium. We must therefore

regard the medium as elastic. The kinetic energy is supposed

to be due to the vibratory motion of the medium. We must

therefore regard the medium as having a finite density.

In the theory of electricity and magnetism adopted in this

treatise, two forms of energy are recognised, the electrostatic

and the electrokinetic (see Arts. 630 and 636), and these are

supposed to have their seat, not merely in the electrified or

magnetized bodies, but in every part of the surrounding space,

where electric or magnetic force is observed to act. Hence our

theory agrees with the undulatory theory in assuming the

existence of a medium which is capable of becoming a receptacle

of two forms of energy*.

* ' For my own part, considering the relation of a vacuum to the magnetic force

and the general character of magnetic phenomena external to the magnet, I am more
inclined to the notion that in the transmission of the force there is such an action,

external to the magnet, than that the effects are merely attraction and repulsion at a

distance. Such an action may he a function of the aether; for it is not at all unlikely

that, if there be an aether, it should have other uses than simply the conveyance of

radiations.'—Faraday's Experimental Researches, 3075.



783.] PEOPAGATION OP ELECTROMAGNETIC DISTURBANCE. 433

783.] Let us next determine the conditions of the propagation

of an electromagnetic disturbance through a uniform medium,

which we shall suppose to be at rest, that is, to have no motion

except that which may be involved in electromagnetic disturb-

ances.

Let G be the specific conductivity of the medium, K its specific

capacity for electrostatic induction, and n its magnetic ' perme-

ability '.

To obtain the general equations of electromagnetic disturb-

ance, we shall express the true current Gt in terms of the vector

potential SI and the electric potential *.

The true current Qt is made up of the conduction current 5?

and the variation of the electric displacement 3), and since both

of these depend on the electromotive intensity ($, we find, as in

Art. 611, , 1 d.

But since there is no motion of the medium, we may express

the electromotive intensity, as in Art. 599,

@ = -Sr-V*. (2)

Hence « = _((,+ _L **)(*» + V*). (3)

But we may determine a relation between (£ and SI in a

different way, as is shewn in Art. 616, the equations (4) of

which may be written

4wM (S = V2
SI + VJ", (4)

r dF dG dH /t ,Where J=d^ + d^
+

dl- (5)

Combining equations (3) and (4), we obtain

M (4 wC+J^)(^+V*) + V«a + VJ-=0, (6)

which we may express in the form of three equations as follows

—

(?)

These are the general equations of electromagnetic disturbances.
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If we differentiate these equations with respect to x, y, and z

respectively, and add, we obtain

* (*-<>+4) (£-*•*) = 0. w
If the medium is a non-conductor, G = 0, and V 2

*, which is

proportional to the volume-density of free electricity, is inde-

pendent of t. Hence / must be a linear function of t, or a

constant, or zero, and we may therefore leave J and * out of

account in considering periodic disturbances.

Propagation of Undulations in a Non-conducting Medium.

784.] In this case, C = 0, and the equations become

K^+V*G = 0,\ (9)

The equations in this form are similar to those of the motion

of an incompressible elastic solid, and when the initial conditions

are given, the solution can be expressed in a form given by

Poisson*, and applied by Stokes to the Theory of Diffraction f.

Let us write V= -—===. •

(10)

If the values of F, G, H, and of -jr > -jr > ~jr are given at

every point of space at the epoch (t = 0), then we can determine

their values at any subsequent time, t, as follows.

Let be the point for which we wish to determine the value

of F at the time t. With as centre, and with radius Vt,

describe a sphere. Find the initial value of F at every point of

the spherical surface, and take the mean, F, of all these values.

(1 F
Find also the initial values of -7- at every point of the spherical

dF
surface, and let the mean of these values be —7- •

at

* Mim. de VAcad., torn. iii. p. 130, et seq.

•J"
Cambridge Transactions, vol. ix. pp. 1-62 (1849).
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Then the value of F at the point 0, at the time t, is

Similarly G = -LfiQ +t^ ,
} (11)

785.] It appears, therefore, that the condition of things at

the point at any instant depends on the condition of things

at a distance Vt and at an interval of time t previously, so

that any disturbance is propagated through the medium with

the velocity V.

Let us suppose that when t is zero the quantities 31 and 21 are

zero except within a certain space 8. Then their values at at

the time t will be zero, unless the spherical surface described

about as centre with radius Vt lies in whole or in part

within the space S. If is outside the space S there will be no

disturbance at until Vt becomes equal to the shortest distance

from to the space 8. The disturbance at will then begin,

and will go on till Vt is equal to the greatest distance from to

any part of 8. The disturbance at will then cease for ever.

786.] The quantity V, in Art. 784, which expresses the

velocity of propagation of electromagnetic disturbances in a

non-conducting medium is, by equation (10), equal to .—— •

v K fj.

If the medium is air, and if we adopt the electrostatic system

of measurement, K = 1 and /u. = -^ » 80 that V — v, or the

velocity of propagation is numerically equal to the number of

electrostatic units of electricity in one electromagnetic unit. If

we adopt the electromagnetic system, K = — and ju = 1, so that

the equation V — v is still true.

On the theory that light is an electromagnetic disturbance,

propagated in the same medium through which other electro-

magnetic actions are transmitted, V must be the velocity of

light, a quantity the value of which has been estimated by
several methods. On the other hand, v is the number of

electrostatic units of electricity in one electromagnetic unit, and
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the methods of determining this quantity have been described in

the last chapter. They are quite independent of the methods of

finding the velocity of light. Hence the agreement or dis-

agreement of the values of V and of v furnishes a test of the

electromagnetic theory of light.

787.] In the following table, the principal results of direct

observation of the velocity of light, either through the air or

through the planetary spaces, are compared with the principal

results of the comparison of the electric units :

—

Velocity of Light (metres per second). Ratio of Electric Units (metres
per second).

Fizeau 314000000 Weber 310740000

Maxwell ...288000000

Thomson ...282000000

Aberration. &c, and)
o . -r> ,, £...308000000
Sun s Parallax )

Foucault 298360000

It is manifest that the velocity of light and the ratio of the

units are quantities of the same order of magnitude. Neither of

them can be said to be determined as yet with such a degree of

accuracy as to enable us to assert that the one is greater or less

than the other. It is to be hoped that, by further experiment,

the relation between the magnitudes of the two quantities may
be more accurately determined.

In the meantime our theory, which asserts that these two

quantities are equal, and assigns a physical reason for this

equality, is certainly not contradicted by the comparison of

these results such as they are.

* {In the following table, taken from a paper by E. B. Rosa, Phil. Mag. 28, p. 315,

1889, the determinations of ' v ' corrected for the error in the B.A. unit are given :

—

1856 Weber and Kohlrausch ... 3-107 x 10 10 (cm. per second)

1868 Maxwell ... 2-842 xlO10

1869 W. Thomson and King ... 2-808 xlO10

1872 McKichan ... 2-896 xlO10

1879 Ayrton and Perry ... 2-960 xlO 10

1880 Shida ... 2-955 xlO 10

1883 J. J. Thomson ... 2-963 xlO10

1884 Kleinen&c" ... 3019 xlO 10

1888 Himstedt ... 3-009 xlO 10

1889 W. Thomson ... ... 3-004 xlO10

1889 E.B.Rosa ... 2-9993 xlO10

1890 J. J. Thomson and Searle ... ... 2-9955 xlO10

Velocity of Light in Air.

Cornu (1878) 3-003 xlO 10

Michelson (1879) 2-9982 xlO 10

Michelson (1882) 2-9976 x 10w

( 2-99615
)

Newcomb (1885) I 299682 } x IO10

}
/ 2-99766 )
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788.] In other media than air, the velocity V is inversely

proportional to the square root of the product of the dielectric

and the magnetic inductive capacities. According to the undu-

latory theory, the velocity of light in different media is inversely

proportional to their indices of refraction.

There are no transparent media for which the magnetic

capacity differs from that of air more than by a very small

fraction. Hence the principal part of the difference between

these media must depend on their dielectric capacity. According

to our theory, therefore, the dielectric capacity of a transparent

medium should be equal to the square of its index of refraction.

But the value of the index of refraction is different for light

of different kinds, being greater for light of more rapid vibra-

tions. We must therefore select the index of refraction which

corresponds to waves of the longest periods, because these are

the only waves whose motion can be compared with the slow

processes by which we determine the capacity of the dielectric.

789.] The only dielectric of which the capacity has been

hitherto determined with sufficient accuracy is paraffin, for

which in the solid form MM. Gibson and Barclay found *

#=1-975. (12)

Dr. Gladstone has found the following values of the index

of refraction of melted paraffin, sp. g. 0-779, for the lines A, D
and H :

—

Temperature A D S
54°C 1-4306 1-4357 1-4499

57°C 1-4294 1-4343 1-4493

from which I find that the index of refraction for waves of infinite

length would be about 1 -422.

The square root of K is 1-405.

The difference between these numbers is greater than can be ac-

counted for by errors of observation, and shews that our theories

of the structure of bodies must be much improved before we

can deduce their optical from their electrical properties. At the

same time, I think that the agreement of the numbers is such

that if no greater discrepancy were found between the numbers

derived from the optical and the electrical properties of a con-

siderable number of substances, we should be warranted in

* Phil. Tram. 1871, p. 573.
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concluding that the square root of K, though it may not be

the complete expression for the index of refraction, is at least

the most important term in it *.

Plane Waves.

790.] Let us now confine our attention to plane waves, the

fronts of which we shall suppose normal to the axis of z. All

the quantities, the variation of which constitutes such waves, are

functions of z and t only, and are independent of x and y. Hence
the equations of magnetic induction, (A), Art. 591, are reduced to

dG , dF n . ,

a = ~dz' h
=dz'

C = °' <
1S

>

or the magnetic disturbance is in the plane of the wave. This

agrees with what we know of that disturbance which constitutes

light.

Putting /ma, /x/3 and fxy for a, b and c respectively, the equa-

tions of electric currents, Art. 607, become

db d2F

da d2G y (14)

4tt[j.w = 0.

Hence the electric disturbance is also in the plane of the wave,

and if the magnetic disturbance is confined to one direction, say

that of x, the electric disturbance is confined to the perpendicular

direction, or that of y.

But we may calculate the electric disturbance in another way,
for if /, g, h are the components of electric displacement in a

non-conducting medium,

df da dh ,„ .

u = dt' —s* w =
di- W

* [In a paper read to the Royal Society on June 14, 1877, Dr. J. Hopkinson gives
the results of experiments made for the purpose of determining the specific inductive
capacities of various kinds of glass. These results do not verify the theoretical con-
clusions arrived at in the text, the value of K being in each case in excess of that of
the square of the refractive index. In a subsequent paper to the Royal Society, read
on Jan. 6, 1881, Dr. Hopkinson finds that, if n oo denote the index of refraction for

waves of infinite length, then K = /t
2 ao for hydrocarbons, but for animal and vegetable

oils K>At*°° •]

{Under electrical vibrations with a frequency of about twenty-five millions per
second K the specific inductive capacity of glass, according to the experiments of J. J.

Thomson, Proc. Roy. Soc., June 20, 1889, and Blondlot^Comples Sendus, May 11,

1891, p. 1058, approximates to p
2
. Lecher (Wied. Ann. 42, p. 142) came to the

opposite conclusion that the divergence under such circumstances was greater than for

steady forces,
j
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If P, Q, R are the components of the electromotive intensity,

J 4tt
'

K n
4.TT

(16)

and since there is no motion of the medium, equations (B),

Art. 598, become

„ dF dO R = - dH

„ K d2F
Hence u = =-3 ,

4 77 dt*
v — — IV = —

dt

Kd2H
4tt eft

2 '

(17)

(18)

dt

Kd2G
4tt cW3 :

Comparing these values with those given in equation (14), we find

d2F T. d2F v

dz* dt1

d2G „ d2G
-d?

==KfX
-dt2

~' (19)

0=K V-
dt^

'

(20)

The first and second of these equations are the equations of

propagation of a plane wave, and their solution is of the well-

known form

F= fx
(z-Vt)+ft(z+Vt\\

G=f3(z-Vt)+f,(z+Vt)S

The solution of the third equation is

H=A + Bt, (21)

where A and B are functions of z. H is

therefore eitherconstant or varies directly

with the time. In neither case can it

take part in the propagation of waves.

791.] It appears from this that the

directions, both of the magnetic and the

electric disturbances, lie in the plane of

the wave. The mathematical form of the

disturbance therefore agrees with that of

the disturbance which constitutes light,

being transverse to the direction of pro-

pagation.

If we suppose G = 0, the disturbance will correspond to a

plane-polarized ray of light.

The magnetic force is in this case parallel to the axis of y and

Fig. 67.
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1 dF
equal to - —j- » and the electromotive intensity is parallel to the

dF
axis of x and equal to — -rr • The magnetic force is therefore in a

plane perpendicular to that which contains the electric intensity.

The values of the magnetic force and of the electromotive inten-

sity at a given instant at different points of the ray are represented

in Fig. 67, for the case of a simple harmonic disturbance in one

plane. This corresponds to a ray of plane-polarized light, but

whether the plane of polarization corresponds to the plane of the

magnetic disturbance, or to the plane of the electric disturbance,

remains to be seen. See Art. 797.

Energy and Stress of Radiation.

792.] The electrostatic energy per unit of volume at any point

of the wave in a non-conducting medium is

The electrokinetic energy at the same point is

1 , 1 , 2 1 dF\* . .— 6/3 = -

—

b2 = =- • (23)

In virtue of equation (20) these two expressions are equal for a

single wave, so that at every point of the wave the intrinsic

energy of the medium is half electrostatic and half electrokinetic.

Let p be the value of either of these quantities, that is, either

the electrostatic or the electrokinetic energy per unit of volume,

then, in virtue of the electrostatic state of the medium, there

is a tension whose magnitude is p, in a direction parallel to x,

combined with a pressure, also equal to p, parallel to y and z.

See Art. 107.

In virtue of the electrokinetic state of the medium there is a

tension equal to p in a direction parallel to y, combined with a

pressure equal to p in directions parallel to x and z. See

Art. 643.

Hence the combined effect of the electrostatic and the electro-

kinetic stresses is & pressure equal to 2p in the direction of the

propagation of the wave. Now 2p also expresses the whole

energy in unit of volume.

Hence in a medium in which waves are propagated there is a
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pressure in the direction normal to the waves, and numerically

equal to the energy in unit of volume.

793.] Thus, if in strong sunlight the energy of the light which
falls on one square foot is 83-4 foot pounds per second, the mean
energy in one cubic foot of sunlight is about 0-0000000882 of a

foot pound, and the mean pressure on a square foot is 0-0000000882

of a pound weight. A flat body exposed to sunlight would ex-

perience this pressure on its illuminated side only, and would
therefore be repelled from the side on which the light falls. It

is probable that a much greater energy of radiation might be

obtained by means of the concentrated rays of the electric lamp.

Such rays falling on a thin metallic disk, delicately suspended

in a vacuum, might perhaps produce an observable mechanical

effect. When a disturbance of any kind consists of terms in-

volving sines or cosines of angles which vary with the time, the

maximum energy is double of the mean energy. Hence, ifP is the

maximum electromotive intensity and 8 the maximum magnetic

force which are called into play during the propagation of light,

—P2 = —- B2 = mean energy in unit of volume. C24)
8 7T 8ir

0,/ v '

With Pouillet's data for the energy of sunlight, as quoted by
Thomson, Trans. R. S. E., 1854, this gives in electromagnetic

measure

P — 60000000, or about 600 Daniell's cells per metre ;*

3 = 0-193, or rather more than a tenth of the horizontal mag-
netic force in Britain f.

* { I have not been able to verify these numbers, if we assume » = 3x 1010
, the

mean energy in one c. c. of sunlight is, according to Pouillet's data, as quoted by
Thomson, 3-92 xlO -6

, ergs, the corresponding values of P and /3 as given by (24) are
in C. G. S. units

P = 9-42 x 108 or 9-42 volts per centimetre,

/8 = -0314 or rather more than a sixth of the earth's horizontal magnetic force.

}

f {We may regard the forces exerted by the incident light on the reflecting surface

from a different point of view. Let us suppose that the reflecting surface is metallic,

then when the light falls on the surface the variation of the magnetic force induces
currents in the metal, and these currents produce opposite inductive effects to the
incident light so that the inductive force is screened off from the interior of the metal
plate, thus the currents in the plate, and therefore the intensity of the light, rapidly
diminish as we recede from the surface of the plate. The currents in the plate are

accompanied by magnetic forces at right angles to them, the corresponding mechanical
force is at right angles both to the current and the magnetic force, and therefore parallel

to the direction of propagation of the light. If the light were passing through a non-
absorbent medium this mechanical force would be reversed after half a wave length,

and when integrated over a finite time and distance would have no resultant effect.

When however the currents rapidly die away as we recede from the surface, the
effects due to the currents close to the surface are not counterbalanced by the effects

of those at some distance away from it, so that the resultant effect does not vanish.
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Propagation of a Plane Wave in a Crystallized Medium.

794.] In calculating, from data furnished by ordinary electro-

magnetic experiments, the electrical phenomena which would

result from periodic disturbances, millions of millions of which

We can calculate the magnitude of this effect in the following way. Let us

consider the case of light incident normally on a metal plate which we shall take as

the plane of xy. Let a be the specific resistance of the material. Let the vector

potential of the incident ray be given by the equation

F = Ae i t̂- a%
\

of the reflected ray by pi _ j> e u$i+az)

of the refracted ray by F" = A"e »(j>(- a's>

, . x , . d2F 1 d2F
then in the air —

2
= ^— ,

where V is the velocity of light in air, hence

„ p •d = 1v ,

<PF 4ir/j.dF
in the metal —rr, ~ jj >

dz1 a dt

4 it u xp
and therefore a'

2 = = — 2 in2
, say

;

thus a' = w(l— i),

F" = A"e~n' e'te'-'").

The vector potential at the surface is continuous, hence

A + A' =A".
The magnetic force parallel to the surface is also continuous, and hence

A" = 2A

a/J.

or, since a'/a is very large, we may write this as

A"=1A°
â

= 2^Mj> if

V*/2n
so that in the metal the real part of the vector potential is

_,, 2 A up

™ . . IdF" , .

Ine intensity of the current is —-
, that is,

a dt

?^±i- e -nz siu , pt _nz + J).
oV*/2n

dF"
The magnetic induction —— is

dz

— - y=e-*z {cos (pt— nz + J)— ain(pt —nz + f)}.
Fy2
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occur in a second, we have already put our theory to a very

severe test, even when the medium is supposed to be air or

vacuum. But if we attempt to extend our theory to the case

of dense media, we become involved not only in all the ordinary

difficulties of molecular theories, but in the deeper mystery of

the relation of the molecules to the electromagnetic medium.
To evade these difficulties, we shall assume that in certain

media the specific capacity for electrostatic induction is different

in different directions, or in other words, the electric displace-

ment, instead of being in the same direction as the electromotive

intensity, and proportional to it, is related to it by a system of

linear equations similar to those given in Art. 297. It may be

shewn, as in Art. 436, that the system of coefficients must be

The mechanical force per unit volume parallel to z is the product of these two
quantities,

- '^
t

^r!^e-2n°{iain2(pt-nz + Z)-i(l-coa2(pt-nz + f))}.

The mean value of this is expressed by the non-periodic term and is equal to

oV2 n

Integrating this expression with respect to z from z = to a = oo , we find that the
force on the plate per unit area

A?y?pz _ A2
up"

~* <rP»2 iirV*
'

A similar investigation will show that when we have absorption there is a force on
the absorbing medium from the places where the light is strong to those where it is

faint. In the case of sunlight the effect seems small, if the absorption however were
caused by a very rare gas, the pressure-gradient might be large enough to produce very
considerable effects, and it has been suggested that this cause is one of the agents at

work in causing comets' tails to be repelled by the sun. When the electric vibrations

are such as are produced in Hertz's experiments the magnetic forces are very much
greater than those in sunlight, and the effect ought to be capable of detection, if the

vibrators could be kept at work anything like continuously.

We also get mechanical forces whose mean value at any point is not zero when we
have stationary vibrations. We may take as an example of the stationary vibrations

the reflected and incident waves in the above example.

In the air the vector potential is, remembering that a/a' is small,

_4e*(P'_0,) + A'e i^t+at)
,

or, taking the real part, since A + A' => approximately,

2 A. sin pt sin az.

_. . . 1 d?F a'A . . .

I he current is —- => sm pt am az.
4*1* az* Z-nn

The magnetic induction is 2Aa sinpt cos az ;

the mechanical force is therefore

A*a3

—— (1— cos 2 pt) sin az cos az,
ZTTfl

Ai az

and the mean value of this is sin az cos az. \
2irjx s
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symmetrical, so that, by a proper choice of axes, the equations

become

f=hK^ 3=~KA A=^r,B. (1)

where Kv K2 , and K3 are the principal inductive capacities of the

medium. The equations of propagationof disturbances are therefore

d2F ^F_^Q^_d^H_ K ,d2F (Z
2*x

dyl dz2 dxdy dzdx * ^ dt2 dxdv

dz2 dxl dydz dxdy 2
^ dt2 dydt'

d-H d^H_d^_d^G _ R (
d2H d'V ,

+
dv* dzdx dvdz~ ^dV+dzdV')

(2)

dx2 dyz dzdx dydz ^ dt1 dzdt'

795.] If I, m, n are the direction-cosines of the normal to the

wave-front, and V the velocity of the wave, and if

Ix + my + nz—Vt = w, (3)

and if we write F", G", H", V for the second differential coeffi-

cients of F, 6r, H, * respectively with respect to w, and put

where a, b c are the three principal velocities of propagation,

the equations become

(m2 + n2~~)Ff-lmO,r-nlH"+ V<f" - =

-ImF" + (n2 + l
2-^) G"-mnH" +W^ = 0,

J.
(5)

-nlF"-mnG"+(l2 +m2-^)H"+V*"-
9
==0.

796.] If we write

I
2 m2 n2 _ TT

V2-az + V2 -b*
+ V2-c2 ~ '

(
6
'

we obtain from these equations

VU(VG"-m*") = 0, t (7)

VU(VH"-n*")=0. J

Hence, either V = 0, in which case the wave is not propagated

at all ; or, U =. 0, which leads to the equation for V given by
Fresnel ; or the quantities within brackets vanish, in which case

the vector whose components are F"', G'\ H." is normal to the

wave-front and proportional to the electric volume-density.
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Since the medium is a non-conductor, the electric density at

any given point is constant, and therefore the disturbance in-

dicated by these equations is not periodic, and cannot constitute

a wave. We may therefore consider "¥' — in the investigation

of the wave.

797.] The velocity of the propagation of the wave is therefore

completely determined from the equation U = 0, or

I
2 m2 n2 _

"P-a2 + V2 -b2 + V2^2
~

( '

There are therefore two, and only two, values of V2 corresponding

to a given direction of wave-front.

If A, /w, v are the direction-cosines of the electric current whose

components are u, v, w,

A: M :»::^p^liZ", (9)

then Ik + wni + nv = ; (10)

or the current is in the plane of the wave-front, and its direction

in the wave-front is determined by the equation

l

-(b2 ~c2
) + ~(c2-a2

) + - (a2 -62
) = 0. (11)

These equations are identical with those given by Fresnel if we
define the plane of polarization as a plane through the ray per-

pendicular to the plane of the electric disturbance.

According to this electromagnetic theory of double refraction

the wave of normal disturbance, which constitutes one of the

chief difficulties of the ordinary theory, does not exist, and no

new assumption is required in order to account for the fact that

a ray polarized in a principal plane of the crystal is refracted

in the ordinary manner*.

Relation between Electric Conductivity and Opacity.

798.] If the medium, instead of being a perfect insulator, is a

conductor whose conductivity per unit of volume is C, the dis-

turbance will consist not only of electric displacements but of

currents of conduction, in which electric energy is transformed

into heat, so that the undulation is absorbed by the medium.

If the disturbance is expressed by a circular function, we may
write F=e-»CQB(nt-qz), (1)

* See Stokes' 'Report on Double Refraction,' Brit. Assoc. Report, 1862, p. 253.
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for this will satisfy the equation

d*F „d2F
A ndF . .^ =^^ + 4^W ^

provided q
2—p2 = nKn2

, (3)

and 2pq = 4:ttixOti. (4)

The velocity of propagation is

F=-, (5)
q

and the coefficient of absorption is

p = 2ttixCV. (6)

Let R be the resistance {to a current along the length of the

plate}, in electromagnetic measure, of a plate whose length is I,

breadth b, and thickness z,

* = 6^ <
7
>

The proportion of the incident light which will be transmitted by

this plate will be
{ v

e
-2 P. = e

-^lR, (8)

799.] Most transparent solid bodies are good insulators, and all

good conductors are very opaque. There are, however, many ex-

ceptions to the law that the opacity of a body is the greater, the

greater its conductivity.

Electrolytes allow an electric current to pass, and yet many of

them are transparent. We may suppose, however, that in the

case of the rapidly alternating forces which come into play

during the propagation of light, the electromotive intensity acts

for so short a time in one direction that it is unable to effect

a complete separation between the combined molecules. When,

during the other half of the vibration, the electromotive intensity

acts in the opposite direction it simply reverses what it did

during the first half. There is thus no true conduction through

the electrolyte, no loss of electric energy, and consequently no

absorption of light.

800.] Gold, silver, and platinum are good conductors, and yet,

when formed into very thin plates, they allow light to pass

through them*. From experiments which I have made on a

piece of gold leaf, the resistance of which was determined by

Mr. Hockin, it appears that its transparency is very much

* {Wien {Wiefl. Ann. 35, p. 48) has verified the conclusion that the transparency

of thin metallic films is much greater than that indicated by the preceding theory.

}
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greater than is consistent with our theory, unless we suppose

that there is less loss of energy when the electromotive forces

are reversed for every semivibration of light than when they act

for sensible times, as in our ordinary experiments.

801.] Let us next consider the case of a medium in which the

conductivity is large in proportion to the inductive capacity.

In this case we may leave out the term involving K in the

equations of Art. 783, and they then become

at

V2H+4uixG
(^=0.
at

(1)

Each of these equations is of the same form as the equation of

the diffusion of heat given in Fourier's Traite de la Chaleur.

802.] Taking the first as an example, the component F of the

vector-potential will vary according to time and position in the

same way as the temperature of a homogeneous solid varies

according to time and position, the initial and the surface

conditions being made to correspond in the two cases, and the

quantity Ati^C being numerically equal to the reciprocal of the

thermometric conductivity of the substance, that is to say, the

number of units of volume of the substance which would be

heated one degree by the heat which passes through a unit cube

of the substance, two opposite faces of which differ by one degree

of temperature, while the other faces are impermeable to heat*.

The different problems in thermal conduction, of which Fourier

has given the solution, may be transformed into problems in the

diffusion of electromagnetic quantities, remembering that F, G, H
are the components of a vector, whereas the temperature, in

Fourier's problem, is a scalar quantity.

Let us take one of the cases of which Fourier has given a com-
plete solution f, that of an infinite medium, the initial state of

which is given.

* See Maxwell's Theory of Beat, p. 235 first edition, p. 255 fourth edition.

+ TraiU de la Chaleur, Art. 384. The equation which determines the temperature,
v, at a point (x, y, z) after a time t, in terms of/ (a, £, 7), the initial temperature at
the point (o, 0, 7), is

f f fdadPdy /(a-a^+QS-yP+fr-^
V -JJJv7tt^ *kt '/(«,*, 7).

where Jc is the thermometric conductivity.
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The state of any point of the medium at the time t is found

by taking the average of the state of every part of the medium,
the weight assigned to each part in taking the average being

e —

,

where r is the distance of that part from the point considered.

This average, in the case of vector- quantities, is most conveniently

taken by considering each component of the vector separately.

803.] We have to remark in the first place, that in this problem

the thermal conductivity of Fourier's medium is to be taken in-

versely proportional to the electric conductivity of our medium,

so that the time required in order to reach an assigned stage in

the process of diffusion is greater the higher the electric con-

ductivity. This statement will not appear paradoxical if we
remember the result of Art. 655, that a medium of infinite con-

ductivity forms a complete barrier to the process of diffusion of

magnetic force.

In the next place, the time requisite for the production of an

assigned stage in the process of diffusion is proportional to the

square of the linear dimensions of the system.

There is no determinate velocity which can be defined as the

velocity of diffusion. If we attempt to measure this velocity by
ascertaining the time requisite for the production of a given

amount of disturbance at a given distance from the origin of

disturbance, we find that the smaller the selected value of the

disturbance the greater the velocity will appear to be, for how-

ever great the distance, and however small the time, the value

of the disturbance will differ mathematically from zero.

This peculiarity of diffusion distinguishes it from wave-

propagation, which takes place with a definite velocity. No
disturbance takes place at a given point till the wave reaches

that point, and when the wave has passed, the disturbance

ceases for ever.

804.] Let us now investigate the process which takes place

when an electric current begins and continues to flow through a

linear circuit, the medium surrounding the circuit being of finite

electric conductivity. (Compare with Art. 660.)

When the current begins, its first effect is to produce a current

of induction in the parts of the medium close to the wire. The

direction of this current is opposite to that of the original current,
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and in the first instant its total quantity is equal to that of the

original current, so that the electromagnetic effect on more
distant parts of the medium is initially zero, and only rises to

its final value as the induction-current dies away on account
of the electric resistance of the medium.

But as the induction-current close to the wire dies away, a new
induction-current is generated in the medium beyond, so that the

space occupied by the induction-current is continually becoming
wider, while its intensity is continually diminishing.

This diffusion and decay of the induction-current is a pheno-
menon precisely analogous to the diffusion of heat from a part of

the medium initially hotter or colder than the rest. We must
remember, however, that since the current is a vector quantity,

and since in a circuit the current is in opposite directions at

opposite points of the circuit, we must, in calculating any given

component of the induction-current, compare the problem with
one in which equal quantities of heat and of cold are diffused

from neighbouring places, in which case the effect on distant

points will be of a smaller order of magnitude.

805.] If the current in the linear circuit is maintained con-

stant, the induction-currents, which depend on the initial change

of state, will gradually be diffused and die away, leaving the

medium in its permanent state, which is analogous to the

permanent state of the flow of heat. In this state we have
V2F= V2G = V 2#=0 (2)

throughout the medium, except at the part occupied by the

circuit, in which { when y. = 1

}

V2F=z 4 77U, n

V2 G = 4ttv, I (3)

^
VaH=4vw. )

These equations are sufficient to determine the values of F, G, H
throughout the medium. They indicate that there are no
currents except in the circuit, and that the magnetic forces

are simply those due to the current in the circuit according

to the ordinary theory. The rapidity with which this per-

manent state is established is so great that it could not be

measured by our experimental methods, except perhaps in the

case of a very large mass of a highly conducting medium such

as copper.

Note.—In a paper published in PoggendorfFs Annalen, July
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1867, pp. 243-263, M. Lorenz has deduced from Kirchhoffs

equations of electric currents (Pogg. Ann. cii. 1857), by the addi-

tion of certain terms which do not affect any experimental result,

a new set of equations, indicating that the distribution of force

in the electromagnetic field may be conceived as arising from

the mutual action of contiguous elements, and that waves, con-

sisting of transverse electric currents, may be propagated, with a

velocity comparable to that of light, in non-conducting media.

He therefore regards the disturbance which constitutes light as

identical with these electric currents, and he shews that con-

ducting media must be opaque to such radiations.

These conclusions are similar to those of this chapter, though

obtained by an entirely different method. The theory given in

this chapter was first published in the Phil. Trans, for 1865,

pp. 459-512.



CHAPTER XXI.

MAGNETIC ACTION ON LIGHT.

806.] The most important step in establishing a relation

between electric and magnetic phenomena and those of light

must be the discovery of some instance in which the one set

of phenomena is affected by the other. In the search for such

phenomena we must be guided by any knowledge we may have

already obtained with respect to the mathematical or geometrical

form of the quantities which we wish to compare. Thus, if we
endeavour, as Mrs. Somerville did, to magnetize a needle by
means of light, we must remember that the distinction between

magnetic north and south is a mere matter of direction, and
would be at once reversed if we reversed certain conventions

about the use of mathematical signs. There is nothing in mag-
netism analogous to those phenomena of electrolysis which
enable us to distinguish positive from negative electricity, by
observing that oxygen appears at one pole of a cell and hy-

drogen at the other.

Hence we must not expect that if we make light fall on one

end of a needle, that end will become a pole of a certain name,

for the two poles do not differ as light does from darkness.

We might expect a better result if we caused circularly-

polarized light to fall on the needle, right-handed light falling

on one end and left-handed on the other, for in some respects

these kinds of light may be said to be related to each other in

the same way as the poles of a magnet. The analogy, however,

is faulty even here, for the two rays when combined do not

neutralize each other, but produce a plane polarized ray.

Faraday, who was acquainted with the method of studying

the strains produced in transparent solids by means of polarized

light, made many experiments in hopes of detecting some action

on polarized light while passing through a medium in which
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electrolytic conduction or dielectric induction exists *. He was

not, however, able to detect any action of this kind, though the

experiments were arranged in the way best adapted to discover

effects of tension, the electric force or current being at right

angles to the direction of the ray, and at an angle of forty-five

degrees to the plane of polarization. Faraday varied these

experiments in many ways without discovering any action on

light due to electrolytic currents or to static electric induction.

He succeeded, however, in establishing a relation between

light and magnetism, and the experiments by which he did

so are described in the nineteenth series of his Experimental

Researches. We shall take Faraday's discovery as our starting-

point for further investigation into the nature of magnetism, and

we shall therefore describe the phenomenon which he observed.

807.] A ray of plane-polarized light is transmitted through a

transparent diamagnetic medium, and the plane of its polariza-

tion, when it emerges from the medium, is ascertained by ob-

serving the position of an analyser when it cuts off the ray.

A magnetic force is then made to act so that the direction of

the force within the transparent medium coincides with the

direction of the ray. The light at once reappears, but if the

analyser is turned round through a certain angle, the light is

again cut off. This shews that the effect of the magnetic force is

to turn the plane of polarization, round the direction of the ray as

an axis, through a certain angle, measured by the angle through

which the analyser must be turned in order to cut off the light.

808.] The angle through which the plane of polarization is

turned is proportional

—

(1) To the distance which the ray travels within the medium.

Hence the plane of polarization changes continuously from its

position at incidence to its position at emergence.

(2) To the intensity of the resolved part of the magnetic force

in the direction of the ray.

(3) The amount of the rotation depends on the nature of the

medium. No rotation has yet been observed when the medium

is air or any other gas f.

* Experimental Researches, 951-954 and 2216-2220.

f { bince this was written the rotation in gases has been observed and measured by

H. Becquerel, Compt. Rendue, 88, p. 709; 90, p. 1407; Kundt and Rontgen, Wied. Ann.,

6,p.332; 8, p. 278; Bich&t,Compt. Rendu8,88, p. 712 ; Journal de Physique, 9, p. 275,

1880.}
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These three statements are included in the more general one,

that the angular rotation is numerically equal to the amount by
which the magnetic potential increases, from the point at which
the ray enters the medium to that at which it leaves it, multi-

plied by a coefficient, which, for diamagnetic media, is generally

positive.

809.] In diamagnetic substances, the direction in which the

plane of polarization is made to rotate is {generally} the same
as the direction in which a positive current must circulate round
the ray in order to produce a magnetic force in the same direc-

tion as that which actually exists in the medium.

Verdet, however, discovered that in certain ferromagnetic

media, as, for instance, a strong solution of perchloride of iron

in wood-spirit or ether, the rotation is in the opposite direction

to the current which would produce the magnetic force.

This shews that the difference between ferromagnetic and dia-

magnetic substances does not arise merely from the ' magnetic

permeability ' being in the first case greater, and in the second

less, than that of air, but that the properties of the two classes

of bodies are really opposite.

The power acquired by a substance under the action of mag-
netic force of rotating the plane of polarization of light is not

exactly proportional to its diamagnetic or ferromagnetic mag-
netizability. Indeed there are exceptions to the rule that the

rotation is positive for diamagnetic and negative for ferro-

magnetic substances, for neutral chromate of potash is diamag-
netic, but produces a negative rotation.

810.] There are other substances, which, independently of the

application of magnetic force, cause the plane of polarization to

turn to the right or to the left, as the ray travels through the

substance. In some of these the property is related to an axis,

as in the case of quartz. In others, the property is independent

of the direction of the ray within the medium, as in turpentine,

solution of sugar, &c. In all these substances, however, if the

plane of polarization of any ray is twisted within the medium like

a right-handed screw, it will still be twisted like a right-handed

screw if the ray is transmitted through the medium in the

opposite direction. The direction in which the observer has to

turn his analyser in order to extinguish the ray after intro-

ducing the medium into its path, is the same with reference to
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the observer whether the ray comes to him from the north or

from the south. The direction of the rotation in space is of

course reversed when the direction of the ray is reversed. But

when the rotation is produced by magnetic action, its direction

in space is the same whether the ray be travelling north or

south. The rotation is always in the same direction as that of

the electric current which produces, or would produce, the actual

magnetic state of the field, if the medium belongs to the positive

class, or in the opposite direction if the medium belongs to the

negative class.

It follows from this, that if the ray of light, after passing

through the medium from north to south, is reflected by a

mirror, so as to return through the medium from south to north,

the rotation will be doubled when it results from magnetic

action. When the rotation depends on the nature of the medium

alone, as in turpentine, &c, the ray, when reflected back through

the medium, emerges polarized in the same plane as when

it entered, the rotation during the first passage through the

medium having been exactly reversed during the second.

811.] The physical explanation of the phenomenon presents

considerable difficulties, which can hardly be said to have been

hitherto overcome, either for the magnetic rotation, or for that

which certain media exhibit of themselves. We may, however,

prepare the way for such an explanation by an analysis of the

observed facts.

It is a well-known theorem in kinematics that two uniform

circular vibrations, of the same amplitude, having the same

periodic time, and in the same plane, but revolving in opposite

directions, are equivalent, when compounded together, to a

rectilinear vibration. The periodic time of this vibration is

equal to that of the circular vibrations, its amplitude is double,

and its direction is in the line joining the points at which two

particles, describing the circular vibrations in opposite directions

round the same circle, would meet. Hence if one of the circular

vibrations has its phase accelerated, the direction of the recti-

linear vibration will be turned, in the same direction as that

of the circular vibration, through an angle equal to half the

acceleration of phase.

It can also be proved by direct optical experiment that two

rays of light, circularly-polarized in opposite directions, and of
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the same intensity, become, when united, a plane-polarized ray,

and that if by any means the phase of one of the circularly-

polarized rays is accelerated, the plane of polarization of the

resultant ray is turned round half the angle of acceleration of

the phase.

812.] We may therefore express the phenomenon of the rota-

tion of the plane of polarization in the following manner:

—

A plane-polarized ray falls on the medium. This is equivalent

to two circularly-polarized rays, one right-handed, the other

left-handed (as regards the observer). After passing through

the medium the ray is still plane-polarized, but the plane of

polarization is turned, say, to the right (as regards the observer).

Hence, of the two circularly-polarized rays, that which is right-

handed must have had its phase accelerated with respect to the

other during its passage through the medium.

In other words, the right-handed ray has performed a greater

number of vibrations, and therefore has a smaller wave-length,

within the medium, than the left-handed ray which has the same
periodic time.

This mode of stating what takes place is quite independent of

any theory of light, for though we use such terms as wave-
length, circular-polarization, &c, which may be associated in our

minds with a particular form of the undulatory theory, the

reasoning is independent of this association, and depends only

on facts proved by experiment.

813.] Let us next consider the configuration of one of these

rays at a given instant. Any undulation, the motion of which
at each point is circular, may be represented by a helix or screw.

If the screw is made to revolve about its axis without any
longitudinal motion, each particle will describe a circle, and at

the same time the propagation of the undulation will be re-

presented by the apparent longitudinal motion of the similarly

situated parts of the thread of the screw. It is easy to see that

if the screw is right-handed, and the observer is placed at that

end towards which the undulation travels, the motion of the

screw will appear to him left-handed, that is to say, in the

opposite direction to that of the hands of a watch. Hence such

a ray has been called, originally by French writers, but now by
the whole scientific world, a left-handed circularly-polarized ray.

A right-handed circularly-polarized ray is represented in like
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manner by a left-handed helix. In Fig. 68 the right-handed

helix A, on the right-hand of the figure, represents a left-handed

ray, and the left-handed helix B,

on the left-hand, represents a

right-handed ray.

814.] Let us now consider two

such rays which have the same

wave-length within the medium.

They are geometrically alike in

all respects, except that one is

the perversion of the other, like

its image in a looking-glass. One

of them, however, say A, has

a shorter period of rotation than

the other. If the motion is en-

tirely due to the forces called

into play by the displacement,

this shews that greater forces are

called into play by the same dis-

Fig- 68 - placementwhentheconfiguration

is like A than when it is like B. Hence in this case the left-

handed ray will be accelerated with respect to the right-handed

ray, and this will be the case whether the rays are travelling

from N to S or from S to K
This therefore is the explanation of the phenomenon as it is

produced by turpentine, &c. In these media the displacement

caused by a circularly-polarized ray calls into play greater

forces of restitution when the configuration is like A than when

it is like B. The forces thus depend on the configuration alone,

not on the direction of the motion.

But in a diamagnetic medium acted on by magnetism in the

direction SIf, of the two screws A and B, that one always

rotates with the greatest velocity whose motion, as seen by an

eye looking from S to If, appears like that of a watch. Hence

for rays from S to JV the right-handed ray B will travel

quickest, but for rays from N to S the left-handed ray A will

travel quickest.

815.] Confining our attention to one ray only, the helix B
has exactly the same configuration, whether it represents a ray

from S to If or one from If to 8. But in the first instance the
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ray travels faster, and therefore the helix rotates more rapidly.

Hence greater forces are called into play when the helix is going

round one way than when it is going round the other way.

The forces, therefore, do not depend solely on the configuration

of the ray, but also on the direction of the motion of its indi-

vidual parts.

816.] The disturbance which constitutes light, whatever its

physical nature may be, is of the nature of a vector, perpen-

dicular to the direction of the ray. This is proved from the

fact of the interference of two rays of light, which under certain

conditions produces darkness, combined with the fact of the

non-interference of two rays polarized in planes perpendicular

to each other. For since the interference depends on the angular

position of the planes of polarization, the disturbance must be

a directed quantity or vector, and since the interference ceases

when the planes of polarization are at right angles, the vector

representing the disturbance must be perpendicular to the line

of intersection of these planes, that is, to the direction of

the ray.

817.] The disturbance, being a vector, can be resolved into

components parallel to x and y, the axis of z being parallel to

the direction of the ray. Let £ and 77 be these components, then,

in the case of a ray of homogeneous circularly-polarized light,

f = r cos 0, 77 = r sin 0, (1)

where 6 = nt— qz + a. (2)

In these expressions, r denotes the magnitude of the vector,

and 6 the angle which it makes with the direction of the axis

of x.

The periodic time, t, of the disturbance is such that

71t = 2tt. (3)

The wave-length, A, of the disturbance is such that

q\=2iT. (4)

The velocity of propagation is — •

The phase of the disturbance when t and z are both zero is a.

The circularly-polarized light is right-handed or left-handed

according as q is negative or positive.

Its vibrations are in the positive or the negative direction of
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rotation in the plane of (x, y), according as n is positive or

negative.

The light is propagated in the positive or the negative direc-

tion of the axis of z, according as n and q are of the same or of

opposite signs.

In all media n varies when q varies, and -r- is always of the

same sign with - •

Hence, if for a given numerical value of n the value of — is

greater when n is positive than when n is negative, it follows

that for a value of q, given both in magnitude and sign, the

positive value of n will be greater than the negative value.

Now this is what is {generally} observed in a diamagnetic

medium, acted on by a magnetic force, y, in the direction of z.

Of the two circularly-polarized rays of a given period, that is

accelerated of which the direction of rotation in the plane of

x, y is positive. Hence, of two circularly-polarized rays, both

left-handed, whose wave-length within the medium is the same,

that has the shortest period whose direction of rotation in the

plane of xy is positive, that is, the ray which is propagated in

the positive direction of z from south to north. We have there-

fore to account for the fact, that when in the equations of the

system q and r are given, two values of n will satisfy the

equations, one positive and the other negative, the positive

value being numerically greater than the negative.

818.] We may obtain the equations of motion from a con-

sideration of the potential and kinetic energies of the medium.

The potential energy, V, of the system depends on its configura-

tion, that is, on the relative position of its parts. In so far as it

depends on the disturbance due to circularly-polarized light, it

must be a function of r, the amplitude, and q, the coefficient of

torsion, only. It may be different for positive and negative

values of q of equal numerical value, and it probably is so in

the case of media which of themselves rotate the plane of

polarization.

The kinetic energy, T, of the system is a homogeneous

function of the second degree of the velocities of the system,

the coefficients of the different terms being functions of the

coordinates.
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819.] Let us consider the dynamical condition that the ray

may be of constant intensity, that is, that r may be constant.

Lagrange's equation for the force in r becomes

±dT_dT dV_
(5)

dt dr dr dr
~

Since r is constant, the first term vanishes. We have therefore

the equation dT dV n , flX-^ + ^ = °' (6)

in which q is supposed to be given, and we are to determine the

value of the angular velocity 6, which we may denote by its

actual value, n.

The kinetic energy, T, contains one term involving n2
; other

terms may contain products of n with other velocities, and the

rest of the terms are independent of n. The potential energy,

V, is entirely independent of n. The equation (6) is therefore of

the form An2 + Bn + C = 0. (7)

This being a quadratic equation, gives two values of n. It

appears from experiment that both values are real, that one is

positive and the other negative, and that the positive value is

numerically the greater. Hence, if A is positive, both B and G
are negative, for, if 7ij and n

2
are the roots of the equation,

A(n
x + n2) +B = Q. (8)

The coefficient, B, therefore, is not zero, at least when magnetic

force acts on the medium. We have therefore to consider the

expression Bn, which is the part of the kinetic energy involving

the first power of n, the angular velocity of the disturbance.

820.] Every term of T is of two dimensions as regards

velocity. Hence the terms involving n must involve some

other velocity. This velocity cannot be r or q, because, in the

case we consider, r and q are constant. Hence it is a velocity

which exists in the medium independently of that motion which

constitutes light. It must also be a velocity related to n in

such a way that when it is multiplied by n the result is a scalar

quantity, for only scalar quantities can occur as terms in the

value of T, which is itself scalar. Hence this velocity must be

in the same direction as n, or in the opposite direction, that is,

it must be an angular velocity about the axis of z.

Again, this velocity cannot be independent of the magnetic

force, for if it were related to a direction fixed in the medium,
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the phenomenon would be different if we turned the medium
end for end, which is not the case.

We are therefore led to the conclusion that this velocity is an
invariable accompaniment of the magnetic force in those media
which exhibit the magnetic rotation of the plane of polarization.

821.] We have been hitherto obliged to use language which is

perhaps too suggestive of the ordinary hypothesis of motion in

the undulatory theory. It is easy, however, to state our result

in a form free from this hypothesis.

Whatever light is, at each point of space there is something

going on, whether displacement, or rotation, or something not

yet imagined, but which is certainly of the nature of a vector

or directed quantity, the direction of which is normal to the

direction of the ray. This is completely proved by the pheno-

mena of interference.

In the case of circularly-polarized light, the magnitude of this

vector remains always the same, but its direction rotates round

the direction of the ray so as to complete a revolution in the

periodic time of the wave. The uncertainty which exists as to

whether this vector is in the plane of polarization or perpen-

dicular to it, does not extend to our knowledge of the direction

in which it rotates in right-handed and in left-handed circularly-

polarized light respectively. The direction and the angular

velocity of this vector are perfectly known, though the physical

nature of the vector and its absolute direction at a given instant

are uncertain.

When a ray of circularly-polarized light falls on a medium
under the action of magnetic force, its propagation within the

medium is affected by the relation of the direction of rotation

of the light to the direction of the magnetic force. From this

we conclude, by the reasoning of Art. 817, that in the medium,
when under the action of magnetic force, some rotatory motion
is going on, the axis of rotation being in the direction of the

magnetic force ; and that the rate of propagation of circularly-

polarized light, when the direction of its vibratory rotation and
the direction of the magnetic rotation of the medium are the

same, is different from the rate of propagation when these

directions are opposite.

The only resemblance which we can trace between a medium
through which circularly-polarized light is propagated, and a
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medium through which lines of magnetic force pass, is that in

both there is a motion of rotation about an axis. But here the

resemblance stops, for the rotation in the optical phenomenon is

that of the vector which represents the disturbance. This vector

is always perpendicular to the direction of the ray, and rotates

about it a known number of times in a second. In the magnetic

phenomenon, that which rotates has no properties by which its

sides can be distinguished, so that we cannot determine how
many times it rotates in a second.

There is nothing, therefore, in the magnetic phenomenon
which corresponds to the wave-length and the wave-propagation

in the optical phenomenon. A medium in which a constant

magnetic force is acting is not, in consequence of that force,

filled with waves travelling in one direction, as when light is

propagated through it. The only resemblance between the

optical and the magnetic phenomenon is, that at each point of

the medium something exists of the nature of an angular velocity

about an axis in the direction of the magnetic force.

On the Hypothesis of Molecular Vortices.

822.] The consideration of the action of magnetism on polar-

ized light leads, as we have seen, to the conclusion that in a

medium under the action of magnetic force something belonging

to the same mathematical class as an angular velocity, whose
axis is in the direction of the magnetic force, forms a part of the

phenomenon.

This angular velocity cannot be that of any portion of the

medium of sensible dimensions rotating as a whole. We must
therefore conceive the rotation to be that of very small portions

of the medium, each rotating on its own axis. This is the

hypothesis of molecular vortices.

The motion of these vortices, though, as we have shewn
(Art. 575), it does not sensibly affect the visible motions of

large bodies, may be such as to affect that vibratory motion on

which the propagation of light, according to the undulatory

theory, depends. The displacements of the medium, during

the propagation of light, will produce a disturbance of the

vortices, and the vortices when so disturbed may react on the

medium so as to affect the mode of propagation of the ray.
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823.] It is impossible, in our present state of ignorance as to

the nature of the vortices, to assign the form of the law which

connects the displacement of the medium with the variation of

the vortices. We shall therefore assume that the variation of

the vortices caused by the displacement of the medium is subject

to the same conditions which Helmholtz, in his great memoir

on Vortex-motion *, has shewn to regulate the variation of the

vortices of a perfect liquid.

Helmholtz's law may be stated as follows :—Let P and Q be

two neighbouring particles in the axis of a vortex, then, if in

consequence of the motion of the fluid these particles arrive at

the points i", Q', the line P'Q' will represent the new direction of

the axis of the vortex, and its strength will be altered in the

ratio of PQ' to PQ.

Hence if a, /3, y denote the components of the strength of a

vortex, and if £, rj, £ denote the displacements of the medium,

the values of a, /3, y will become

dx dy dz

'a dr\ di\ drj—
dx dy dz'

'— +a— +/3— + —

•

dx dy dz

0)

We now assume that the same condition is satisfied during

the small displacements of a medium in which a, j3, y represent,

not the components of the strength of an ordinary vortex, but

the components of magnetic force.

824.] The components of the angular velocity of an element

of the medium are

__ x
d ,d( dr)^

^-^alSTy'dz)
d M dCx 1 , ,

0)8 "" ^dt^dx" dy>'

The next step in our hypothesis is the assumption that the

kinetic energy of the medium contains a term of the form

2C(ao>
1 + /3a)2 + ya>3). (3)

* Crelles Journal, vol. lv. (1858), pp. 25-55. Translated by Tait, Phil. Mag.,

June, pp. 485-511, 1867.
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This is equivalent to supposing that the angular velocity acquired

by the element of the medium during the propagation of light is

a quantity which may enter into combination with that motion

by which magnetic phenomena are explained.

In order to form the equations of motion of the medium, we
must express its kinetic energy in terms of the velocity of its

parts, the components of which are f, V), (. We therefore

integrate by parts, and find

2 C / / / (ao)! + /3a>
2 + ya>

3)
dxdydz

=
°fj

(yn-Pbdydz + cfJ\a'C-yi)dzdx + GJj\^- af,)dxdy

The double integrals refer to the bounding surface, which may
be supposed at an infinite distance. We may therefore, while

investigating what takes place in the interior of the medium,

confine our attention to the triple integral.

825.] The part of the kinetic energy in unit of volume, ex-

pressed by this triple integral, may be written

4nC(£u + riv+Cw), (5)

where u, v, w are the components of the electric current as given

in equations (E), Art. 607.

It appears from this that our hypothesis is equivalent to the

assumption that the velocity of a particle of the medium whose

components are £,?),£ is a quantity which may enter into

combination with the electric current whose components are

u, v, w.

826.] Returning to the expression under the sign of triple

integration in (4), substituting for the values of a, /3, y, those

of a', /3', /, as given by equations (1), and writing

d . d d d ,

dh dx dy dz*

the expression under the sign of integration becomes

n yt d ,d( dr,, d ,d£ <H\ ,%d
L (d*_<tt\l (7^L ¥ dh [dy~"dz> +V dk^dz ~ dx> +i dh^dx dy'S K }

In the case of waves in planes normal to the axis of z the
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d d
displacements are functions of z and t only, so that -jr = y -7- >

and this expression is reduced to

*<£!-£«>
_

v
The kinetic energy per unit of volume, so far as it depends on

the velocities of displacement, may now be written

T=\ P (e +? +h +Cy(^t-^J), (9)

where p is the density of the medium.

827.] The components, X and Y, of the impressed force, re-

ferred to unit of volume, may be deduced from this by Lagrange's

equations, Art. 564. We observe that by two successive inte-

grations by parts in regard to z, and the omission of the double

integrals at the bounding surface, it may be shewn that

Jlf^ dxdydz =Jff*-£ti dxdydz.

dT fflr,

Hence Tr° y d^dt'

The expressions for the forces are therefore given by

x -'W-' rw < 10>

These forces arise from the action of the remainder of the

medium on the element under consideration, and must in the case

of an isotropic medium be of the form indicated by Cauchy,

828.] If we now take the case of a circularly-polarized ray for

which £ = r cos (tu(— qz\ r\ — r sin (nt— qz), (14)

we find for the kinetic energy in unit of volume

T=\pri n2-Cyr2
q
2 n; (15)

and for the potential energy in unit of volume

V=\r2{A q
2-A

1q
i + &e.)

= \r*Q
} (16)

where Q is a function of q
2

.
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The condition of free propagation of the ray given in Art. 819,

equation (6), is dT_dV
dr

~~
dr

'

* '

which gives pn2— 2 Gyq2n = Q, (18)

whence the value of n may be found in terms of q.

But in the case of a ray of given wave-period, acted on by
dq

dy
magnetic force, what we want to determine is the value of

when n is constant, in terms of -^ » when y is constant. Differ-

entiating (18)

(2 Pn-2Cyq2)dn-(^+4Cyqn)dq-2Cq2ndy=0. (19)

We thus find
d
JL = _ %n

2
&

.

(20)
dy pn—(Jyq£ dn '

829.
J

If A is the wave-length in air, v the velocity in air, and

i the corresponding index of refraction in the medium,

q\ = 2-jri, nk= 2-nv. (21)

!*- %-\(*-*%>\
The change in the value of q, due to magnetic action, is in

every case an exceedingly small fraction of its own value, so

that we may write dq ..
* = **+&> <

22
>

where g is the value ofqwhen the magnetic force is zero. The angle,

0, through which the plane of polarization is turned in passing

through a thickness c of the medium, is half the sum of the posi-

tive and negative values of q c, the sign of the result being changed,

because the sign of q is negative in equations (14). We thus obtain

d = - Cy^, (23)dy .

v '

4n2
(7 i2 s .

x
di\ 1 /n .= cy-^U— At-) 7s- • (24)

vp 'A2 ^ dkJ n _ ^
2 v

'r \-2-nCy
vp\

The second term of the denominator of this fraction is approx-

imately equal to the angle of rotation of the plane of polarization

during the passage of the light through a thickness of the medium

equal to <- times > half a wave-length {in the medium}. It is

therefore in all actual cases a quantity which we may neglect in

comparison with unity.
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„T . . 4ir2 (7 / ^„.
Writing = m, (25)

we may call m the coefficient of magnetic rotation for the

medium, a quantity whose value must be determined by obser-

vation. It is found to be positive for most diamagnetic, and

negative for some paramagnetic media. We have therefore as

the final result of our theory

„ = mcy__(,_X_), (26)

where 9 is the angular rotation of the plane of polarization,

m a constant determined by observation of the medium, y the

intensity of the magnetic force resolved in the direction of the

ray, c the length of the ray within the medium, \ the wave-length

of the light in air, and i its index of refraction in the medium*.

830.] The only test to which this theory has hitherto been

subjected is that of comparing the values of for different kinds

of light passing through the same medium and acted on by the

same magnetic force.

This has been done for a considerable number of media by M.

Verdet f, who has arrived at the following results :

—

(1) The magnetic rotations of the planes of polarization of

the rays of different colours follow approximately the law of the

inverse square of the wave-length.

(2) The exact law of the phenomena is always such that the

product of the rotation by the square of the wave-length in-

creases from the least refrangible to the most refrangible end

of the spectrum.

(3) The substances for which this increase is most sensible are

also those which have the greatest dispersive power.

He also found that in the solution of tartaric acid, which of

itself produces a rotation of the plane of polarization, the mag-

netic rotation is by no means proportional to the natural rotation.

In an addition to the same memoir J Verdet has given the

results of very careful experiments on bisulphide of carbon and

on creosote, two substances in which the departure from the

* {Rowland {Phil. Mag. xi. p. 254, 1881) has shown that magnetic rotation of the

plane of polarization would be produced if the Hall effect (Vol. I. p. 423) existed in

dielectrics.

}

f Recherches sur les proprtete's optiques developpees dans les corps transparent*

par Taction du magne"tisnie, 4me partie. Comptes Rendus, t. lvi. p. 630 (6 April, 1863).

I Comptes Rendus, lvii. p. 670 (19 Oct., 1863).
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law of the inverse square of the wave-length was very apparent.

He has also compared these results with the numbers given by

three different formulae,

(I) tf = mcy
xa
(t-X

5X);

(II) e = mcy-
2
(i-K

Ik);

(in) e = mcy (*-*|£).

The first of these formulae, (I), is that which we have already

obtained in Art. 829, equation (26). The second, (II), is that

which results from substituting in the equations of motion,

d3
n d3 £

Art. 827, equations (10), (11), terms of the form -^ and — -^ >

instead of , , ,, and—,-JVi • I am not aware that this form of
dz2dt dzrdt

the equation has been suggested by any physical theory. The

third formula, (III), results from the physical theory of M. C.

Neumann *, in which the equations of motion contain terms of

the form~ and 77 1-
di dt

It is evident that the values of 6 given by the formula (III) are

not even approximately proportional to the inverse square of

the wave-length. Those given by the formulae (I) and (II)

satisfy this condition, and give values of 6 which agree tolerably

well with the observed values for media of moderate dispersive

power. For bisulphide of carbon and creosote, however, the

values given by (II) differ very much from those observed.

Those given by (I) agree better with observation, but, though

the agreement is somewhat close for bisulphide of carbon, the

numbers for creosote still differ by quantities much greater than

can be accounted for by any errors of observation.

* ' Explicare tentatur quomodo fiat ut lucis planum polarizationis per vires elec-

tricas vel magneticas declinetur.' Hairs Saoconum, 1858.

t These three forms ofthe equations of motion were first suggested by Sir G. B. Airy

(Phil. Mag., June 1846, p. 477) as a means of analysing the phenomenon then recently

discovered by Faraday. Mac Cullagh had previously suggested equations containing

terms of the form— in order to represent mathematically the phenomena of quartz.
air

These equations were offered by Mac Cullagh and Airy, ' not as giving a mechanical

explanation of the phaenomena, but as showing that the phaenomena may be explained

by equations, which equations appear to be such as might possibly be deduced from

some plausible mechanicalassumption, although no such assumption hasyet beenmade.'
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Magnetic Rotation of the Plane of Polarization (from Verdet).

Bisulphide of Carbon at 240-
9 C.

Lines of the spectrum ODE
Observed rotation 592 768 1000
Calculated by I. 589 760 1000

„ II. 606 772 1000
III. 943 967 1000

Eotation of the ray E = 25°-28'.

Creosote at 24°-3 C.

Lines of the spectrum C D E F O-

Observed rotation 573 758 1000 1241 1723
Calculated by I. 617 780 1000 1210 1603

II. 623 789 1000 1200 1565

„ HI. 976 993 1000 1017 1041

Rotation of the ray E = 21°-58'.

We are so little acquainted with the details of the molecular

constitution of bodies, that it is not probable that any satisfactory

theory can be formed relating to a particular phenomenon, such

as that of the magnetic action on light, until, by an induction

founded on a number of different cases in which visible pheno-

mena are found to depend upon actions in which the molecules

are concerned, we learn something more definite about the

properties which must be attributed to a molecule in order to

satisfy the conditions of observed facts.

The theory proposed in the preceding pages is evidently of a

provisional kind, resting as it does on unproved hypotheses

relating to the nature of molecular vortices, and the mode in

which they are affected by the displacement of the medium.
We must therefore regard any coincidence with observed facts

as of much less scientific value in the theory of the magnetic

rotation of the plane of polarization than in the electromagnetic

theory of light, which, though it involves hypotheses about the

electric properties of media, does not speculate as to the consti-

tution of their molecules.

831.] Note.—The whole of this chapter may be regarded as an

expansion of the exceedingly important remark of Sir William

Thomson in the Proceedings of the Royal Society, June 1856 :

—

' the magnetic influence on light discovered by Faraday depends

on the direction of motion of moving particles. For instance, in

a medium possessing it, particles in a straight line parallel to

the lines of magnetic force, displaced to a helix round this line

as axis, and then projected tangentially with such velocities as
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to describe circles, will have different velocities according as

their motions are round in one direction (the same as the

nominal direction of the galvanic current in the magnetizing

coil), or in the contrary direction. But the elastic reaction of

the medium must be the same for the same displacements,

whatever be the velocities and directions of the particles ; that

is to say, the forces which are balanced by centrifugal force of

the circular motions are equal, while the luminiferous motions

are unequal. The absolute circular motions being therefore

either equal or such as to transmit equal centrifugal forces to

the particles initially considered, it follows that the luminiferous

motions are only components of the whole motion ; and that a

less luminiferous component in one direction, compounded with

a motion existing in the medium when transmitting no light,

gives an equal resultant to that of a greater luminiferous motion

in the contrary direction compounded with the same non-

luminous motion. I think it is not only impossible to conceive

any other than this dynamical explanation of the fact that

circularly-polarized light transmitted through magnetized glass

parallel to the lines of magnetizing force, with the same quality,

right-handed always, or left-handed always, is propagated at

different rates according as its course is in the direction or is

contrary to the direction in which a north magnetic pole is

drawn; but I believe it can be demonstrated that no other

explanation of that fact is possible. Hence it appears that

Faraday's optical discovery affords a demonstration of the

reality of Ampere's explanation of the ultimate nature of mag-

netism ; and gives a definition of magnetization in the dynamical

theory of heat. The introduction of the principle of moments

of momenta ("the conservation of areas") into the mechanical

treatment of Mr. Rankine's hypothesis of " molecular vortices,"

appears to indicate a line perpendicular to the plane of resultant

rotatory momentum ("the invariable plane") of the thermal

motions as the magnetic axis of a magnetized body, and

suggests the resultant moment of momenta of these motions

as the definite measure of the " magnetic moment." The ex-

planation of all phenomena of electro-magnetic attraction or

repulsion, and of electro-magnetic induction, is to be looked

for simply in the inertia and pressure of the matter of which

the motions constitute heat. Whether this matter is or is not
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electricity, whether it is a continuous fluid interpermeating the

spaces between molecular nuclei, or is itself molecularly grouped

;

or whether all matter is continuous, and molecular hetero-

geneousness consists in finite vortical or other relative motions

of contiguous parts of a body ; it is impossible to decide, and

perhaps in vain to speculate, in the present state of science.'

A theory of molecular vortices, which I worked out at con-

siderable length, was published in the Phil. Mag. for March,

April, and May, 1861, Jan. and Feb. 1862.

I think we have good evidence for the opinion that some

phenomenon of rotation is going on in the magnetic field, that

this rotation is performed by a great number of very small

portions of matter, each rotating on its own axis, this axis

being parallel to the direction of the magnetic force, and that

the rotations of these different vortices are made to depend

on one another by means of some kind of mechanism connecting

them.

The attempt which I then made to imagine a working model

of this mechanism must be taken for no more than it really is,

a demonstration that mechanism may be imagined capable of

producing a connexion mechanically equivalent to the actual

connexion of the parts of the electromagnetic field. The problem

of determining the mechanism required to establish a given

species of connexion between the motions of the parts of a

system always admits of an infinite number of solutions. Of
these, some may be more clumsy or more complex than others,

but all must satisfy the conditions of mechanism in general.

The following results of the theory, however, are of higher

value :

—

(1) Magnetic force is the effect of the centrifugal force of the

vortices.

(2) Electromagnetic induction of currents is the effect of the

forces called into play when the velocity of the vortices is

changing.

(3) Electromotive force arises from the stress on the con-

necting mechanism.

(4) Electric displacement arises from the elastic yielding of

the connecting mechanism.



CHAPTER XXII.

FERROMAGNETISM AND DIAMAGNETISM EXPLAINED BY

MOLECULAR CURRENTS.

On Electromagnetic Theories of Magnetism.

832.] We have seen (Art. 380) that the action of magnets on

one another can be accurately represented by the attractions and

repulsions of an imaginary substance called ' magnetic matter.'

We have shewn the reasons why we must not suppose this

magnetic matter to move from one part of a magnet to another

through a sensible distance, as at first sight it appears to do

when we magnetize a bar, and we were led to Poisson's hypo-

thesis that the magnetic matter is strictly confined to single

molecules of the magnetic substance, so that a magnetized

molecule is one in which the opposite kinds of magnetic matter

are more or less separated towards opposite poles of the molecule,

but so that no part of either can ever be actually separated from

the molecule (Art. 430).

These arguments completely establish the fact, that mag-

netization is a phenomenon, not of large masses of iron, but

of molecules, that is to say, of portions of the substance so

small that we cannot by any mechanical method cut one of

them in two, so as to obtain a north pole separate from a

south pole. But the nature of a magnetic molecule is by no

means determined without further investigation. We have seen

(Art. 442) that there are strong reasons for believing that the

act of magnetizing iron or steel does not consist in imparting

magnetization to the molecules of which it is composed, but

that these molecules are already magnetic, even in unmagnetized

iron, but with their axes placed indifferently in all directions,
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and that the act of magnetization consists in turning the

molecules so that their axes are either rendered all parallel to

one direction, or at least are deflected towards that direction.

833.] Still, however, we have arrived at no explanation of the

nature of a magnetic molecule, that is, we have not recognized

its likeness to any other thing of which we know more. We
have therefore to consider the hypothesis of Ampere, that the

magnetism of the molecule is due to an electric current con-

stantly circulating in some closed path within it.

It is possible to produce an exact imitation of the action of

any magnet on points external to it, by means of a sheet of

electric currents properly distributed on its outer surface. But
the action of the magnet on points in the interior is quite

different from the action of the electric currents on corresponding

points. Hence Ampere concluded that if magnetism is to be

explained by means of electric currents, these currents must
circulate within the molecules of the magnet, and must not flow

from one molecule to another. As we cannot experimentally

measure the magnetic action at a point in the interior of a

molecule, this hypothesis cannot be disproved in the same way
that we can disprove the hypothesis of currents of sensible

extent within the magnet.

Besides this, we know that an electric current, in passing from

one part of a conductor to another, meets with resistance and

generates heat ; so that if there were currents of the ordinary

kind round portions of the magnet of sensible size, there would

be a constant expenditure of energy required to maintain them,

and a magnet would be a perpetual source of heat. By confining

the circuits to the molecules, within which nothing is known
about resistance, we may assert, without fear of contradiction,

that the current, in circulating within the molecule, meets with

no resistance.

According to Ampere's theory, therefore, all the phenomena
of magnetism are due to electric currents, and if we could

make observations of the magnetic force in the interior of a

magnetic molecule, we should find that it obeyed exactly the

same laws as the force in a region surrounded by any other

electric circuit.

834.] In treating of the force in the interior of magnets, we
have supposed the measurements to be made in a small crevasse
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hollowed out of the substance of the magnet, Art. 395. We
were thus led to consider two different quantities, the magnetic

force and the magnetic induction, both of which are supposed

to be observed in a space from which the magnetic matter is

removed. We were not supposed to be able to penetrate into

the interior of a magnetic molecule and to observe the force

within it.

If we adopt Ampere's theory, we consider a magnet, not as a

continuous substance, the magnetization of which varies from

point to point according to some easily conceived law, but as a

multitude of molecules, within each of which circulates a system

of electric currents, giving rise to a distribution of magnetic force

of extreme complexity, the direction of the force in the interior

of a molecule being generally the reverse of that of the average

force in its neighbourhood, and the magnetic potential, where it

exists at all, being a function of as many degrees of multiplicity

as there are molecules in the magnet.

835.] But we shall find, that, in spite of this apparent com-

plexity, which, however, arises merely from the coexistence of a

multitude of simpler parts, the mathematical theory of magnetism

is greatly simplified by the adoption of Ampere's theory, and

by extending our mathematical vision into the interior of the

molecules.

In the first place, the two definitions of magnetic force are

reduced to one, both becoming the same as that for the space

outside the magnet. In the next place, the components of the

magnetic force everywhere satisfy the condition to which those

of induction are subject, namely,

d « + <^ + p=0 . (1)ax ay az w
In other words, the distribution of magnetic force is of the

same nature as that of the velocity of an incompressible fluid,

or, as we have expressed it in Art. 25, the magnetic force has no

convergence.

Finally, the three vector functions—the electromagnetic mo-

mentum, the magnetic force, and the electric current—become

more simply related to each other. They are all vector functions

of no convergence, and they are derived one from the other in

order, by the same process of taking the space-variation which

is denoted by Hamilton by the symbol V.
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836.] But we are now considering magnetism from a physical

point of view, and we must enquire into the physical properties

of the molecular currents. We assume that a current is circu-

lating in a molecule, and that it meets with no resistance. If L
is the coefficient of self-induction of the molecular circuit, and M
the coefficient of mutual induction between this circuit and some
other circuit, then if y is the current in the molecule, and y that

in the other circuit, the equation of the current y is

§-
t
(Ly + My') = -Ry; (2)

and since by the hypothesis there is no resistance, R = 0, and
we get by integration

Ly+ My'= constant, = Ly
Q , say. (3)

Let us suppose that the area of the projection of the molecular

circuit on a plane perpendicular to the axis of the molecule is A,

this axis being defined as the normal to the plane on which the

projection is greatest. If the action of other currents produces a

magnetic force, X, in a direction whose inclination to the axis of

the molecule is 0, the quantity My becomes XA cos 6, and we
have as the equation of the current

Ly + XAco&6 = Ly , (4)

where y is the value of y when X = 0.

It appears, therefore, that the strength of the molecular current

depends entirely on its primitive value y , and on the intensity

of the magnetic force due to other currents.

837.] If we suppose that there is no primitive current, but
that the current is entirely due to induction, then

XA
«

y — y~ cos 0'
(
5
)

The negative sign shews that the direction of the induced
current is opposite to that of the inducing current, and its

magnetic action is such that in the interior of the circuit it

acts in the opposite direction to the magnetic force. In other

words, the molecular current acts like a small magnet whose
poles are turned towards the poles of the same name of the
inducing magnet.

Now this is an action the reverse of that of the molecules

of iron under magnetic action. The molecular currents in iron,

therefore, are not excited by induction. But in diamagnetic
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substances an action of this kind is observed, and in fact this

is the explanation of diamagnetic polarity which was first given

by Weber.

Weber's Theory of Diamagneti&m.

838.] According to Weber's theory, there exist in the molecules

of diamagnetic substances certain channels round which an

electric current can circulate without resistance. It is manifest

that if we suppose these channels to traverse the molecule in

every direction, this amounts to making the molecule a perfect

conductor.

Beginning with the assumption of a linear circuit within the

molecule, we have the strength of the current given by equa-

tion (5).

The magnetic moment of the current is the product of its

strength by the area of the circuit, or yA, and the resolved part

of this in the direction of the magnetizing force is y A cos 6, or,

by(5
)> XA 2

2a^r-COSZ
0. (6)

If there are n such molecules in unit of volume, and if their

axes are distributed indifferently in all directions, then the

average value of cos2 will be £, and the intensity of magnet-

ization of the substance will be

, nXA 2

Neumann's coefficient of magnetization is therefore

* = -*-£-. (8)

The magnetization of the substance is therefore in the opposite

direction to the magnetizing force, or, in other words, the

substance is diamagnetic. It is also exactly proportional to

the magnetizing force, and does not tend to a finite limit, as

in the case of ordinary magnetic induction. See Arts. 442, &c.

839.] If the directions of the axes of the molecular channels

are arranged, not indifferently in all directions, but with a pre-

ponderating number in certain directions, then the sum
A'2

2 -
T
- cos2 6

extended to all the molecules will have different values according

to the direction of the line from which is measured, and the
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distribution of these values in different directions will be similar

to the distribution of the values of moments of inertia about

axes in different directions through the same point.

Such a distribution will explain the magnetic phenomena
related to axes in the body, described by Pliicker, which Faraday
has called Magne-crystallic phenomena. See Art. 435.

840.] Let us now consider what would be the effect, if, instead of

the electric current being confined to a certain channel within the

molecule, the whole molecule were supposed a perfect conductor.

Let us begin with the case of a body the form of which is

acyclic, that is to say, which is not in the form of a ring or

perforated body, and let us suppose that this body is everywhere

surrounded by a thin shell of perfectly conducting matter.

We have proved in Art. 654, that a closed sheet of perfectly

conducting matter of any form, originally free from currents,

becomes, when exposed to external magnetic force, a current-

sheet, the action of which on every point of the interior is such

as to make the magnetic force zero.

It may assist us in understanding this case if we observe that

the distribution of magnetic force in the neighbourhood of such

a body is similar to the distribution of velocity in an incom-

pressible fluid in the neighbourhood of an impervious body of

the same form.

It is obvious that if other conducting shells are placed within

the first, since they are not exposed to magnetic force, no
currents will be exeited in them. Hence, in a solid of perfectly

conducting material, the effect of magnetic force is to generate a
system of currents which are entirely confined to the surface of

the body.

841.] If the conducting body is in the form of a sphere of radius

r, its magnetic moment may be shewn { by the method given in

Art. 672} to be
-*r*X,

and if a number of such spheres are distributed in a medium, so

that in unit of volume the volume of the conducting matter is

k', then, by putting k
i
= 00, k2

= 1, and p = k' in equation (17),

Art. 314, we find the coefficient of magnetic permeability, taking

it as the reciprocal of the resistance in that article, viz.

2-2&'
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whence we obtain for Poisson's magnetic coefficient

h = -\k\ (10)

and for Neumann's coefficient of magnetization by induction

3 lef

Since the mathematical conception of perfectly conducting

bodies leads to results exceedingly different from any phenomena

which we can observe in ordinary conductors, let us pursue the

subject somewhat further.

842.] Returning to the case of the conducting channel in the

form of a closed curve of area A, as in Art. 836, we have, for

the moment of the electromagnetic force tending to increase the

anSlea ' ,dM „ . . „ y ,„vyy'-j0=-yXAsmd (12)

X2A 2

= —^sin0cos0. (13)

This force is positive or negative according as is less or

greater than a right angle. Hence the effect of magnetic force

on a perfectly conducting channel tends to turn it with its axis

at right angles to the line of magnetic force, that is, so that the

plane of the channel becomes parallel to the lines of force.

An effect of a similar kind may be observed by placing a

penny or a copper ring between the poles of an electromagnet.

At the instant that the magnet is excited the ring turns its

plane towards the axial direction, but this force vanishes as

soon as the currents are deadened by the resistance of the

copper *.

843.] We have hitherto considered only the case in which the

molecular currents are entirely excited by the external magnetic

force. Let us next examine the bearing of Weber's theory of

the magneto-electric induction of molecular currents on Ampere's

theory of ordinary magnetism. According to Ampere and Weber,

the molecular currents in magnetic substances are not excited by

the external magnetic force, but are already there, and the

molecule itself is acted on and deflected by the electromagnetic

action of the magnetic force on the conducting circuit in which

the current flows. When Ampere devised this hypothesis, the

induction of electric currents was not known, and he made no

* See Faraday, Exp. Res., 2310, &c.
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hypothesis to account for the existence, or to determine the

strength, of the molecular currents.

We are now, however, bound to apply to these currents the

same laws that Weber applied to his currents in diamagnetic

molecules. We have only to suppose that the primitive value

of the current y, when no magnetic force acts, is not zero but

y . The strength of the current when a magnetic force, X,
acts on a molecular current of area A, whose axis is inclined

at an angle 6 to the line of magnetic force, is

y = y -^ cos 6, (14)

and the moment of the couple tending to turn the molecule so as

to increase 6 is X2A 2

-y XAsm6+ —-£-sin20. (15)

Hence, putting ^4Ay = m, £^ = 5, (16)

in the investigation in Art. 443, the equation of equilibrium

becomes X sin 6-BX2 sin 6 cos 6 = D sin (a- 6). (17)

The resolved part of the magnetic moment of the current

in the direction of X is

XA 2

yAcosd = y A con d j- cos2 0, (18)

= mcos 0(l-i?Xcos0). (19)

844.] These conditions differ from those in Weber's theory of

magnetic induction by the terms involving the coefficient B. If

BX is small compared with unity, the results will approximate
to those of Weber's theory of magnetism. If BX is large com-
pared with unity, the results will approximate to those of Weber's
theory of diamagnetism.

Now the greater y , the primitive value of the molecular
current, the smaller will B become, and if L is also large, this

will also diminish B. Now if the current flows in a ring channel,

the value of L depends on log— > where R is the radius of the

mean line of the channel, and r that of its section. The smaller

therefore the section of the channel compared with its area,

the greater will be L, the coefficient of self-induction, and the

more nearly will the phenomena agree with Weber's original

theory. There will be this difference, however, that as X, the
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magnetizing force, increases, the temporary magnetic moment
will not only reach a maximum, but will afterwards diminish as

X increases.

If it should ever be experimentally proved that the temporary

magnetization ofany substance first increases, and then diminishes

as the magnetizing force is continually increased, the evidence of

the existence of these molecular currents would, I think, be

raised almost to the rank of a demonstration *.

845.] If the molecular currents in diamagnetic substances are

confined to definite channels, and if the molecules are capable of

being deflected like those of magnetic substances, then, as the

magnetizing force increases, the diamagnetic polarity will always

increase, but, when the force is great, not quite so fast as the

magnetizing force. The small absolute value of the diamagnetic

coefficient shews, however, that the deflecting force on each

molecule must be small compared with that exerted on a mag-

netic molecule, so that any result due to this deflexion is not

likely to be perceptible.

If, on the other hand, the molecular currents in diamagnetic

bodies are free to flow through the whole substance of the mole-

cules, the diamagnetic polarity will be strictly proportional to

the magnetizing force, and its amount will lead to a deter-

mination of the whole space occupied by the perfectly conducting

masses, and, if we know the number of the molecules, to the

determination of the size of each.

* {No indication of this effect has as yet been found, though Prof. Ewing has

sought for it in very intense magnetic fields. See Ewing and Low ' On the Magneti-

sation of Iron and other Magnetic Metals in very Strong Fields/ Phil. Trans. 1889,

A. p. 221.}



CHAPTEE XXIII.

THEORIES OF ACTION AT A DISTANCE.

On the Explanation of Ampere's Formula given by Gauss

and Weber.

846.] The attraction between the elements ds and ds' of two
circuits, carrying electric currents of intensity i and i', is, by
Ampere's formula,

ii'dsds' / n drdr>, . .-_(Se«. + » 5a?); (1)

ii'dsds' / d2r dr dr \

the currents being estimated in electromagnetic units. See

Art. 526.

The quantities, whose meaning as they appear in these ex-

pressions we have now to interpret, are

dr dr .. d2r
C0Se

' Ts'ds"
and» J

and the most obvious phenomenon in which to seek for an
interpretation founded on a direct relation between the currents

is the relative velocity of the electricity in the two elements.

847.] Let us therefore consider the relative motion of two
particles, moving with constant velocities v and v' along the

elements ds and ds' respectively. The square of the relative

velocity of these particles is

u2 = v2— 2 in/cos e + v'
2

; (3)

and if we denote by r the distance between the particles,

dr dr ,drar ,ar , \

(>t ds ds'
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,<)r>.
2 «,di\2

„ ,drdr , 9 Ar \ i~\

fe)="
2W+^' 5F^+^(s')' <

5>

<)
2r „d2r n , d2r , 9 d

2r-=^+2™'^,+^, (6)

where the symbol d indicates that, in the quantity differentiated,

the coordinates of the particles are to be expressed in terms of

the time.

It appears, therefore, that the terms involving the product w'
in the equations (3), (5), and (6) contain the quantities occur-

ring in (1) and (2) which we have to interpret. We therefore

endeavour to express (l) and (2) in terms of u2
,

d-H 2
, d2r

and ^
But in order to do so we must get rid of the first and third

terms of each of these expressions, for they involve quantities

which do not appear in the formula of Ampere. Hence we
cannot explain the electric current as a transfer of electricity in

one direction only, but we must combine two opposite streams

in each current, so that the combined effect of the terms in-

volving v2 and v'
2 may be zero.

848.] Let us therefore suppose that in the first element, ds,

we have one electric particle, e, moving with velocity v, and

another, elt moving with velocity vlt and in the same way two

particles, e' and e\, in ds', moving with velocities v' and v\

respectively.

The term involving v2 for the combined action of these

particles is 2 {v
2
ee') = (v2 e + vfej (e' + e'j). (7)

Similarly 2 (v'W) = (v'
2
e' + v\2 e\) (e + e

x); (8)

and 2(iwW) = (w + v
x
ej (v'e'+ v\e\). (9)

In order that 2 (vW) may be zero, we must have either

e'+ e\=0, or v2 e + v 2
e
1
=0. (10)

According to Fechner's hypothesis, the electric current con-

sists of a current of positive electricity in the positive direc-

tion, combined with a current of negative electricity in the

negative direction, the two currents being exactly equal in

numerical magnitude, both as respects the quantity of electricity

in motion and the velocity with which it is moving. Hence

both the conditions of (10) are satisfied by Fechner's hypo-

thesis.
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But it is sufficient for our purpose to assume, either

—

That the quantity of positive electricity in each element is

numerically equal to the quantity of negative electricity ; or

—

That the quantities of the two kinds of electricity are in-

versely as the squares of their velocities.

Now we know that by charging the second conducting wire

as a whole, we can make e' + e\ either positive or negative.

Such a charged wire, even without a current, according to this

formula, would act on the first wire carrying a current in which

v2e + v 2
e
x
has a value differing from zero. Such an action has

never been observed.

Therefore, since the quantity e' + e\ may be shewn experi-

mentally not to be always zero, and since the quantity v2e + v2
l
e
i

is not capable of being experimentally tested, it is better for

these speculations to assume that it is the latter quantity which

invariably vanishes.

849.] Whatever hypothesis we adopt, there can be no doubt

that the total transfer of electricity, reckoned algebraically,

along the first circuit, is represented by

ve + v
1
e
l
= cids,

where c is the number of units of statical electricity which are

transmitted by the unit electric current in the unit of time ; so

that we may write equation (9)

2(vv'ee') = c
2 ii'dsds'. (11)

Hence the sums of the four values of (3), (5), and (6) become

2 (ee'u2) = — 2 e
2 ii'ds ds'cos e, (1 2)

*(«&) = >*«*<'<%& (»)

and we may write the two expressions (1) and (2) for the

attraction between ds and ds'

850.] The ordinary expression, in the theory of statical electri-

ee!
city, for the repulsion of two electrical particles e and e' is -^ »
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-d 2 (-'
)
= <^±A>, (I7)

which gives the electrostatic repulsion between the two elements

if they are charged as wholes.

Hence, if we assume for the repulsion of the two particles

either of the modified expressions

?[>+?(•£- »<*)')].• (»)

we may deduce from them both the ordinary electrostatic

forces, and the forces acting between currents as determined by
Ampere.

851.] The first of these expressions, (18), was discovered by
Gauss f in July 1835, and interpreted by him as a fundamental

law of electrical action, that ' Two elements of electricity in a

state of relative motion attract or repel one another, but not in

the same way as if they are in a state of relative rest.' This

discovery was not, so far as I know, published in the lifetime

of Gauss, so that the second expression, which was discovered

independently by W. Weber, and published in the first part of

his celebrated Elektrodynamische MaasbestimTnungen %, was the

first result of the kind made known to the scientific world.

852.] The two expressions lead to precisely the same result

when they are applied to the determination of the mechanical

force between two electric currents, and this result is identical

with that of Ampere. But when they are considered as ex-

pressions of the physical law of the action between two elec-

trical particles, we are led to enquire whether they are consistent

with other known facts of nature.

Both of these expressions involve the relative velocity of the

particles. Now, in establishing by mathematical reasoning

the well-known principle of the conservation of energy, it is

generally assumed that the force acting between two particles

is a function of the distance only, and it is commonly stated

* {For an account of other theories of this kind see Report on Electrical Theories,

by J. J. Thomson, B. A. Report, 1885, pp. 97-155.}

+ Werke (Gottingen edition, 1867), vol. v. p. 616.

J Abh. Leibnizens Ges., Leipzig (1846), p. 316.
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that if it is a function of anything else, such as the time, or the

velocity of the particles, the proof would not hold.

Hence a law of electrical action, involving the velocity of the

particles, has sometimes been supposed to be inconsistent with

the principle of the conservation of energy.

853.] The formula of Gauss is inconsistent with this principle,

and must therefore be abandoned, as it leads to the conclusion

that energjr might be indefinitely generated in a finite system by
physical means. This objection does not apply to the formula

of Weber, for he has shewn * that if we assume as the potential

energy of a system consisting of two electric particles,

* = tl 1 -*?(*) }• (20>

the repulsion between them, which is found by differentiating

this quantity with respect to r, and changing the sign, is that

given by the formula (19).

Hence the work done on a moving particle by the repulsion

of a fixed particle is Vo~^i' where yj/ and \\r
x
are the values of

\j/ at the beginning and at the end of its path. Now \Js depends

only on the distance, r, and on the velocity resolved in the

direction of r. If, therefore, the particle describes any closed

path, so that its position, velocity, and direction of motion are

the same at the end as at the beginning, ^ will be equal to \/r
,

and no work will be done on tht whole during the cycle of

operations.

Hence an indefinite amount of work cannot be generated by
a particle moving in a periodic manner under the action of the

force assumed by Weber.

854.] But Helmholtz, in his very powerful memoir on the

' Equations of Motion of Electricity in Conductors at Rest ' f,

while he shews that Weber's formula is not inconsistent with

the principle of the conservation of energy, as regards only the

work done during a complete cyclical operation, points out that

it leads to the conclusion, that two electrified particles, which

move according to Weber's law, may have at first finite velo-

cities, and yet, while still at a finite distance from each other,

they may acquire an infinite kinetic energy, and may perform

an- infinite amount of work.

* Fogg. Ann., lxxiii. p. 229 (1848).

f Crelle's Journal, 72. pp. 57-129 (1870).
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To this Weber* replies, that the initial relative velocity of

the particles in Helmholtz's example, though finite, is greater

than the velocity of light ; and that the distance at which the

kinetic energy becomes infinite, though finite, is smaller than

any magnitude which we can perceive, so that it may be

physically impossible to bring two molecules so near together.

The example, therefore, cannot be tested by any experimental

method.

Helmholtz f has therefore stated a case in which the distances

are not too small, nor the velocities too great, for experimental

verification. A fixed non-conducting spherical surface, of radius

a, is uniformly charged with electricity to the surface-density a.

A particle, of mass m and carrying a charge e of electricity,

moves within the sphere with velocity v. The electrodynamic

potential calculated from the formula (20) is

^aae(l--~), (21)

and is independent of the position of the particle within the

sphere. Adding to this V, the remainder of the potential energy

arising from the action of other forces, and \mv'i
i
the kinetic

energy of the particle, we find as the equation of energy

b(m— I

—

2~^)v2 + 4:Tra<re + V = const. (22)

Since the second term of the coefficient of v2 may be increased

indefinitely by increasing a, the radius of the sphere, while the

surface-density 0- remains constant, the coefficient of v2 may be

made negative. Acceleration of the motion of the particle

would then correspond to diminution of its vis viva, and a body
moving in a closed path and acted on by a force like friction,

always opposite in direction to its motion, would continually

increase in velocity, and that without limit. This impossible

result is a necessary consequence of assuming any formula for the

potential which introduces negative terms into the coefficient of v~.

855.] But we have now to consider the application of Weber's

theory to phenomena which can be realised. We have seen how
it gives Ampere's expression for the force of attraction between

* EUlctr. Maasb. iribesotidere iiber das Princip der Erhaltunff der Energie.

f Berlin Monatsbericht, April 1872, pp. 247-256 ; Phil. Mag., Dec. 1872, Supp.,

pp. 530-537.
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two elements of electric currents. The potential of one of these

elements on the other is found by taking the sum of the values

of the potential \j/ for the four combinations of the positive and

negative currents in the two elements. The result is, by

Sr"2

equation (20), taking the sum of the four values of ^-7 ,

-^\%%- <
23

>

and the potential of one closed current on another is

-^L>*'=^ <

24
>

r /'cos €
where M = / / dsds\ as in Arts. 423, 524.

In the case of closed currents, this expression agrees with that

which we have already (Art. 524) obtained *.

Weber's Theory of the Induction of Electric Currents.

858.] After deducing from Ampere's formula for the action

between the elements of currents, his own formula for the action

between moving electric particles, Weber proceeded to apply his

formula to the explanation of the production of electric currents

by magneto-electric induction. In this he was eminently suc-

cessful, and we shall indicate the method by which the laws of

induced currents may be deduced from Weber's formula. But

we must observe, that the circumstance that a law deduced from

the phenomena discovered by Ampere is able also to account for

the phenomena afterwards discovered by Faraday does not give

so much additional weight to the evidence for the physical truth

of the law as we might at first suppose.

For it has been shewn by Helmholtz and Thomson (see Art.

543), that if the phenomena of Ampere are true, and if the

principle of the conservation of energy is admitted, then the

phenomena of induction discovered by Faraday follow of

necessity. Now Weber's law, with the various assumptions

about the nature of electric currents which it involves, leads

by mathematical transformations to the formula of Ampere.

* In the whole of this investigation Weber adopts the electrodynamic system of

units. In this treatise we always use the electromagnetic system. The electromag-

netic unit of current is to the electrodynamic unit in the ratio of -y/2 to 1. Art. 526.
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Weber's law is also consistent with the principle of the con-

servation of energy in so far that a potential exists, and this

is all that is required for the application of the principle

by Helmholtz and Thomson. Hence we may assert, even

before making any calculations on the subject, that Weber's

law will explain the induction of electric currents. The fact,

therefore, that it is found by calculation to explain the induction

of currents, leaves the evidence for the physical truth of the law

exactly where it was.

On the other hand, the formula of Gauss, though it explains

the phenomena of the attraction of currents, is inconsistent with

the principle of the conservation of energy, and therefore we
cannot assert that it will explain all the phenomena of induction.

In fact, it fails to do so, as we shall see in Art. 859.

857.] We must now consider the electromotive force tending

to produce a current in the element ds', due to the current in ds,

when ds is in motion, and when the current in it is variable.

According to Weber, the action on the material of the con-

ductor of which ds is an element, is the sum of all the actions

on the electricity which it carries. The electromotive force, on

the other hand, on the electricity in ds', is the difference of the

electric forces acting on the positive and the negative electricity

within it. Since all these forces act in the line joining the

elements, the electromotive force on ds' is also in this line, and

in order to obtain the electromotive force in the direction of ds'

we must resolve the force in that direction. To apply Weber's

formula, we must calculate the various terms which occur in it,

on the supposition that the element ds is in motion relatively to

ds, and that the currents in both elements vary with the time.

The expressions thus found will contain terms involving v2
, vv ,

v'2 , v, v', and terms not involving v or v', all of which are multiplied

by ee. Examining, as we did before, the four values of each

term, and considering first the mechanical force which arises

from the sum of the four values, we find that the only term

which we must take into account is that involving the product

vv'ee'.

If we then consider the force tending to produce a current in

the second element, arising from the difference of the action of

the first element on the positive and the negative electricity of

the second element, we find that the only term which we have
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to examine is that which involves vee'. We may write the four

terms included in "2 (vee'), thus

e' (ve + 1\ ex ) and e\ (ve + v
1
e
x)

.

Since e' + e\ — 0, the mechanical force arising from these terms

is zero, but the electromotive force acting on the positive, elec-

tricity e' is (ve + v^), and that acting on the negative electricity

e\ is equal and opposite to this.

858.] Let us now suppose that the first element ds is moving

relatively to ds' with velocity V in a certain direction, and let us

denote by Vds and Vds', the angles between the direction of V
and those of ds and of ds' respectively, then the square of the

relative velocity, u, of two electric particles is

A A
u2 =v2 + v'

2 + V2- 2vv' cos e + 2 Vv cos Vds— 2 Vv' cos Vds. (25)

The term in vv' is the same as in equation (3). That in v, on

which the electromotive force depends, is

A
2 Vv cos Vds.

We have also for the value of the time-variation of r in this

case 3r dr ,dr dr , .

Tt = v
Ts

+ v
di>

+
dt>

(26)

where — refers to the motion of the electric partieles, and -^ to

that of the material conductor. If we form the square of this

quantity, the term involving vv', on which the mechanical force

depends, is the same as before, in equation (5), and that involving

v, on which the electromotive force depends, is

„ drdr
2v •

ds dt

Differentiating (26) with respect to t, we find

7>
2r „d2r

,
_ , d2r ,2

d2r dvdr dvf dr—- = v2
-t-z + 2w -,-

7 > + v 2
-ryr? + it -7- + -77 -77 V

27
)M 2 ds2 ds ds ds'

2 dt ds dt ds' '

dvdr ,dv'dr n d dr
,

, d dr d2r *
+ W-T--T- +V-T-7-, + 2V-1

--r + 2V T7jl + -its'T
ds ds ds ds' ds d ds' dt dt 2

We find that the term involving vv' is the same as before in (6).

The terms whose sign alters with that of v are -57 -r; and 2 v -7- -r.
•

d dr n . d dr ... ,

* { In the 1st and 2nd editions the terms 2 ?; — j7 + ^ v
d~'~dt

WBT& om te
'
since

however— =•[«—+»'— + —l*
it would seem that they ought to be included, they

dt I ds ds' dt\

do not however affect the result when the circuits are closed.

}
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859.] If we now calculate by the formula of Gauss (equation

(18)), the resultant electrical force in the direction of the second

element ds', arising from the action of the first element ds, we
obtain

1 a a a a~
%
ds ds'i V(2 cos Vds— 3 cos Vr coards) cos rdsf

. (28)

As in this expression there is no term involving the rate of

variation of the current i, and since we know that the variation

of the primary current produces an inductive action on the

secondary circuit, we cannot accept the formula of Gauss as a

true expression of the action between electric particles.

860.] If, however, we employ the formula of Weber, (19), we

obtain i dr di „ . d dr .drdrsdr ^ „

-vdsds'lr-.—r + 2^-^-^ — ^-^-^)-^-,> (29)
r2 v dsdt dsdt dsdt J ds v ;

d Adrdr^ , ,, i , d2r dr d2r dr\ 7 ,, ,„„,

sls^^^l&sa-'-ffss)**' (30)

If we integrate this expression with respect to s and s', we
obtain for the electromotive force on the second circuit

d . ffldrdr _ , , .. rri , d2r dr d2r dr\ , 7 , . .

it
1

]

J

?&&'** +
*JJ -AckdiS'-dMds)^- (31)

Now, when the first circuit is closed,

d2r

I,
-,ds— 0.

ds ds'

„ ridrdr rr \drdr d2r n _ rcosc , /tt
.

Hence
J ?*5? *

=
J (r iss + as) de=-;—*• (32)

/*/*COS €
But // dsds'=M, by Arts. 423, 524. (33)

Since the second term in equation (31) vanishes if both

circuits are closed, we may write the electromotive force on the

second circuit •/-
M {iM), (34)

which agrees with what we have already established by experi-

ment ; Art. 539.

On Weber s Forinula, considered as resulting from an Action

transmitted from one Electric Particle to the other with a

Constant Velocity.

861.] In a very interesting letter of Gauss to W. Weber* he

* March 19, 1845, WerTte, bd. v. 629.
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refers to the electrodynamic speculations with which he had been

occupied long before, and which he would have published if he

could then have established that which he considered the real

keystone of electrodynamics, namely, the deduction of the force

acting between electric particles in motion from the consideration

of an action between them, not instantaneous, but propagated in

time, in a similar manner to that of light. He had not succeeded

in making this deduction when he gave up his electrodynamic

researches, and he had a subjective conviction that it would be

necessary in the first place to form a consistent representation of

the manner in which the propagation takes place.

Three eminent mathematicians have endeavoured to supply

this keystone of electrodynamics.

862.] In a memoir presented to the Royal Society of Gottingen

in 1858, but afterwards withdrawn, and only published in

Poggendorff's Annalen, bd. cxxxi. pp. 237-263, in 1867, after the

death of the author, Bernhard Biemann deduces the phenomena

of the induction of electric currents from a modified form of

Poisson's equation

tPV d?V dW_ _ l_cZ2F
dx2 dy2 dz2 a2 dt2

where V is the electrostatic potential, and a a velocity.

This equation is of the same form as those which express the

propagation of waves and other disturbances in elastic media.

The author, however, seems to avoid making explicit mention of

any medium through which the propagation takes place.

The mathematical investigation given by Riemann has been

examined by Clausius*, who does not admit the soundness of

the mathematical processes, and shews that the hypothesis that

potential is propagated like light does not lead either to the

formula of Weber, or to the known laws of electrodynamics.

863.] Clausius has also examined a far more elaborate investi-

gation by C. Neumann on the ' Principles of Electrodynamics ' f.

Neumann, however, has pointed out J that his theory of the

transmission of potential from one electric particle to another

is quite different from that proposed by Gauss, adopted by

Riemann, and criticized by Clausius, in which the propagation

is like that of light. There is, on the contrary, the greatest

* Pogg., bd. cxxxv. p. 612. f Tubingen, 1868.

X Mathematische Annalen, i. 317.
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possible difference between the transmission of potential, accord-

ing to Neumann, and the propagation of light.

A luminous body sends forth light in all directions, the in-

tensity of which depends on the luminous body alone, and not

on the presence of the body which is enlightened by it.

An electric particle, on the other hand, sends forth a potential,

ee' . •

the value of which, — > depends not only on e, the emitting

particle, but on e', the receiving particle, and on the distance r

between the particles at the instant of emission.

In the case of light the intensity diminishes as the light is

propagated further from the luminous body ; the emitted potential

Hows to the body on which it acts without the slightest alteration

of its original value.

The light received by the illuminated body is in general only

a fraction of that which falls on it ; the potential as received by

the attracted body is identical with, or equal to, the potential

which arrives at it.

Besides this, the velocity of transmission of the potential is

not, like that of light, constant relative to the aether or to space,

but rather like that of a projectile, constant relative to the

velocity of the emitting particle at the instant of emission.

It appears, therefore, that in order to understand the theory of

Neumann, we must form a very different representation of the

process of the transmission of potential from that to which we
have been accustomed in considering the propagation of light.

Whether it can ever be accepted as the ' construirbar Vorstellung'

of the process of transmission, which appeared necessary to

Gauss, I cannot say, but I have not myself been able to

construct a consistent mental representation of Neumann's

theory.

864.] Professor Betti *, of Pisa, has treated the subject in a

different way. He supposes the closed circuits in which the

electric currents flow to consist of elements each of which is

polarized periodically, that is, at equidistant intervals of time.

These polarized elements act on one another as if they were

little magnets whose axes are in the direction of the tangent to

the circuits. The periodic time of this polarization is the same

in all electric circuits. Betti supposes the action of one polarized

* Nuovo Cimento, xxvii (1868).
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element on another at a distance to take place, not instan-

taneously, but after a time proportional to the distance between
the elements. In this way he obtains expressions for the action

of one electric circuit on another, which coincide with those

which are known to be true. Clausius, however, has, in this

case also, criticized some parts of the mathematical calculations

into which we shall not here enter.

865.] There appears to be, in the minds of these eminent men,
some prejudice, or a priori objection, against the hypothesis of a
medium in which the phenomena of radiation of light and heat

and the electric actions at a distance take place. It is true that

at one time those who speculated as to the causes of physical

phenomena were in the habit of accounting for each kind of

action at a distance by means of a special sethereal fluid, whose

function and property it was to produce these actions. They
filled all space three and four times over with aethers of different

kinds, the properties of which were invented merely to ' save

appearances,' so that more rational enquirers were willing rather

to accept not only Newton's definite law of attraction at a

distance, but even the dogma of Cotes *, that action at a

distance is one of the primary properties of matter, and that

no explanation can be more intelligible than this fact. Hence
the undulatory theory of light has met with much opposition,

directed not against its failure to explain the phenomena, but

against its assumption of the existence of a medium in which

light is propagated.

866.] We have seen that the mathematical expressions for

electrodynamic action led, in the mind of Gauss, to the con-

viction that a theory of the propagation of electric action in

time would be found to be the very keystone of electrodynamics.

Now we are unable to conceive of propagation in time, except

either as the flight of a material substance through space, or as

the propagation of a condition of motion or stress in a medium
already existing in space. In the theory of Neumann, the

mathematical conception called Potential, which we are unable

to conceive as a material substance, is supposed to be projected

from one particle to another, in a manner which is quite inde-

pendent of a medium, and which, as Neumann has himself

pointed out, is extremely different from that of the propagation

* Preface to Newton's Principia, 2nd edition.
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of light. In the theories of Kiemann and Betti it would appear

that the action is supposed to be propagated in a manner some-

what more similar to that of light.

But in all of these theories the question naturally occurs :

—

If something is transmitted from one particle to another at a

distance, what is its condition after it has left the one particle

and before it has reached the other ? If this something is the

potential energy of the two particles, as in Neumann's theory,

how are we to conceive this energy as existing in a point of

space, coinciding neither with the one particle nor with the

other ? In fact, whenever energy is transmitted from one body

to another in time, there must be a medium or substance in

which the energy exists after it leaves one body and before

it reaches the other, for energy, as Torricelli * remarked, ' is a

quintessence of so subtile a nature that it cannot be contained

in any vessel except the inmost substance of material things.'

Hence all these theories lead to the conception of a medium in

which the propagation takes place, and if we admit this medium

as an hypothesis, I think it ought to occupy a prominent place

in our investigations, and that we ought to endeavour to con-

struct a mental representation of all the details of its action, and

this has been my constant aim in this treatise.

* Lezioni Accademiche (Firenze, 1715), p. 25.
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[This comprehensive Index covers both volumes of the

work. The References are to Articles: Volume One con-

tains Articles 1 through 370; Volume Two contains

Articles 371 through 866.]

Absobption, electric, 53, 227, 329.

— of light, 798.

Accumulators or condensers, 50, 226-228.

Action at a distance, 103, 641-646, 846-

866.

Acyclic region, 19, 113.

iEther, 782 n.

Airy, Sir G. B., 454, 830.

Ampere, Andre Marie, 482, 502-528,

638, 687, 833, 846.

Anion, 237-

Anode, 237.

Arago's disk, 668, 669.

Astatic balance, 504.

Atmospheric electricity, 221.

Attraction, electric, 27, 38, 103.

— explained by stress in a medium, 105.

Barclay and Gibson, 229, 789.

Battery, voltaic, 232.

Beetz, W., 255, 265, 442.

Betti, E., 173, 864.

Bifilar suspension, 459.

Bismuth, 425.

Borda, J. C, 3.

Bowl, spherical, 176-181.
Bridge, Wheatstone's*, 347, 756, 775, 778.

— electrostatic, 353.

Bright, Sir C, and Clark, 354, 367.

Brodie, Sir B. C, 359.

Broun, John Allan, 462.

Brush, 56.

Buff, Heinrich, 271, 368.

Capacity (electrostatic), 50, 226.

— of a condenser, 50, 87, 102, 196, 227-

229, 771, 774-780.

Capacity, calculation of, 102, 196.

— measurement of, 227-229.
— in electromagnetic measure, 774,

775.

Capacity (electromagnetic) of a coil, 706,

756, 778, 779.

Cathode, 237.

Cation, 237.

Cauchy, A. L., 827.

Cavendish, Henry, 38, 74.

Cayley, A., 553.

Centrobaric, 98.

Circuits, electric, 578-584.

Circular currents, 694-706.
— solid angle subtended by, 695.

Charge, electric, 31.

Clark, Latimer, 358, 629, 725.

Classification of electrical quantities, 620-

629.

Clausius, R., 70, 256, 863.

Coefficients of electrostatic capacity and
induction, 87, 90, 102.

— of potential, 87, 90.

— of resistance and conductivity, 297,

298.
— of induced magnetization, 426.

— of electromagnetic induction, 755.

— of self-induction, 756, 757.

Coercive force, 424, 444-

Coils, resistance, 335-344.
— electromagnetic, 694-706.
— measurement of, 708.

— comparison of, 752-757.

Comparison of capacities, 229.

— of coils, 752-757.
— of electromotive forces, 358.

— of resistances, 345-358.

Concentration, 26, 77.

Condenser, 50, 226-228.

* Sir Charles Wheatstone, in his paper on ' New Instruments and Processes,' Phil.

Trans., 1843, brought this arrangement into public notice, with due acknowledgment

of the original inventor, Mr. S. Hunter Christie, who had described it in his paper on
4 Induced Currents/ Phil Tram., 1833, under the name of a Differential Arrange-

ment. See the remarks of Mr. Latimer Clark in the Society of Telegraph Engineers,

May 8, 1872.
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Condenser, capacity of, 50, 87, 90, 102,

196, 227-229, 771, 774-780.
Conduction, 29, 241-254.

Conduction, linear, 273-284.
— superficial, 294.

— in solids, 285-334.
— electrolytic, 255-265.
— in dielectrics, 325-334.

Conductivity, equations of, 298, 609.
— and opacity, 798.

Conductor, 29, 80, 86.

Conductors, systems of electrified, 84-94.

Confocal quadric surfaces, 1 47-154, 192.

Conjugate circuits, 538, 759.
— conductors, 282, 347.
— functions, 182-206.
— harmonics, 136.

Conservation of energy, 93, 242,262, 543.

Constants, principal, of a coil, 700, 753,

754.

Contact force, 246.

Continuity in time and space, 7.

— equation of, 35, 295.

Convection, 55, 238, 248.

Convergence, 25.

Copper, 51, 360, 362, 761.

Cotes, Roger, 865.

Coulomb, C. A., 38, 74, 215, 223, 373.

Coulomb's law, 79, 80.

Crystal, conduction in, 297.

— magnetic properties of, 435, 436, 438.

— propagation of light in a, 794-797.

dimming, James, 252.

Curl, 25.

Current, electric, 230.

— best method of applying, 744.

function, )

294, 647-681.
sheet,

— induced, 582.
— steady, 232.
— thermoelectric, 249-254.
— transient, 232, 530, 536, 537, 582,

748, 758,760, 771,776.
Current-weigher, 726.

Cyclic region, 18, 113, 481.

Cylinder, electrification of, 189.

— magnetization of, 436, 438, 439.

— currents in, 682-690.
Cylindric coils, 676-681.

Damped vibrations, 732-742, 762.

Damper, 730.

Daniell's cell, 232, 272.

Dead beat galvanometer, 741.

Decrement, logarithmic, 736.

Deflexion, 453, 743.

Delambre, J. B. J., 3.

Dellmann, F., 221.

Density, electric, 64.

— of a current, 285.
— measurement of, 223.

Diamagnetism, 429, 440, 838.

Dielectric, 52, 109, 111, 229, 325-334,
366-370, 784.

Diffusion of magnetic force, 801.

Dimensions, 2, 42, 88, 278, 620-629.
Dip, 461.

Dipolar, 173, 381.

Directed quantities (or vectors), 10.

Directrix, 517.
Discharge, 55.

Discontinuity, 8.

Disk, 177.
— Arago's, 668, 669.

Displacement, electric, 60, 75, 76, 111,
328-334, 608, 783, 791.

Dygogram, 441.

Earnshaw, S., 116.

Earth, magnetism of, 465-474.
Electric brush, 56.— charge, 31.

— conduction, 29.

— convection, 211, 238, 248, 255, 259.

— current, 230.
— discharge, 55-57.
— displacement, 60, 75, 76, 111, 328-

334, 608, 783, 791.
— energy, 84.

— glow, 55.

— induction, 28.

— machine, 207.— potential, 70.

— spark, 57.

— tension, 48, 59, 107, 108, 111.
— wind, 55.

Electrode, 237.
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— of Poisson, 77.— of resistance, 297.
Equilibrium, points of, 112-117.

False magnetic poles, 468.
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